
High-Level Languages
and Floating-Point
Arithmetic for FPGA-
Based CFD Simulations
Diego Sanchez-Roman, Gustavo Sutter,

Sergio Lopez-Buedo, Ivan Gonzalez,

Francisco J. Gomez-Arribas, and

Javier Aracil

Universidad Autonoma de Madrid

Francisco Palacios

Stanford University

�COMPUTATIONAL FLUID DYNAMICS (CFD) plays a

key role in the design and optimization of many in-

dustrial applications. In the case of aeronautics, air-

craft design has been traditionally based on costly

and time-consuming wind tunnel tests. Computer-

based flow simulations would enable much faster

and less expensive tests, significantly reducing design

costs and allowing for the exploration of new airfoil

geometries. More importantly, CFD would also enable

shape optimization, thus facilitating the development

of safer, less polluting and less fuel-consuming air-

crafts. Unfortunately, the huge computational costs

of CFD prevent it from being a valid tool for the entire

design process. CFD is currently used only at some

design steps, and wind tunnel tests are still essential.

These huge costs come from the Navier-Stokes

equations that govern the air flow motion. These

Navier-Stokes equations derive from the physical

laws of mass, momentum, and energy conservation,

and they cannot be solved analytically except in con-

crete cases, so their solutions must be approximated

numerically. The drawback with CFD

simulation in aeronautical design is

that, in many situations, flows develop

two physical phenomena: shock waves

and turbulence. Such cases require

using a fine discretization of the space

to obtain accurate results, so the time

required to compute the solutions

becomes prohibitive, even in the best

high-performance computing (HPC) clusters. Be-

cause of this, researchers have expended consider-

able effort to try to accelerate the execution of

these algorithms. Developed algorithms include com-

puting parallelization,1 GPU computing,2-4 and FPGA

solutions.5,6

FPGA-based high-performance reconfigurable

computing (HPRC) is a promising technology for ap-

plication acceleration because it creates a synergy

between system-level parallelism and lower-level

hardware parallelism. Unfortunately, reconfigurable

solutions typically require skilled engineers to write

hardware description language (HDL) code, and

development time and testing usually far exceed

that in software solutions. Fortunately, this drawback

is being reduced, thanks to the advent of hardware

compilers from high-level languages (HLLs), typi-

cally C or C dialects.7,8 Although HLLs reduce devel-

opment time, manual optimizations are still needed

to improve the implementation, and this limits the

reduction in design efforts and costs. Additionally,

FPGA-Based Acceleration of Scientific Computing

Editor’s note:

Computational fluid dynamics is a classical problem in high-performance

computing. In order to make use of an existing code base in this field,

the use of high-level design tools is an imperative. The authors explore the

use of the Impulse C design tools for a Navier-Stokes implementation.

��George A. Constantinides (Imperial College London)

and Nicola Nicolici (McMaster University)

0740-7475/11/$26.00 �c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers28

[3B2-9] mdt2011040028.3d 29/6/011 11:13 Page 28

newer FPGA families provide

better support for floating-point

arithmetic, so it’s no longer nec-

essary to go through the painful

step of porting the algorithm to

fixed-point arithmetic. Finally,

the advent of a new generation

of acceleration-oriented FPGA

platforms, such as in-socket

accelerators, has made HPRC

far more efficient and simpler

to use.

In this article, we show how

to employ these new methodolo-

gies and tools to significantly

improve the performance of

complex applications such as

aeronautical CFD simulations,

while reducing the energy

required to perform those com-

putations. We have obtained a

22� speedup and one order

of magnitude in energy savings

for a 2D Navier-Stokes solver

using an approach based on

the XtremeData XD2000i In-

Socket Accelerator,9 along with single-precision

floating-point arithmetic and Impulse Accelerated

Technologies’ Impulse C software (http://www.

impulseaccelerated.com), which generates VHDL

or Verilog from standard ANSI-C code.

Navier-Stokes solver
We’ve used an in-house Navier-Stokes solver writ-

ten in C++ using single floating-point arithmetic,

which implements a vertex-centered finite-volume

method (FVM) applying the MUSCL (Monotone

Upstream-Centered Schemes for Conservation Laws)

scheme. The program’s input is an unstructured

mesh, in which the space is discretized in finite vol-

umes. These finite volumes are triangles or rectangles

in the 2D case, and hexahedrons, pyramids, tetrahe-

drons, or wedges in the 3D case. Figure 1 represents

a 2D discretization of a National Advisory Committee

for Aeronautics (NACA) 4412 airfoil consisting of tri-

angles. The density, momentum, and energy are asso-

ciated with each node (we will call them conservative

values since they follow conservation laws). These

magnitudes are computed in successive time integra-

tions until a convergence criterion is reached.

In the first preprocessing stage, the program

reads the mesh and computes the control volumes.

It also determines the edge connectivity, calculates

the normal vectors (to edges), and initializes the

conservative values for each node. After this pre-

processing stage, the actual integration loop

begins. Figure 2 shows the algorithm flow. The

arrows between the boxes represent the depen-

dency between the subroutines, and the numbering

reflects the order in the sequential execution of the

software solver. The new conservative values for

each node are updated in the time integration rou-

tine, as a function of the residuals computed in the

space integration and the time step. Because of the

numerical scheme implemented, one node uses

data from two neighborhood layers to update its

new conservative values.

Hardware platform
The development system is a workstation with a

dual Xeon motherboard populated with one Intel

Xeon L5408 quad-core processor and one Xtreme-

Data XD2000i In-Socket Accelerator. The XD2000i,

installed in the second processor socket, uses the

Figure 1. 2D discretization of a National Advisory Committee for Aeronautics

(NACA) 4412 airfoil. The space is discretized in finite volumes shown as 2D

triangles, where the laws of physics are imposed.

29July/August 2011

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 29

motherboard’s existing CPU infrastructure to

create a full-featured environment for FPGA copro-

cessing. The high-bandwidth, low-latency front-

side bus (FSB) link between the coprocessor

module and the Intel processor enables tightly

coupled FPGA acceleration of x86 applications��
previously impossible with legacy PCI-bus�based

solutions.9

The XD2000i In-Socket Accelerator features three

Altera Stratix III FPGAs (http://www.altera.com).

One of these FPGAs (Stratix III SL150) serves as a

bridge to the FSB, whereas the other two (Stratix III

SE260 with 255,000 logic elements, 768 embedded

multipliers, and 15 Mbytes of internal memory) are

available to implement the user logic. These two

application FPGAs are connected through two unidi-

rectional 64-bit buses at 400 megatransfers per

second (MT/s). In addition, the XD2000i module

includes two QDRIIþ SRAM banks, one for each

user FPGA.9 The accelerator system typically works

at 100 MHz.

Hardware development methodology
using HLLs

Scientific-computing algorithms are mainly written

with floating-point arithmetic in C, C++, or Fortran.

However, the traditional approach

for FPGA design is based

on fixed-point arithmetic and

HDLs such as VHDL or Verilog.

Using this traditional approach,

algorithm acceleration in an

HPRC system requires a huge

effort: analyze the dynamic

range of variables to transform

floating- to fixed-point arithme-

tic; manually schedule arithme-

tic operations; create finite-state

automata to control the ex-

ecution of operations, and so

forth. Additionally, validation

and debug is especially diffi-

cult, making this methodology

suitable only for very stable

codes. This is a serious draw-

back for algorithms that are

continually evolving because

of new scientific knowledge, as

with aeronautical CFD applica-

tions. Therefore, we use an alter-

native methodology based on Impulse C and

floating-point arithmetic.

Synthesis framework creation

The first step was to create a C synthesis frame-

work optimized for the accelerator platform used.

We chose Impulse C because it is the only tool that

supports our XD2000i module, since Mitrion-C has

been discontinued.8 To the best of our knowledge,

there are only two other HLLs that support floating-

point arithmetic out of the box��Xilinx AutoESL

and ROCCC (Riverside Optimizing Compiler for Con-

figurable Computing)��but neither of these HLLs pro-

vides support for acceleration modules. Another

advantage of Impulse C is that it lets users easily

change the cores being used for arithmetic operations.

Actually, we found that the floating-point cores

originally provided by Impulse C and Altera are

deeply pipelined, featuring a high clock frequency

but at the cost of increased latency and area. How-

ever, the XD2000i module is aimed at 100-MHz

designs, so it made no sense to use such deeply

pipelined cores. Therefore, we developed our own

single-floating-point library based on IEEE Std.

754-2008 (IEEE Standard for Floating Point Arithmetic)

binary32, targeting this clock frequency at the lowest

FPGA-Based Acceleration of Scientific Computing

Time step
calculation

(1)

Space integration
(2)

Time integration
(3)

Inviscid
stress
(4.1)

Gradients
calculation

(2.1)

Inviscid residuals
calculation

(upwind scheme)
(2.1.1)

Implemented in hardware

Primite vars
calculation

(2.2)

Viscous residuals
calculation
(2.2.1.1)

Primitive gradients
calculation

(2.2.1)

Viscous stress
(4.2)

Stress calculation
(4)

Boundary
residuals

calculation
(2.3)

Figure 2. Algorithm flow for the Navier-Stokes solver that we used.

30 IEEE Design & Test of Computers

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 30

possible latency. Table 1 shows the area and latency

comparison between Impulse C, Altera, and our

floating-point library, where FPGA resources are mea-

sured in terms of look-up tables (LUTs) and registers.

Hardware-software partitioning

and solver code adaptation

The second step was to perform hardware-software

partitioning and adapt the original solver code to Im-

pulse C. We began by profiling the code to find the

computational bottlenecks. This profiling, along

with an analysis of the data flow, let us decide

which portions of the code to execute in the FPGA.

Most HDL compilers, including Impulse C, are

based on the process-stream model of computation,

derived from the concurrent sequential processes

(CSP) paradigm. In this computation model, data

flows from one process to others through streams.

Synchronization is automatically resolved because

processes run only when there is data available in

their input streams. In a well-modularized C or C++

program, the rule of thumb is to map each C or

C++ function to one process, although it’s always

desirable to examine the code to find parallel tasks

within a function, which can be separated into con-

current processes.

The major difficulties in adapting the original C

code for high-level synthesis are in data access and

storage. The HDL compiler might not (as Impulse

C does not) support object-oriented paradigms or

complex data structures, such as arrays inside C struc-

tures, pointers, or dynamic-memory allocation. More

decisively, efficient data access is critical for an

optimum hardware implementation. Therefore, we

advocate using an architectural pattern that isolates

computation and data storage into two different

types of processes. This solution aims for the best

code maintainability and easier optimizations.

Loop unrolling and pipelining

At the end of the second step, a hardware-software

solution was running, but it served only for validation

purposes, because performance in such solutions is

typically very poor. Acceleration can be achieved

only when loop parallelism is exploited via loop

unrolling and pipelining��the third step in our

methodology.

In Impulse C, this is achieved through pragmas

placed at the beginning of the loops. However,

there are currently some restrictions: Neither nested

unrolled loops inside a pipeline loop nor nested pipe-

lined loops are allowed. Moreover, loops must be

fully unrolled, and this is only possible when the num-

ber of iterations is known at compilation time. Other

tools, such as Mentor Graphics’ Catapult C,8 let users

unroll loops in sets of k iterations, thus providing a

maximum speedup factor of k. Moreover, Impulse

C automatically tries to achieve pipelines with an op-

timal rate of 1 output result per clock cycle. If input

data cannot be provided at such a rate because of

data dependencies or access contention, pipeline

stalls are automatically added. In contrast, Catapult

C offers less aggressive pipelines with a custom

issue rate and automatic component sharing.

Architectural optimizations

The last step in our methodology is to apply

architectural optimizations to improve area and

performance. Impulse C provides the Stage Master

Explorer tool to report pipeline throughput and

Table 1. Latency and area of floating-point operations.

Impulse C Altera Our floating-point library

Operation

Latency

(cycles)

Look-up

tables Registers

Latency

(cycles)

Look-up

tables Registers

Latency

(cycles)

Look-up

tables Registers

Add or subtract 11 554 632 7 548 308 3 435 139

Multiply 11 148 283 5 155 136 2 107 72

Divide 15 2,127 710 6 1,482 758 6 1,320 392

Divide (DSP)* 15 244 491 6 197 260 NA NA NA

Square root NA NA NA 16 473 521 5 401 198

* Multipliers in digital-signal processor (DSP) blocks may be used to perform division. Impulse C division uses 14 DSP blocks, whereas

Altera division may use either 16 DSP blocks or none. Our division does not use multipliers; therefore, there is no version with DSP

blocks.

31July/August 2011

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 31

data stalls, greatly simplifying the performance opti-

mizations. In our experience, a significant fraction

of data stalls originate because FPGA memory ele-

ments have very limited parallelism: just two indepen-

dent read/write ports. Because each process requires

at least one port, global array sharing among pro-

cesses is discouraged. However, the use of array flat-

tening can increase parallelism in data access; that

is, we split multidimensional arrays into several 1D

arrays, which can be accessed concurrently to im-

prove data throughput. The corollary is that improv-

ing performance requires optimizing data access,

which in turn requires separating computation and

data storage into different processes.

Simple code tweaks were effective for reducing

area. First, we transformed arithmetic expressions

by extracting common factors. Then, we stored

some common calculations that were redundantly

computed in auxiliary variables. Another trivial

transformation was the suppression of as many divi-

sions as possible, because this arithmetic operator

is excessively hungry in terms of latency and area

(see Table 1). When more than one division with

the same denominator is performed, it’s usually

preferable to compute the inverse and multiply.

Similarly, we developed arithmetic cores for multi-

plying and dividing by 2, which are significantly

simpler operations than regular multiplication and

division.

In general, this methodology is valid for most

scientific computational algorithms. However, it is

best suited for algorithms with an irregular data ac-

cess pattern and parallelizable loops. Additionally,

when using floating-point arithmetic, low-latency

operators and arithmetic transformations always

help to shrink the circuit by reducing register

utilization.

Hardware implementation
We selected the routines to be implemented in

hardware (see Figure 2) by profiling the original

C++ solver. The changes required from the C++ code

were straightforward and related chiefly to the

process-stream programming and the methodology

described earlier.

However, because the total number of floating-

point arithmetic operations was huge (see Table 2),

we had to use the area reduction tweaks described

in the previous section. We also carefully analyzed

the instruction scheduling, and we detected that

the reuse of some variables was limiting the code

parallelization, thus increasing pipeline latency and

register use. Furthermore, we redefined the array

sizes to be a power of 2 when possible, so that effec-

tive addresses were computed by shifting and con-

catenation rather than multiplication and addition.

Even when we used these optimizations, however,

we were left with a design that was too big for one

FPGA (see Table 3), so we used both devices avail-

able in the XD2000i.

To optimize performance, the main issue concern-

ing us was to prevent pipeline stalling. First, data waits

were eliminated by array splitting, as explained ear-

lier. Second, dependency between loop iterations

appeared in the form of accumulations over a given

memory. We eliminated this loop dependency by

developing an out-of-order accumulator. This Impulse

C process detects data dependencies, saves the val-

ues that cannot be computed, processes stored val-

ues when input cannot be processed, and inserts

bubbles when necessary. Finally, we had to minimize

the number of data transfers in the inter-FPGA com-

munication bus to maximize performance. So, we

replicated data in both FPGAs��namely, the edges

and the nodes’ conservative values. This data-transfer

FPGA-Based Acceleration of Scientific Computing

Table 2. Number of arithmetic operations for the routines given in Figure 2.

Routines

Operation 2.1 and 2.2 2.2.1 2.3 2.1.1 2.2.1.1 1 3 Total

Add or subtract 27 2 6 106 26 13 4 184

Multiply 34 19 17 122 20 16 4 232

Divide 0 3 1 11 3 4 1 23

Square root 0 2 3 7 0 1 0 13

Multiply by 2 0 0 0 1 2 1 0 4

Divide by 2 7 0 3 7 10 2 0 29

32 IEEE Design & Test of Computers

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 32

minimization imposed restrictions on the partitioning,

which caused an imbalance in the area utilization of

the two FPGAs (see Table 3).

Figure 3 shows a simplified view of the hardware

architecture. The input stream comes to FPGA 1

from the FSB passing through the bridge FPGA. Al-

though data is stored in the internal memory of

FPGA 1, it is also forwarded to FPGA 2, which stores

it in its internal memory as well. Then, routines 1, 2.1,

2.2, 2.2.1, and 2.3 of Figure 2 are computed in parallel

in FPGA 1. Specifically, gradients are computed on

FPGA 1 but are stored in FPGA 2. Once gradient com-

putation is finished, inviscid and viscous residuals are

computed in parallel in FPGA 2. Finally, time integra-

tion is performed in FPGA 1, which returns the target

nodes’ conservative values to the CPU through the

bridge FPGA.

Because our hardware accelerator uses only the

internal FPGA memory, we can compute mesh frag-

ments containing up to 12,288 nodes and 24,576

edges. Real meshes are actually much bigger, so we

used a hardware-software solution. The mesh is split

into fragments so that each part is computed in the

hardware accelerator separately, and then each frag-

ment’s computed values are merged by the CPU in

the software. When all fragments are processed, the

node values are updated, and a subsequent time iter-

ation can be computed.

A good mesh partition is crucial to our obtaining

good performance results. At least two neighborhood

levels must be added to each partition, and each sub-

domain must be connected to avoid duplicate data

and computations. To get these partitions, we used

the Metis tool.10 Another key factor to avoid incurring

a penalty in reassembling the returned values from

the accelerator is overlapping the work in the

XD2000i and CPU. We developed a double-buffering

stream system to overcome this challenge. With this

solution, the CPU updates the streams for the next

iteration while data is being processed in the hard-

ware accelerator.

A rough estimation of the effort saved from the

HLL approach is evident from the source line

count. Our original in-house C++ solver has

4,570 lines of code, whereas the Impulse C code is

8,990 lines, which are translated into 102,175 lines

of VHDL code. Considering an effort equivalence

of three Impulse C lines for each VHDL line,8 we es-

timate that the implementation effort has been

reduced by a factor of 34. Even if we consider that

the VHDL code generated by Impulse C is not opti-

mal and that some of the engineers involved in the

study by El-Araby, Merchant, and El-Ghazawi did

F

in-socket
accelerator

FPGA 1 FPGA 2

Gradients

Time
integration

Inviscid
res.

Viscous
res.

Boundary
residuals

Bridge
FPGA

Front side bus

Figure 3. Hardware processes distribution.

Table 3. Resource utilization by different FPGAs.

Look-up tables

Resource measure Combinational Memory Registers DSP blocks Memory (Mbits)

Available resources

in Stratix SE260 FPGA

203,520 101,760 203,520 768 15,040

Resource usage in FPGA 1 61,163 (30.1%) 704 (0.7%) 88,033 (43.3%) 436 (56.8%) 7,502 (49.9%)

Resource usage in FPGA 2 142,677 (70.1%) 7,978 (7.8%) 140,048 (68.8%) 764 (99.5%) 11,715 (77.9%)

33July/August 2011

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 33

not have experience with Impulse C or HDL develop-

ment,8 the difference is significant enough to justify

the use of HLL tools.

Results
We compared the execution of routines 1, 2, and

3 in the CPU against the execution in the XD2000i

accelerator, including data transfers and data struc-

ture updates. The CPU was an Intel Xeon L5408

(a 45-nm quad-core processor running at 2.13 GHz

with 12 Mbytes of Level-2 cache) running a 64-bit

CentOS Linux distribution. The system also featured

32 Gbytes of RAM and an FSB running at 1,066 MHz.

We evaluated four test cases. Three of them

(NACA_0012_s, NACA_0012_m, and NACA_0012_l)

were different discretizations of a NACA_0012 airfoil.

The other test case corresponded to a NACA_4412

wing section. All of them consisted of triangle-shaped

control volumes. Table 4 includes the mesh sizes in

terms of nodes, edges, and triangles, as well as the

size of the stream sent to the XD2000i accelerator.

The table also shows the execution times and speed-

ups achieved. We compiled our original Navier-Stokes

solver with two different compilers: GCC 4.12 and

ICPC 12.0.2. Execution times for the software were sig-

nificantly improved when we enabled compiler opti-

mizations. Specifically, GCC was invoked with the

-O3 flag, whereas ICPC was called with -O3-xSSE4.1-

parallel-static-intel-axSSE4.1-ip-ipo0.

With regard to execution with the XD2000i

accelerator, the NACA_0012_s, NACA_4412, and

NACA_0012_m grids fit entirely in the internal

FPGA memory. Hence, the algorithm could be exe-

cuted any desired number of iterations in the hard-

ware module, eliminating data transfers to the host

main memory. For this reason, the speedup was

better when we performed 1,000 time integrations

in the accelerator. Also, this test let us accurately

compute the raw execution time inside the

XD2000i because the time spent in data transmission

was negligible. This raw computation time is the sec-

ond term given in parentheses in the last column of

Table 4; the transfer data time is the first term. As

Table 4 shows, the execution time with the XD2000i

module is one order of magnitude faster than in

our original C++ solver.

The NACA_0012_l mesh did not fit in the internal

FPGA memory, so we had to partition it. Thus, we

expected degradation in performance for this case.

To improve performance, we explored how to mini-

mize the number of data transfers. By adding 2N

neighborhood layers to each fragment, we can com-

pute N time iterations without interacting with the

CPU. There is a trade-off, because the stream size

for each fragment grows with N, and redundant com-

putations stem from the greater overlapping between

fragments. However, CPU performance degrades con-

siderably more with increasing mesh size. This degra-

dation is due to the increased cache misses from the

irregular access pattern of unstructured meshes and

the augmented memory utilization. Therefore, the

best speedup was for this last case, which was

22.74 times faster. We obtained this value when the

mesh was split into 85 fragments and two time inte-

grations were computed in the XD2000i module for

each fragment.

The bottlenecks in the current implementation

are communication and local-memory capacity.

The current communication limits are imposed by

the FSB and the inter-FPGA links. We estimate that

improving the latter link would allow for a 2� im-

provement in the raw computation time. Also, a

FPGA-Based Acceleration of Scientific Computing

Table 4. Mesh characteristics and mean execution time per iteration.

CPU

1,000 iterations

in XD2000i

accelerator

1 iteration

in XD2000i

accelerator

Mesh Nodes Edges Triangles

Size

(Mbytes)

GCC

(ms)

ICPC

(ms)

Time

(ms) Speedup

Time

(ms)* Speedup

NACA_0012_s 5,233 15,449 10,216 0.64 14.5 13.8 1.0 13.80 1.8 (0.8 + 1.0) 7.67

NACA_4412 6,492 19,207 12,715 0.79 22.6 22.5 1.4 16.07 2.4 (1.0 + 1.4) 9.38

NACA_0012-m 7,908 23,296 15,388 0.97 30.5 30.3 1.6 18.94 2.7 (1.1 + 1.6) 11.22

NACA_0012-1 494,128 1,478,960 984,832 70.83 4,115 3,866 � � 170 (43 + 127) 22.74

* The numbers in parentheses indicate how the execution time is split between data transfer and raw computation time, respectively.

34 IEEE Design & Test of Computers

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 34

greater amount of internal memory would result in

better performance because bigger mesh fragments

would be processed in the FPGA.

We also measured AC power consumption. The

complete system running the operating system with-

out any computational load consumed 183.9 W, with-

out configuring the FPGAs. (Power consumption

increases when configuring the FPGAs.) This value

represents all the static-power consumption: fans,

disks, and other circuitry. The extra power added by

running the software application consumed an aver-

age of 36.5 W (including the memory accesses and

processor computations). By contrast, the hardware-

software solution using the CPU and the XD2000i con-

sumed an average of 43.1 W, of which 18 W corre-

sponded to the XD2000i module.

The preceding measurements show that using the

in-socket accelerator adds negligible power consump-

tion. Thus, using the XD2000i module lets users re-

duce both execution time and energy consumption

by more than one order of magnitude.

OUR RESULTS SHOW that a methodology based

on high-level languages, low-latency floating-point

arithmetic, and in-socket acceleration is effective

for accelerating complex scientific applications.

However, without the help of high-level language

compilers��more specifically, Impulse C��this proj-

ect would have required considerably more effort.

Impulse C let us reduce the development time from

months to weeks, without compromising perfor-

mance. Moreover, a big part of this success was due

to the XD2000i In-Socket Accelerator, which mini-

mized the I/O bottlenecks that are present in other

accelerator technologies. �

Acknowledgments
This work was supported by the Dovres (Design

Optimization by Virtual Reality Simulation) project

under the Airbus FuSim-E (Future Simulation Con-

cept) Programme initiative.

�References
1. L. Xiao et al., ‘‘Auto-FCD: Efficiently Parallelizing CFD

Applications on Clusters,’’ Proc. IEEE Int’l Conf. Cluster

Computing, IEEE CS Press, 2003, pp. 46-53.

2. T. Brandvik and G. Pullan, ‘‘Acceleration of a 3D Euler

Solver Using Commodity Graphics Hardware,’’ Proc.

46th AIAA Aerospace Sciences Meeting, Am. Inst. of

Aeronautics and Astronautics, 2008, AIAA paper

no. 2008-607.

3. J.C. Thibault and I. Senocak, ‘‘CUDA Implementation of

a Navier-Stokes Solver on Multi-GPU Desktop Platforms

for Incompressible Flows,’’ Proc. 47th AIAA Aerospace

Sciences Meeting Including the New Horizons Forum

and Aerospace Exposition, Am. Inst. of Aeronautics and

Astronautics, 2009, AIAA paper no. 2009-758.

4. V.G. Asouti et al., ‘‘Unsteady CFD Computations

Using Vertex-Centered Finite Volumes for Unstruc-

tured Grids on Graphics Processing Units,’’ Int’l

J. Numerical Methods in Fluids, 19 May 2010,

doi:10.1002/fld.2352.

5. H. Morisita et al., ‘‘Implementation and Evaluation of an

Arithmetic Pipeline on FLOPS-2D: Multi-FPGA System,’’

ACM SIGARCH Computer Architecture News, vol. 38,

no. 4, 2010, pp. 8-13.

6. W.D. Smith and A.R. Schnore, ‘‘Towards an RCC-

Based Accelerator for Computational Fluid Dynamics

Applications,’’ J. Supercomputing, vol. 30, no. 3, 2004,

pp. 239-261.

7. J. Curreri et al., ‘‘Performance Analysis with High-Level

Languages for High-Performance Reconfigurable Com-

puting,’’ Proc. 16th Int’l Symp. Field-Programmable Cus-

tom Computing Machines (FCCM 08), IEEE CS Press,

2008, pp. 23-30.

8. E. El-Araby, S.G. Merchant, and T. El-Ghazawi, ‘‘A

Framework for Evaluating High-Level Design Methodolo-

gies for High-Performance Reconfigurable Computers,’’

IEEE Trans. Parallel and Distributed Systems, vol. 22,

no. 1, 2011, pp. 33-45.

9. ‘‘XD2000i FPGA In-Socket Accelerator for Intel FSB,’’

XtremeData; http://www.xtremedata.com/products/

accelerators/in-socket-accelerator/xd2000i.

10. G. Karypis and V. Kumar, METIS: Unstructured Graph

Partitioning and Sparse Matrix Ordering System, Version

4.0, tech. report, Dept. of Computer Science, Univ. of

Minnesota, Minneapolis, 1998.

Diego Sanchez-Roman is pursuing a PhD in

Escuela Politecnica Superior at Universidad Autonoma

de Madrid. His research interests include computer ar-

chitecture and high-performance reconfigurable com-

puting. He has an MTech in computer science from

Universidad Autonoma de Madrid.

Gustavo Sutter is an associate professor in Escuela

Politecnica Superior at Universidad Autonoma de

Madrid. His research interests include computer

arithmetic and architectures, algorithms in hardware,

35July/August 2011

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 35

reconfigurable devices, high-performance computing,

and low-power design techniques. He has a PhD in

computer engineering from Universidad Autonoma

de Madrid. He is a member of IEEE.

Sergio Lopez-Buedo is an associate professor in

Escuela Politecnica Superior at Universidad Autonoma

de Madrid, and is also the founder of Naudit HPCN. His

research interests include high-performance computing

and communication applications of reconfigurable de-

vices. He has a PhD in computer engineering from Uni-

versidad Autonoma de Madrid. He is a member of IEEE.

Ivan Gonzalez is an associate professor in Escuela

Politecnica Superior at Universidad Autonoma de

Madrid. His research interests include parallel algo-

rithms and performance tuning for heterogeneous

computing. He has a PhD in computer engineering

from Universidad Autonoma de Madrid.

Francisco J. Gomez-Arribas is an associate pro-

fessor in Escuela Politecnica Superior at Universidad

Autonoma de Madrid. His research interests include

reconfigurable-computing applications, with a special

focus on the design of multiprocessor systems and

their integration in heterogeneous clusters. He has a

PhD in physics from Universidad Autonoma de Madrid.

Javier Aracil is a full professor in Escuela Politecn-

ica Superior at Universidad Autonoma de Madrid. His

research interests include computational mathematics,

and traffic analysis and characterization of communi-

cation networks. He has a PhD in telecommunications

engineering from Universidad Politecnica de Madrid.

He is a senior member of IEEE.

Francisco Palacios is an engineering research as-

sociate at Stanford University. His research interests

include mechanical engineering and applied mathe-

matics. He has a PhD in applied mathematics from

Universidad Autonoma de Madrid.

�Direct comments and questions about this article to

Diego Sanchez-Roman, Escuela Politecnica Superior,

Universidad Autonoma de Madrid, Cantoblanco,

E-28049 Madrid, Spain; d.sanchez@uam.es.

FPGA-Based Acceleration of Scientific Computing

36 IEEE Design & Test of Computers

[3B2-9] mdt2011040028.3d 28/6/011 14:48 Page 36

[3B2-9] mdt2011040028.3d 27/6/011 12:9 Page 37

