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New convergence acceleration techniques in the Joe code

By F. Palacios AND J. J. Alonso

1. Motivation and objectives

The Joe code is a 2nd-order accurate (in space), finite volume, unstructured cell-based, implicit
RANS (Reynolds-averaged Navier-Stokes equations) solver with flamelet-based chemistry (Pecnik
et al. 2010a,b) developed within the Stanford PSAAP Center. This code was created to simulate
the flow path inside of scramjet engines and, during the past few years, has served as the plat-
form for numerical simulations on complex multiphysics problems. However, some robustness and
computational cost aspects of the original code were not sufficiently fine-tuned, and, therefore, the
improvement of these aspects has motivated the present research.
At the beginning of 2011, Joe included the following basic numerical methods for solving the

RANS equations: space integration using a HLLC (Harten, Lax, van Leer contact wave) approximate
nonlinear Riemann solver (Toro et al. 1994), 2nd-order extrapolation of the convective terms using
a MUSCL scheme (Monotone Upstream-centered Schemes for Conservation Laws), and 2nd-order
space integration of the viscous terms. Steady-state time integration could be carried out using a
multistage Runge-Kutta scheme or a backward Euler method where the linear system is solved using
preconditioned GMRES (Generalized Minimum RESidual) or a BiCGSTAB (BiConjugate Gradient
STABilized) method.
Using these numerical methods, and when convergence is reached, the Joe solver results in accurate

simulations. However, several issues present robustness challenges and prevent the application of the
software to full 3D geometry UQ (Uncertainty Quantification) studies. It is important to note that
UQ studies using the complete 3D Hyshot II geometry are an important milestone of the PSAAP
center and, for that reason, significant effort has been devoted to increasing the robustness and
convergence rates of the solver. In particular, during this past year, the following numerical methods
have been added to the baseline Joe solver:
• New numerical discretization of the convective terms: both the AUSM (Advection Upstream

Splitting Method) approximate nonlinear Riemann solver (Liou & Steffen 1993) and a JST (Jameson
-Schmidt-Turkel) centered scheme (Jameson et al. 1981).
• A geometric, agglomeration-based mutigrid scheme implemented and tuned for shocked flows.
• New linear solvers: BiCGSTAB with linelet preconditioning and a LU-SGS (LU Symmetric

Gauss Seidel) method.
• New estimation of the local time stepping for viscous and turbulent flows to enable larger CFL

numbers.
The objective of this paper is to briefly introduce the new methods that have been implemented

in Joe and to show the numerical improvements (robustness, and speed) that those techniques have
produced. The overall goal has been to enable the 3D UQ simulations that the Center needs to
pursue during the coming year.

2. Overview of the convergence acceleration techniques

Convergence acceleration techniques are methods for reducing the computational time needed to
solve a CFD problem while preserving the accuracy of the solution. It is important to note that most
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of these techniques are based on the special treatment of the widely varying scales that can be found
in a typical flow problem including turbulence, boundary layers, shock waves, and combustion. In
particular, during 2011 the following techniques have been implemented in Joe:

• Multigrid method: The objective of this method is to correct the baseline fine-grid solution using
information obtained in coarser grid levels in a grid hierarchy. Each coarser grid level is designed
to eliminate a particular frequency bandwidth in the numerical error spectrum. This technique has
been implemented in Joe with particular attention to hypersonic simulations using a geometric grid
agglomeration technique.
• Linelet preconditioning technique: The original system is replaced by a preconditioned system

that results in better convergence properties for iterative solution than the original system. Implic-
itness is specifically added in areas of the flow where the solution is highly coupled.
• Local time stepping strategy: This methodology is based on computing the maximum time

step for each computational cell. In this work, a more accurate estimation of the time-step limit
for turbulent flows has been included, leading to more effective updating of the solution across the
entire flow domain.

On the other hand, the implicit implementation (considered in addition to the convergence acceler-
ation techniques mentioned above) has been reviewed, and important changes have been introduced
to increase the solver robustness. Note that Joe includes two different implicit formulations:

• Un-coupled, where the mean-flow, combustion model, and turbulence model are solved implic-
itly, but independently of each other (and an external iteration is followed to ensure the convergence
of the entire system).
• Semi-coupled, where the mean-flow and combustion are implicitly coupled, and the turbulence

model is solved independently.

The fully coupled formulation is also included in the code but was not used because solving
all equations simultaneously may yield the most rapidly convergent scheme in number of iterations
(higher CFL number), but not necessarily in CPU time. For that reason, the semi-coupled option was
selected as a compromise between high CFL numbers and effective use of computational resources.
Fully implicit formulations will be investigated at a later time.

3. Non linear multigrid method for hypersonic flows

The multigrid method generates effective convergence at all length scales of a problem by em-
ploying a sequence of grids of varying resolution. Simply stated, the main idea is to accelerate the
convergence of the numerical solution of a set equations by computing corrections to the fine-grid
solutions on coarse grids and applying this idea recursively(Mavriplis 1998, 1995; Borzi 2003). It is
well know that, owing to the nature of most iterative methods/relaxation schemes, high-frequency
errors are usually well damped, but low-frequency errors (global error spanning the solution domain)
are less damped by the action of iterative methods that have a stencil with a local area of influence.

An agglomeration Full Approximation Storage (FAS) multigrid has been implemented in Joe. The
basic methodology is described below. Consider the nonlinear problem L(w) = f defined in a domain
Ω, and denote its discretization on a fine grid with spacing h as

Lh(uh) = fh, in Ωh, (3.1)

where Lh(·) is a nonlinear discrete operator defined in Ωh. The starting point is the definition of
a suitable smoother (e.g. Jacobi, SGS, GMRES, etc.) and, after a small number of iterations of
this method (possibly a single one, instead of fully solving the discrete equation), an approximate
solution ūh and residual rh are obtained on the fine grid. The resulting equation in the fine grid can
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be written as

Lh(ūh)− fh = rh. (3.2)

Subtracting equations 3.1 and 3.2 we obtain the following expression to be approximated in a
coarse grid:

Lh(uh)− Lh(ūh) = −rh, (3.3)

where the exact solution uh can be expressed as the approximate solution plus a correction ch
yielding:

Lh(ūh + ch)− Lh(ūh) = −rh. (3.4)

Note that no assumptions about the linearity of the operator L(·) (or its discrete version) are
made. As we stated before, the objective is to write 3.4 in a coarse grid of spacing H . In order to do
that, two types of restriction operators will be defined: IHh , the restriction operator that interpolates
the residual from the fine grid h to the coarse grid H (in a conservative way), and ĪHh , which
simply interpolates the fine grid solution onto the coarse grid. Formulating 3.4 on the coarse level
by replacing Lh(·) by LH(·), ūh by ĪHh ūh, and rh by IHh rh, we obtain the FAS equation:

LH(ĪHh ūh + cH)− LH(ĪHh ūh) = −I
H
h rh. (3.5)

In this last expression, by definition, the approximate solution on the coarse grid is denoted as
ūH := ĪHh ūh+cH , and the residual rh can be written as Lh(ūh)−fh. Finally we obtain the following
useful equation on the coarse level:

LH(ūH) = LH(ĪHh ūh)− IHh (Lh(ūh)− fh). (3.6)

This last expression can also be simply written as

LH(ūH) = fH + τHh , in ΩH , (3.7)

where the source term on the coarse levels is interpolated fH = IHh fh (not computed), and a new
variable τHh = LH(ĪHh ūh) − IHh (Lhūh) is defined as the fine-to-coarse defect or residual correction.
Note that without the τHh term the coarse grid equation is the original system represented on the
coarse grid.
The next step is to update the fine grid solution. For that purpose the coarse-grid correction cH

(which in principle is smooth because of the application of the smoothing iteration) is interpolated
back on to the fine grid using the following formula

ūnew
h = ūold

h + IhH(ūnew
H − ĪHh ūold

h ), (3.8)

where IhH is a prolongation operator that interpolates coarse grid correction to the fine grid. Note
that we interpolate the correction and not the coarse-grid solution itself.
In this brief introduction to the method only two grids have been considered. In real problems,

however, the algorithm is applied in a recursive way using different grid level sizes to eliminate the
entire spectrum of frequencies of the numerical error. In order to summarize the method, the basic
multigrid algorithm is presented in pseudo-code below:

Algorithm FAS Multigrid

1. if k = 1
2. then solve Lk(uk) = fk directly
3. for l ← 1 to ν1
4. do Pre-smoothing steps on the fine grid:

5. u
(l)
k ← S(u

(l−1)
k , fk)



4 F. Palacios and J. J. Alonso

6. Computation of the residual: rk ← fk − Lk(w
(ν1)
k )

7. Restriction of the residual: rk−1 ← Ik−1
k rk

8. uk−1 ← Īk−1
k u

(ν1)
k

9. fk−1 ← rk−1 + Lk−1(uk−1)
10. Call γ times the FAS scheme to solve Lk−1(uk−1) = fk−1 using a V cycling strategy

11. Coarse-grid correction: unew
k ← u

(ν1)
k + Ikk−1(uk−1 − Īk−1

k u
(ν1)
k )

12. for l ← 1 to ν1
13. do Post-smoothing steps on the fine grid:

14. u
(l)
k ← S(u

(l−1)
k , fk)

Because of their structured-grid heritage, multigrid methods have traditionally been developed from
a geometric point of view. In this particular implementation a geometric agglomeration multigrid
method has been used. This strategy consists in choosing a seed point (a cell in a cell-based code
such as Joe), which initiates a local agglomeration process whereby the neighboring control volumes
are agglomerated onto the seed point. The topological fusing for the agglomeration multigrid method
is a fundamental component of the algorithm: surface priorities and multiple restrictions to the set
of volume (maximum number of points, volume, ratio surface/volume, boundary incompatibilities,
etc) have been implemented. The most important advantage of the agglomeration technique is that
it is not necessary to physically create independent meshes on the coarse levels: this task can be
completely automated.
Whereas excellent results may be achieved for subsonic or transonic flows (see Fig. 1, and Fig. 2),

unfortunately the standard multigrid method does not provides satisfactory results in hypersonic
flows owing to the presence of strong shock waves (Koren & Hemker 1991; Kim 2001), highly stretched
grids (Mavriplis 1998), and chemically reacting flows (Gerlinger et al. 1998, 2001). The problem is
that if the source term contains strongly nonlinear parts, coarse grid values can differ too much from
the corresponding fine grid values and, therefore, no longer represent the problem on the finest grid:
even small coarse grid corrections interpolated to the finest grid may lead to strong changes that
can prevent robust convergence.
It is important to remember that the efficiency of the multigrid strategy relies on the fact that

the low-frequency errors are damped on the coarse levels (where a larger time step can be used).
In chemically reacting flows, turbulent or strong shocked flows problems arise because of the high
non-linearity of the solution: it is clear that the re-calculation of strongly nonlinear functions based
on linearly averaged/interpolated variables from the fine grid causes major differences that prevent
the convergence of the iterative method. In most of the cases the consequence is the failure of
the multigrid approach, while in other situations the multigrid method simply does not aid in the
convergence of the numerical scheme. For that reason, our objective is to create a selective multigrid
method that is applied in the zones where it makes sense and does not apply any correction in those
zones where multigrid could have a negative impact.
In Joe, two alternatives have been implemented in the quest for greater robustness: local damping

of the restricted residual (based on temperature, pressure, and viscosity), using a pressure sensor

ǫi =

∣

∣

∣

∣

∣

neigh
∑

k=1

(pk − pi)

∣

∣

∣

∣

∣

/

neigh
∑

k=1

(pk + pi), (3.9)

and uniform damping of the coarse grid correction. The advantage of the first methodology is that it
has an apriori effect (aposteriori damping may not help). On the other hand, the uniform damping
of the coarse-grid correction will have a positive effect on the robustness of the method but may
strongly reduce the positive effects of the coarse-grid correction.
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Figure 1. Supersonic flow around a cylinder
(single grid ; 5MG levels ). First
level 16384 hexahedra 1:4 reduction. 65856
faces. Speed up to residual level of 10−4 x17
(iterations)
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Figure 2. Subsonic laminar flow around a
NACA0012 (single grid ; 4MG levels

). First level 16000 hexahedra 1:4 re-
duction. 64230 faces.Speed up to residual level
of 10−6 x9 (iterations)

Figure 3. Visualization of the pressure and viscous sensors during a
multigrid simulation of a jet in cross flow.

To sum up, in dealing with strong nonlinearities, the key idea is to not apply multigrid corrections
in those zones where no positive effect is expected. In order to do this, it is important to damp part
of the correction to avoid the incorrect reconstruction of the solution. This kind of technique must
be applied in highly non-linear situations, but should be avoided when dealing with subsonic and
transonic applications of the multigrid algorithm. In Fig. 3 and Fig. 4 a successful application of
this technique is presented. The example deals with the convergence of a calculations of a jet in a
supersonic cross flow that was accelerated by a factor of 4 using this new multigrid approach.

4. Linelet preconditioning for solving RANS equations on highly stretched grids

Preconditioning is the application of a transformation to the original system that makes it more
suitable for numerical solution (Pierce & Giles 1997). In particular, a linelet preconditioner has been
implemented in Joe to improve the convergence rate of the preconditioned biconjugate gradient
stabilized method (BiCGSTAB) solver for anisotropic meshes. The idea is (Soto et al. 2003; Mavriplis
1998) to construct lines in the mesh in the direction normal to the grid stretching. Then, the
preconditioning matrix is built by assembling the diagonal entries of the system matrix and the non-
diagonal entries of the edges that belong to these linelets. If the appropriate numbering is used, a
block tridiagonal matrix is obtained, and the preconditioned system can be directly inverted using the
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Figure 4. Convergence of the jet in cross flow
problem: the multigrid methodology produces
a speed up of 4× (single grid ; 3V MG,
damping factor 0.75 ; 3V MG, damping
factor 0.25 ).
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Figure 5. Effect of the preconditioning on a
RANS simulation (Reynolds number 6.5 106).
Linelet preconditioner ( ) versus Jacobi
preconditioner ( ), the convergence cri-
teria is 0.1.

Thomas algorithm. Note that in those zones where linelets are not defined, a Jacobi preconditioner
is used.
In summary, in order to solve the system Ax = b using the preconditioned BiCGSTAB method,

it is necessary to solve (twice in each iteration) a system of equations of the form Pz = r, where P
is the linelet preconditioner. The steps of the algorithm are:
1. Build grid lines (linelets) in the direction normal to the grid stretching.
2. Build the preconditioner matrix: assemble the diagonal and the non-diagonal entries (linelets)
of the Jacobian matrix.
3. Do a nodal renumbering following the linelets to obtain a tridiagonal structure for the precon-
ditioner.
4. Use the preconditioned formulation of the iterative scheme.
5. Solve the tridiagonal system for the linelets using the Thomas algorithm (direct method).
The linelet creation begins with the identification of all the points that are on the solid surface of

the geometry (and where boundary layers and/or wakes are likely to exist), and the computation of
an edge weight for each vertex on the surface, this weight is computed as:

wij =
1

2
Sij

(

1

Vi

+
1

Vj

)

, (4.1)

where Sij is the area of the face that separates nodes i and j and V is the volume of the control
volume associated with each node. The line is built by adding to the original vertex the vertex which
is most strongly connected to the current vertex (maximum value of the weight). This new vertex
is added only if it has not already been added to another linelet and if the weight is greater than a
certain quantity that is used to mark the termination of the linelet. When an entire line is completed,
the procedure is repeated starting with another vertex on the surface.
Once the list of linelets is completed, the nodal points must be renumbered following the linelets

to obtain the desired tridiagonal structure of the preconditioner. First, the nodes of a linelet are
renumbered from one end to the other. Then, a second linelet is renumbered, and so on until all
linelets have been covered. Finally the rest of the points also have to be renumbered to accommodate
the renumbering of the vertices that belong to the collection of linelets that have been identified.
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The final step is to solve the system Pz = r using the Thomas algorithm, in order to do that,
the first step is to decompose the preconditioner matrix into upper- and lower-trianguler matrices
U and L using the following algorithm (Soto et al. 2003):













D1 F1 0 · · · 0
E2 D2 F2 · · · 0
0 E3 D3 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · En Dn













=













I 0 0 · · · 0
L2 I 0 · · · 0
0 L3 I · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · Ln I













×













U1 F1 0 · · · 0
0 U2 F2 · · · 0
0 0 U3 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · 0 Un













(4.2)

Algorithm Thomas algorithm

1. U1 ← D1

2. for i← 2 to n
3. do Obtain U−1

i−1

4. Li ← EiU
−1
i−1

5. Ui ← Di − LiFi−1

Once L and U have been obtained, the solution of the system Pz = r is computed by performing
the following substitutions:

yi = ri − Liyi−1, (y1 = r1), i = 2, ..., n; (4.3)

zi = U−1(yi − Fizi+1), (zn+1 = 0), i = n, ..., 1. (4.4)

It is important to highlight that the LU decomposition is done only once, and it can be done on a
per-linelet basis. On the other hand, an LU factorization is performed at each block of the implicit
block matrix to compute the inverse of the block matrix. As it was pointed above, thanks to the
particular renumbering chosen, in those points where a linelet is not defined, a Jacobi preconditioner
is recovered by default.
The objective of the linelet preconditioner is to reduce the number of inner iterations in an implicit

solver to obtain a particular level of convergence. In Fig. 5 it is possible to obtain a 40% reduction
in the number of inner iterations (with respect to Jacobi preconditioner) for a transonic airfoil
simulation at a Reynolds number, Re = 6.5 106.

5. Implicit formulation and local time stepping

Implicit formulations and local time stepping techniques are powerful methods for convergence
acceleration. These techniques require the estimation of eigenvalues and first-order approximations
to the Jacobians. With respect to the local time step, our scheme avoids the use of a single time
step over the entire computational domain for meshes with inhomogeneous cell densities. The local
time step is computed (Eliasson 2007) for each node i according to

∆ti = CFLmin

(

Vi

λconv
i

,
Vi

λvisc
i

)

, (5.1)

where Vi is the volume of the cell i and λconv
i is the integrated convective spectral radius computed

as

λconv
i =

Neigh
∑

k=1

(|~uik · ~nik|+ cik)Sik, (5.2)
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Figure 6. Effect of the new boundary Ja-
cobian in the convergence of the hypersonic
(1st-order) flow around a cylinder (old formu-
lation ; new formulation ).
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and ~uik = (~ui + ~uk)/2, and cik = (ci + ck)/2 denote the velocity and the speed of sound at the cell
face. ~nik denotes the normal direction of the control surface, and Sik its size. On the other hand,
the viscous spectral radius λvisc

i is computed as

λvisc
i =

Neigh
∑

k=1

C
µik

ρik
S2
ik, (5.3)

where C is a constant, µik is the sum of the laminar and eddy viscosities in a turbulent calculation,
and ρik is the density.
In addition, the implicit formulation of Joe has been reviewed, and the Jacobian evaluation on

the symmetry boundaries (slip walls) has been changed using the analytical flux on the slip wall
(Dwight 2006) (weak formulation imposed by setting only the flux over the boundary face) fsimm =
(0, pnx, pny, pnz, 0)

T , and the Jacobian due to this flux is computed using the chain rule where
initially computing the derivatives with respect to the primitive variables, simplifies the calculation
considerably. After that change, the convergence of the un-coupled version of Joe has improved
considerably in basic problems that we were not able to converge before. In particular, in Fig. 6 it
is possible to understand the effect of introducing the new boundary condition, and in Fig. 7 the
combined effect of the new boundary condition and new time step computation is presented for a
basic hypersonic simulation.

6. Hyshot II simulation (full 3D geometry)

The objective of this section is to summarize the application of the algorithmic developments to
increase the speed and robustness of the Joe code within the context of the simulation of the Hyshot
II problem (full 3D geometry, 2.8 106 cells). The ability to simulate this case repeatedly (under
changes to the operating characteristics of the scramjet) is of fundamental importance to the 3D
UQ analysis we are pursuing this year at the PSAAP center: increasing the robustness and speed of
the solver has become a high priority.
The original version of Joe (prior to 2011) was unable to fully converge the Hyshot II simulation
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Figure 9. Residual convergence of the second
order Hyshot simulation using an equivalence
ratio of 0.3 (CFL 0.5 ; CFL ramp from
0.5 to 2.0 ; CFL ramp from 0.5 to 3.0

).

in a robust manner. For that reason, before introducing more advanced convergence acceleration
techniques (multigrid, and linelet), the objective was simply to increase the robustness of the code
by re-implementing the following areas for the solver: boundary conditions, time step evaluation,
numerical discretization of the convective terms and viscous terms, linear solver, and integration of
the source term of the progress variables. After a thorough study of the convergence problems, three
factors were identified as the most relevant to increase the convergence rate of the code:
• Time step evaluation and appropriate imposition of the numerical boundary conditions.
• The reacting solution starting from a well defined cold solution (at the same equivalence ratio).
• Implicit smoothing of the source term of the progress-variable equation helping the convergence

of the reacting simulation.
Using those ideas, it is now possible to converge the un-coupled formulation of the Joe code even

for reacting flows (in previous version of Joe this simulation did not converge). Although was now
the convergence of the un-coupled simulation possible for reacting simulations, the required CFL
number was very low and, for that reason, only the semi-coupled implementation is presented in this
document.
All the simulations presented in this section are for reacting flows, and two different spatial

reconstruction are compared: 2nd-order reconstruction for all the convective terms (including the
reacting terms), and a mixed reconstruction which consists of 2nd-order for the mean-flow convective
terms, but 1st-order for the rest of the scalars. The pure 1st-order discretization was ruled out
because the low accuracy of the results (despite better convergence rates). Finally, to evaluate the
convergence of the code with UQ purposes, some different metrics are shown in this section. In
particular, we compare the percentage of subsonic flow in the domain and the weighted pressure on
the device.
The initial test was performed using an equivalence ratio of 0.3. In Fig. 8 the convergence study

for the mixed formulation is presented: it is important to highlight that the density residual has
decreased by three orders of magnitude. On the other hand, in Fig. 9 the 2nd-order simulation is
presented and a noteworthy CFL ramp from 0.5 to 3.0 used.
In Fig. 10 one can see the convergence of the weighted pressure metric for an equivalence ratio of

0.3. This metric is computed as the volume averaged pressure on the entire device, and was selected
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because of its relation with the prediction of the unstart phenomena. The percentage of supersonic
flow in the device has been also computed to evaluate the convergence of the code. In Fig. 11 the
convergence of that metric is studied for different CFL ramps.
Once the convergence of the second and mixed methods have been verified, the next step is to

check if the solution provided by the mixed formulation is good enough in terms of accuracy. In
Fig. 12 it is possible to see that the mixed order approximation does not exhibit the same level of
accuracy as that of the 2nd-order one in the pressure distribution on the body. For that reason, the
mixed order formulation was ruled out. Moreover, a scalability study has been performed (see in
Fig. 13), the conclusion is that the code scales linearly up to 40.000 cells per core.
Numerical experiments have been also performed by increasing the equivalence ratio from 0.3 to

0.4. In particular, for an equivalence ratio of 0.4, the results are shown in Fig. 14, and in Fig. 15 the



New convergence acceleration techniques in the Joe code 11

Time (min)

L
o

g
 (

m
ax

 d
en

si
ty

 r
es

id
u

al
)

0 500 1000

-2

-1.5

-1

Figure 14. Residual convergence for equiva-
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Figure 15. Weighted pressure convergence
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).

convergence of the weighted pressure is presented. Note that an unsteady behavior is perceived: this
phenomena prevents full convergence of the steady state solver.
In conclusion, with the current version of Joe, it is possible to obtain a Hyshot II scramjet simu-

lation with a good level of convergence for 2nd-order simulations using equivalence ratios between
0.3 and 0.4.

7. Conclusions and future work

The current version of Joe now includes two of the most successful convergence acceleration tech-
niques: multigrid, and linelet preconditioning. These techniques have been implemented in parallel
and have been tested in RANS simulations with satisfactory results (the code is between 3 and 4
times faster).
On the other hand, thanks to the improvements in the basic numerics of the code, the robustness

has improved dramatically for the Hyshot II problem and it is now possible to converge the Hyshot
II simulation three orders of magnitude (maximum CFL number of 3.0) in 24 hours using 100 pro-
cessors (certainty.stanford.edu cluster). This is a remarkable benchmark that allows the application
of UQ techniques to the entire system. In addition, the un-coupled formulation (with lower memory
requirements) is also converging using a lower CFL number.
Finally, several metrics have been tested, and more than 100 simulations of the entire Hyshot II

geometry (3D) have been performed to adjust the parameters to maximize convergence. The next
step is the integration of the convergence acceleration techniques in the Hyshot II simulation to
reduce the computational cost by three or four times.
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