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Adjoint methods are widely used in various areas of computational science to efficiently
obtain sensitivities of functionals which result from the solution of partial differential equa-
tions (PDEs). In addition, adjoint methods have been used in other settings including
error estimation, uncertainty quantification, and inverse problem formulations. When de-
riving the adjoint equations, there are two main approaches once can follow: the discrete
and the continuous methods, which differ principally in the order of the linearization and
discretization steps. The discrete adjoint method starts from the discretized form of the
partial differential equation, which is then linearized. On the other hand, the continuous
method linearizes the continuous governing equations first and then discretizes the result-
ing problem. Each of these approaches are found to have advantages and disadvantages
over the other. In this paper we consider a hybrid approach between these two meth-
ods that aims to combine the better qualities of both: reductions in the time spent on the
mathematical derivation while also lowering the computational requirements of the discrete
method, and increasing the overall quality of the adjoint solution.

I. Nomenclature

Subscript and superscript Definition

()i = Value at inlet
()e = Value at exit
()k,l = Cell identifiers
()s = Value at shock
()C = Variable treated in continuous manner
()D = Variable treated in discrete manner
()E = Term related to Euler part of governing equations
()H = Variable treated in hybrid manner
()λ = Term related to combustion model part of governing equations

V ariable Definition

j = Integrand in continuous functional
h = Height of duct
m = Mass flow
p = Pressure
p∗ = Pressure constant for non-differentiable cost function
p0 = Stagnation pressure
q = Specific heat release
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t = Time
x = Spatial coordinate
C = Constant in exponential source term
F = Direct problem flux vector
G = Adjoint problem flux vector
H = Stagnation enthalpy
L() = Linearized problem operator
L∗() = Adjoint linearized problem operator
M = Mach number
N = Number of cells on coarse grid
P = Pressure source term vector
Q = Combustion source term vector
R = Gas constant
T = Static temperature
T0 = Stagnation temperature
T ∗ = Initiation temperature constant for Heaviside source term
U = Flow variables
B = Boundary conditions
G = Governing equations
J = Objective function
L = Lagrangian
N = Flow equations
R = Residual equations
V = General adjoint variable
α = System parameters under which perturbation to objective function is considered
β = Switching variable to select discrete (β = 0) or continuous (β = 1) objective function
γ = Ratio of specific heats
ǫ = Energy flow variable
λ = Combustion flow variable
µ = Hybrid adjoint variable from enforcing discrete governing equations
ν = Hybrid adjoint variable from enforcing continuous governing equations
ρ = Density
φ = Continuous adjoint variable
ψ = Discrete adjoint variable
ω = Combustion source term
Γ = Boundary surface
Λ = Reaction progress variable
Ψ = Discrete adjoint variable in error estimation
Ω = Domain

Mathematical Notation

()′ = Perturbed value

(̂) = Numerical flux

(̃) = Roe flux
()T = Transpose
H = Heaviside function
δ() = Continuous perturbation
∆() = Discrete perturbation
{δ,∆}() = Hybrid perturbation
∂()
∂() = Continuous Jacobian
D()
D() = Discrete Jacobian
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II. Introduction

T
he adjoint method was first developed for aerodynamics shape optimization applications through the use
of control theory by Jameson1 in the late 1980s and early 1990s using ideas adapted from more general

work by Lions2 on optimal control of systems governed by partial differential equations (PDEs). Over the
past two decades, adjoint methods have been used in a variety of applications including shape optimization
of wing geometries,3 goal-oriented numerical error estimation and mesh adaptation,4, 5 sensitivity analysis,
and uncertainty quantification.6

Depending on the approach followed for the derivation of the adjoint equations, this method is conven-
tionally characterized as either discrete or continuous. While both of these approaches involve numerical
solutions, the difference arises from the order of discretization and linearization of the governing equations.
In the discrete adjoint method, the discretized governing equations are used to derive the discrete adjoint
equations. In the continuous adjoint method, the adjoint equation is derived from the analytical form of the
PDE and is then discretized to obtain a discrete representation of the adjoint equations.

The discrete method can employ algorithmic Automatic Differentiation,7 either via source code trans-
formation, e.g. using TAPENADE,8 or operator overloading, e.g. using ADOL-C,9 to calculate partial
derivatives and hence, PDEs of arbitrary complexity can be handled with very little mathematical develop-
ment. However, the resulting system can become highly stiff or ill-conditioned and difficult to solve, and
little freedom exists to tailor the scheme for the numerical solution of the problem. On the other hand, the
discrete adjoint provides the “exact” gradient of the discretized objective function and it is able to treat
objective functions of arbitrary complexity. It should also be noted that it is possible to analytically derive
(by hand) the required partial derivative terms from the discretized forms of the flow residuals and then
develop code based on this, however, this requires significant development, possibly more than that generally
required in the continuous method.10 Moreover, there exist complex sets of governing equations for which
the hand-differentiation of all terms in the equations is infeasible.

In contrast, the continuous approach allows for a more thorough understanding of the physical significance
of the adjoint equations and boundary conditions, but may require significant analytic development. It is,
however, well connected to the original PDE in its analytical form and has an unique form independent
of the scheme used to solve the flow-field system. For these reasons, it offers flexibility in choosing the
discretization scheme for the adjoint system, and the problem can be well-posed. However, this method
may result in discrepancies in the gradient of the discretized objective function and may limit the types of
functionals that can be treated. Moreover, some limitations exist in the kinds of cost functions that can be
treated and the derivation of the continuous adjoint equations may be infeasible for many complex governing
PDEs. It is also worth mentioning that, for sensitivity analysis, surface gradient formulations exist that do
not require the deformation of the volume mesh, thus saving considerable computational time and increasing
the robustness of the procedures.

Table 1 shows the relative advantages and disadvantages of using the two standard methods. Where an
approach has been given a + sign, this indicates it has favorable characteristics in this respect, and a − sign
indicates undesirable characteristics.

Table 1. Simple comparison between the discrete and continuous adjoint approaches

Discrete Continuous

Ease of development + −

Compatibility of numerical gradients with the discretized PDE + −

Compatibility of numerical gradients with the continuous PDE − +

Surface formulation − +

Ability to handle arbitrary functionals + −

Ability to handle non-differentiability + −

Computational cost (in simpler equations) − +

The discrete adjoint can be derived via a Lagrange method that enforces the governing equations for the
flow discretely, using the flow solution residuals. The continuous adjoint can be derived by enforcing the
analytical form of the governing equations. In this paper we introduce a hybrid approach that combines
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these two methods by enforcing part of the governing equations continuously and part discretely. The
choice between which terms will be enforced discretely and continuously is intended to be made so that
non-differentiable or highly complex functions will be removed from the continuous part of the formulation,
and so as to reduce the mathematical development time usually associated with the continuous adjoint.

In summary, the intent of this paper is to lay down the foundation for the derivation of adjoint equations
for very complex PDEs (such as those involving two or more equation turbulence model, combustion including
look-up tables, and multi-species simulations such as those seen in multi-species, multi-phase problems).
The basic idea is to use a continuous formulation for those portions of the flow problems for which such
formulations already exist (in the form of a program or as previously-published equations), but to treat
discretely those portions of the governing equations that are difficult (or impossible) to handle analytically.
The result is a formulation that produces high-quality adjoint information and that inherits the favorable
characteristics of the original methods, while overcoming their drawbacks.

Section III provides an introduction to the adjoint method, both discrete and continuous. Section IV
discusses our approach to the combination of continuous and discrete methods into a hybrid method. The
remaining sections describe an application to quasi-1D flow with a simple combustion model and the results
we have obtained with the method so far.

III. Introduction to Adjoint Methods

Adjoint equations can most conveniently be formulated in a framework to calculate the sensitivity of
a given objective function J to parameters α in a problem governed by the set of equations which can
be represented by G(U, α) = 0, where U is the solution. The adjoint variables that solve these equations
can be used purely as a mathematical tool to find the required sensitivities, but, as discussed by Giles and
Pierce11 and Belegundu and Arora,12 they can also be interpreted as representing the sensitivity of the
objective function to perturbations in the governing equations, or the influence on the objective function of
an arbitrary source function.

The additional computational cost of solving the adjoint problem is of the order of one additional flow
solution, and the adjoint variables can be used to compute the sensitivities of J to changes in all of the
parameters that define the problem at any point in the domain without additional computations. In contrast,
though finite-difference or complex-step methods13 can also be used to find these sensitivities, they are in
general significantly more expensive, requiring at least one additional flow solution to find the gradient of
the objective function with respect to each parameter in the domain and, in the case of finite differencing,
these methods can be potentially less accurate as well.

There are two main approaches used to derive the adjoint equations: the Primal-Dual Equivalence
Theorem and an optimization framework using Lagrange multipliers.11, 12 In this paper we consider the
latter method, and present the discrete, continuous and then hybrid derivations in an identical context. To
demonstrate the basic method we will consider the model problem of the objective function:

J (U, α) on Ω or Γ, (1)

subject to the contraints:

G(U, α) = 0 on Ω and Γ, (2)

where the constraints are the governing equations, including both the flow equations, N = 0 on Ω, and
boundary conditions, B = 0 on Γ.

The derivation process follows these steps:

1. Introduce a Lagrangian, L, to enforce the governing equations in the objective function via a set of
Lagrange multipliers.

L = J + VTG, (3)

where V are the Lagrange multipliers, which we will later denote as the adjoint variable (or variables),
and we note that as G = 0, L ≡ J for any value of V .

2. Write down the perturbation of the Lagrangian, δL, relative to a small change in some parameter α
(which may induce perturbations in the flow, domain and boundary).

δL = δJ + VT δG. (4)
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3. Expand and mathematically manipulate the terms in δL so as to group those dependent on the flow
perturbation, δU . Neglecting domain or surface perturbations:

δL =
∂J

∂α
δα+

∂J

∂U
δU + VT

(
∂G

∂α
δα+

∂G

∂U
δU

)

=

(
∂J

∂α
+ VT ∂G

∂α

)
δα+

(
∂J

∂U
+ VT ∂G

∂U

)
δU.

(5)

4. Identify the Lagrange multipliers as the adjoint variables and introduce constraints on these variables,
including an adjoint equation and boundary conditions, such that any explicit dependence of δL on
δU is removed. Here we note that through definition of the adjoint equation:

∂J

∂U
+ VT ∂G

∂U
= 0, (6)

the perturbation to the Lagrangian can then be written:

δL =

(
∂J

∂α
+ VT ∂G

∂α

)
δα. (7)

5. Equate δL to the perturbation to the objective function δJ , allowing us to easily find, once the adjoint
problem has been solved, the sensitivities of J relative to any system parameter, i.e.:

dJ

dα
=
δJ

δα
=
∂J

∂α
+ VT ∂G

∂α
. (8)

A. Discrete Adjoint Approach

In the discrete adjoint approach the governing equations that we wish to enforce are the residuals, at every
point in the domain, from the flow solution, Rk, i.e. G = {Rk} = 0. We note that these residuals include
the boundary conditions from the primal solution. This gives the Lagrangian:

L = JD +

N∑

k=1

ψT
k Rk, (9)

and the perturbation:

∆L = ∆JD +

N∑

k=1

ψT
k ∆Rk. (10)

The terms on the right hand side can then be expanded as:

∆JD =
N∑

l=1

DJD

DUl
∆Ul +

DJD

Dα
∆α, (11)

and

∆Rk =

N∑

l=1

DRk

DUl
∆Ul +

DRk

Dα
∆α = 0, (12)

which gives, after rearrangement:

∆L =
N∑

k=1

ψT
k

DRk

Dα
∆α+

N∑

k=1

(
DJD

DUk
+

N∑

l=1

ψT
l

DRl

DUk

)
∆Uk +

DJD

Dα
∆α. (13)

Then finally we may define the adjoint equation as:

N∑

l=1

(
DRl

DUk

)T

ψl = −

(
DJD

DUk

)T

, (14)
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allowing us to write:

∆JD = ∆L =

N∑

k=1

ψT
k

DRk

Dα
∆α,+

DJD

Dα
∆α (15)

or, in terms purely of the sensitivity to α:

dJD

dα
=

N∑

k=1

ψT
k

DRk

Dα
,+

DJD

Dα
(16)

where it is seen that once the adjoint equation is solved, we can determine sensitivities of the objective
function to any α relatively cheaply, needing only to consider the explicit dependence of J and R on α.

B. Continuous Adjoint Approach

In the continuous adjoint approach we will enforce the analytical form of the flow equations, N , and the
analytical boundary conditions, B, i.e. G = {N ,B} = 0. The Lagrangian is thus:

L = JC −

∫

Ω

φTNdΩ−

∫

Γ

φTBdΓ, (17)

where the continuous objective function JC can be defined over either the entire domain or just the boundary,
i.e.:

JC =

∫

Ω

jdΩ or JC =

∫

Γ

jdΓ. (18)

Also, we note that the sign of the terms introduced to enforce the constraints is negative by convention.
The result of this is that the continuous adjoint variables will differ from the discrete variables by a sign
change.

The perturbation to the Lagrangian now becomes:

δL = (J ′

C − JC)−

(∫

Ω′

φTN ′dΩ−

∫

Ω

φTNdΩ

)
−

(∫

Γ′

φTB′dΓ−

∫

Γ

φTBdΓ

)
, (19)

where we note that perturbations to the parameter α may cause perturbations to both the flow U , and the
domain Ω and its bounding surface Γ.

The next step is to manipulate and rearrange terms such that the direct dependence of this quantity
on the flow perturbations δU is removed, whilst retaining those terms dependent on perturbations to α

and/or the domain and boundary surface. As these remaining terms are either known or easily calculated
quantities the perturbation to the objective function can then be found with respect to those perturbations.
This process will lead to the continuous adjoint equation and its boundary conditions, but its derivation and
final form are intimately connected to the form of the governing equations, the objective function, and the
boundary conditions and cannot be shown generally as in the discrete case above.

IV. Hybrid Adjoint Methodology

The main motivation behind a hybrid adjoint is to combine the best qualities of the discrete and contin-
uous approaches. The goal is thus to aim for the convergence and robustness properties of the continuous
method, with the flexibility to handle arbitrarily complex PDEs in the discrete adjoint. The only approaches
that we are aware of, such as Lozano and Ponsin’s, have used continuous adjoint variables in a discrete ad-
joint framework to calculate sensitivities.14 The method discussed in this paper attempts to build a more
general hybrid representation.

In our approach, we will split the governing equations into those that will be incorporates continuously
and those that will be incorporated discretely, i.e. G = {{N ,B}C, {Rk}D} = 0. We note that the discrete
boundary conditions are not explicitly mentioned here because they are already included and applied in the
discrete residual calculation.

The equations that will be treated continuously will be those that will not change when minor adjustments
are made to the flow equations, such as altering the source terms, and that are easily differentiable (e.g.
the Euler equations for a perfect gas or even the laminar Navier-Stokes equations). The terms that will be
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treated discretely will include those that are not easily differentiable, and those that we may wish to change
and experiment with (e.g. chemical source terms and turbulence models). One of the main intentions is that
once the derivation for the continuous part is performed, substantial changes do not need to be made in the
future, thus significantly lowering the development cost for additional problems.

Additionally, we will define the objective function as either a discrete or continuous objective function.
We combine these by writing them as a sum:

JH = βJC + (1− β)JD , (20)

where β can be set to equal to 0 or 1 in order to recover either the discrete or continuous functionals,
respectively. Writing it in this way is useful so that both types of objective functions can be carried through
the derivations simultaneously.

The Lagrangian now becomes:

L = βJC + (1− β)JD −

∫

Ω

νTNCdΩ−

∫

Γ

νTBCdΓ +

N∑

k=1

µT
kRD,k, (21)

and its perturbation can be written as

{δ,∆}L = β (J ′

C − JC) + (1− β)∆JD

−

(∫

Ω′

νTN ′

CdΩ−

∫

Ω

νTNCdΩ

)
−

(∫

Γ′

νTB′

CdΓ−

∫

Γ

νTBCdΓ

)

+

N∑

k=1

µT
k∆RD,k.

(22)

The next steps in this derivation mirror those introduced previously for the discrete and continuous parts,
mathematically manipulating the equation so as to remove the explicit dependence of the perturbation on
δU , and in so doing generating the adjoint equation and boundary conditions for ν and µ.When deriving
and calculating the hybrid adjoint for a specific problem, two important choices will need to be made. The
first deals with the choice of the governing equations that will be treated discretely and continuously, and
the second is to decide whether to use the discrete or continuous objective function. An interesting feature
that can be inferred from the above equation is that the discrete and continuous approaches are in fact
special cases of the more general hybrid approach. By setting β = 0 and defining {R}D = R and thus
{N ,B}C = ∅ we recover the pure discrete method, and by setting β = 1 and defining {N ,B}C = {N ,B}
and thus {R}D = ∅ we get the pure continuous.

However, we are no longer limited to just those two options. It is now possible to create a continuous
adjoint that has a discrete functional, allowing non-differentiable cost functions to be considered in the
continuous approach, or vice versa, and many other combinations in between.

V. Application to quasi-1D flow with a simple combustion model

A. Primal problem

1. Definition

We consider quasi-1D Euler flow (smooth or shocked) in the duct x = [xi, xe] with height h(x) as shown in
figure 1. Additionally, inspired by Powers,15 we include a simple combustion model, introducing the reaction
progress variable Λ and the additional flow variable λ = ρΛ.

The analytical governing equations are given as:

N ≡
d

dx
(hF )−

dh

dx
P − hQ = 0, xi ≤ x ≤ xe (23)
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xi xe

h(x)

Figure 1. Quasi-1D duct

where:

U =




ρ

m

ǫ

λ


 , F =




m
m2

ρ + p

mH

mΛ


 , P =




0

p

0

0


 , Q =




0

0

0

ω


 (24)

H =
ǫ+ p

ρ
(25)

p = (γ − 1)(ǫ−
m2

2ρ
+ λq) (26)

where q is the specific heat release, a constant, and:

T =
p

ρR
(27)

We shall consider just supersonic flow in the numerical experiments of this paper, and due to the hyper-
bolic nature of the governing equation can apply boundary conditions based on characteristics such that we
define all conditions at the inlet, and none at the exit.

We consider two possible forms for the combustion source term ω

1. A differential, exponential form: ω = ρ(1− Λ)e−C/RT

2. A non-differentiable, Heaviside form: ω = bρ(1− Λ)H (T − T ∗)

We also define two objective functions as integrals over the domain:

1. A differential form, the ’lift’ over the duct: J =

∫ xe

xi

pdx

2. A non-differentiable form, the magnitude of a pressure difference: J =

∫ xe

xi

|p− p∗| dx

Note, the reason for choosing both differentiable and non-differential source and objective functions is to
allow the hybrid method to be investigated and applied to situations where the continuous adjoint cannot.

2. Solution strategy

The steady-state problem can be solved by discretizing and then iterating the following equation until the
variation in U between each time-step is sufficiently small:

h
∂U

∂t
= −

∂

∂x
(hF ) +

dh

dx
P + hQ (28)

In this case, to make use of existing methods we first split this equation into a set of coupled equations,
one for the Euler variables:

h
∂UE

∂t
= −

∂

∂x
(hFE) +

dh

dx
PE , (29)
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where:

FE =




m
m2

ρ + p

mH


 , PE =




0

p

0


 (30)

and the other for the combustion variable:

h
∂Uλ

∂t
= −

∂

∂x
(hFλ) + hQλ. (31)

where:

Fλ = (mΛ) , Qλ = (ω) (32)

Applying a finite volume method for the cell k we can then obtain:

hk
∆UE,k

∆t
∆x+RE,k = 0 (33)

and

hk
∆Uλ,k

∆t
∆x+Rλ,k = 0 (34)

where the numerical residuals are given by:

RE,k = ĥFE,k+ 1
2
− ĥFE,k− 1

2
−∆hkPE,k (35)

and
Rλ,k = ĥFλ,k+ 1

2
− ĥFλ,k− 1

2
− hkQλ,k∆x (36)

and the numerical fluxes for the Euler variables are given via the Roe scheme:

ĥFE,k+ 1
2
=

1

2
(hFE,k+1 + hFE,k)−

1

2

∣∣∣∣∣
∂̃FE

∂UE

∣∣∣∣∣
k+ 1

2

(hUE,k+1 − hUE,k) (37)

and those for the combustion variable are given by a simple upwinding scheme:

ĥFλ,k+ 1
2
=

1

2
(hFλ,k+1 + hFλ,k)−

1

2

∣∣∣∣
∂Fλ

∂Uλ

∣∣∣∣
k+ 1

2

(hUλ,k+1 − hUλ,k) (38)

In this paper we discretize the domain into a uniform mesh of cells of width ∆x and wrap each iteration
within a fourth-order Runge-Kutta step. Since we consider only supersonic flow, the left-hand boundary
conditions are Dirichlet and the right-hand uses extrapolation from within the domain to find the outgoing
flux.

B. Discrete adjoint method

1. Definition

Following the general discrete approach we can write down the adjoint equation:

N∑

l=1

(
DRl

DUk

)T

ψl = −

(
DJD

DUk

)T

(39)

and the perturbation to the objective function as:

∆JD =

N∑

k=1

ψT
k

DRk

Dα
∆α+

DJD

Dα
∆α (40)

where the residuals Rk are given in the solution strategy to the primal problem above.
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2. Solution strategy

The required Jacobians are found by applying automatic differentiation via the software tool ADOL-C,9

and then the following equation is solved directly using the forward Euler method until the variation in ψ
between each time-step was sufficiently small. This is equivalent to solving the linear system iteratively.

∆ψk

∆t
∆x = −

N∑

l=1

(
DRl

DUk

)T

ψl −

(
DJD

DUk

)T

(41)

where we note that the ∆x term comes because the Jacobians are obtained from applying ADOL-C to a
finite volume method.

C. Continuous adjoint method

1. Definition

Without showing in detail the derivation of the continuous adjoint for this case, which is relatively long and
has been well explained by Giles and Pierce,16 we state that the adjoint equation is:

L∗ (φ)−

(
∂j

∂U

)T

= 0, xi ≤ x ≤ xe (42)

where:

L∗ (φ) = −h

(
∂F

∂U

)T
dφ

dx
−

(
dh

dx

(
∂P

∂U

)T

+ h

(
∂Q

∂U

)T
)
φ, (43)

with the boundary conditions: [
hφT

∂F

∂U
δU

]xe

xi

= 0 (44)

giving the perturbation to the objective function:

δJC =

∫ xe

xi

φT
∂N

∂α
δαdx+

∫ xe

xi

∂j

∂α
δαdx (45)

We note also that for shocked flow the objective function needs to be written as an integral on either side
of the shock, located at xs:

JC =

∫ xs

xi

jdx+

∫ xe

xs

jdx (46)

and that this generates an additional adjoint boundary condition at the shock:

φ2(xs) = −

(
dh

dx
(xs)

)−1

(47)

2. Solution strategy

Similar to the direct problem, the steady-state problem can be solved by discretizing and then iterating the
following equation until the variation in the adjoint variables ψ between each time-step is sufficiently small:

h
∂φ

∂t
+ L∗ (φ)−

(
∂j

∂U

)T

= 0 (48)

and we again make use of existing methods by first splitting this equation into a set of coupled equations,
one for the Euler adjoint variables, and another for the combustion adjoint variable. However, care should
be given to the explicit coupling existing between the two sets of equations. For the Euler part we have:

h
∂φ

∂t
+ L∗

E (φ)−

(
∂j

∂U

)T

= 0 (49)
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where:

L∗

E (φ) = −h

(
∂F

∂UE

)T
dφ

dx
−

(
dh

dx

(
∂P

∂UE

)T

+ h

(
∂Q

∂UE

)T
)
φ, (50)

and for the combustion part:

h
∂φ

∂t
+ L∗

λ (φ)−

(
∂j

∂U

)T

= 0 (51)

where:

L∗

λ (φ) = −h

(
∂F

∂Uλ

)T
dφ

dx
−

(
dh

dx

(
∂P

∂Uλ

)T

+ h

(
∂Q

∂Uλ

)T
)
φ (52)

Applying a finite volume method for the cell k, and noting that this flow is no longer conservative, we
can then obtain:

∆φE,k

∆t
∆x− hk+ 1

2
ĜE,k,k+ 1

2
+ hk− 1

2
ĜE,k,k− 1

2
− hk

(
∂Fλ

∂UE

)T

k

∆φλ,k

−

(
dh

dx

(
∂P

∂UE

)T

+ h

(
∂Q

∂UE

)T
)

k

φk∆x−

(
∂j

∂UE

)T

k

∆x = 0,

(53)

and:

∆φλ,k
∆t

∆x− hk+ 1
2
Ĝλ,k,k+ 1

2
+ hk− 1

2
Ĝλ,k,k− 1

2
− hk

(
∂FE

∂Uλ

)T

k

∆φE,k

−

(
dh

dx

(
∂P

∂Uλ

)T

+ h

(
∂Q

∂Uλ

)T
)

k

φk∆x−

(
∂j

∂Uλ

)T

k

∆x = 0

(54)

where the numerical fluxes for the Euler adjoint variables are given via a method based on the Roe
scheme:17

ĜE,k,k+ 1
2
=

1

2

(
∂FE

∂UE

)T

k

(φk+1 + φk) +
1

2

∣∣∣∣∣∣

˜(∂FE

∂UE

)T

k+ 1
2

∣∣∣∣∣∣
(φk+1 − φk) (55)

and those for the combustion adjoint variable are given by a simple upwinding scheme:

Ĝλ,k,k+ 1
2
=

1

2

(
∂Fλ

∂Uλ

)T

k

(φk+1 + φk) +
1

2

∣∣∣∣∣

(
∂Fλ

∂Uλ

)T

k+ 1
2

∣∣∣∣∣ (φk+1 − φk) (56)

Each complete iteration is again wrapped within a fourth-order Runge-Kutta step. Since we consider only
supersonic flow and are solving for the adjoint variables, the right-hand boundary conditions are Dirichlet,
and set so that φ = 0 since this is supersonic flow, and the left-hand uses extrapolation from within the
domain to find the outgoing flux.

D. Hybrid adjoint method

1. Derivation

In the hybrid adjoint approach we decide to continuously enforce the analytical form of the Euler part of the
flow equations, NE , and their boundary conditions BE and to discretely enforce the residual for the solution
of the combustion model, Rλ,k, i.e. G = {{NE ,BE}C , {Rλ,k}D}.

We note that in this simple quasi-1D problem the boundary surface in general will not change, and
thus for smooth flow the BE term can be ignored. However, in the case of shocked flow we must enforce
the Rankine-Hugoniot conditions at the internal shock boundary, and must also admit the effect from the
potential movement of this boundary surface within the perturbation of the functional. For this case we
have the Lagrangian:
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L = β

(∫ xs

xi

jdx+

∫ xe

xs

jdx

)
+ (1 − β)JD

−

∫ xs

xi

νTNEdx−

∫ xe

xs

νTNEdx− νTs [hFE ]
x
s+

x
s−

+

N∑

k=1

µT
kRλ,k

(57)

and its perturbation:

{δ,∆}L = β

(∫ xs

xi

δjdx+

∫ xe

xs

δjdx− [j]xs+

x
s−

)
+ (1− β)∆JD

−

∫ xs

xi

νT δNEdx−

∫ xe

xs

νT δNEdx− νTs δ
(
[hFE ]

x
s+

x
s−

)
+

N∑

k=1

µT
k ∆Rλ,k

(58)

Using linearity, the perturbed quantities on the right hand side can be evaluated as:

δj =
∂j

∂U
δU +

∂j

∂α
δα, (59)

∆JD =

N∑

k=1

DJD

DUk
∆Uk +

DJD

Dα
∆α, (60)

δNE = LE(δU)−
∂NE

∂α
δα = 0, (61)

where:

LE(δU) =
d

dx

(
h

(
∂FE

∂U
δU

))
−
dh

dx

(
∂PE

∂U
δU

)
, (62)

∆RD,k =

N∑

l=1

DRD,k

DUl
∆Ul +

DRD,k

Dα
∆α = 0, (63)

and

δ
(
[hFE ]

x
s+

x
s−

)
= hs

[
∂FC

∂U
δU

]x
s+

x
s−

− hs

[
dFC

dx

]x
s+

x
s−

δxs (64)

Incorporating these into the equation for the perturbation of the Lagrangian and performing integration
by parts on the continuous terms followed by rearrangement we obtain:

{δ,∆}L =

∫ xs

xi

νT
∂NE

∂α
δαdx+

∫ xe

xs

νT
∂NE

∂α
δαdx +

N∑

k=1

µT
k

DRλ,k

Dα
∆α

+β

(∫ xs

xi

∂j

∂α
δαdx +

∫ xe

xs

∂j

∂α
δαdx

)
+ (1− β)

DRλ,k

Dα
∆α

−

∫ xs

xi

(
L∗

E(ν)− β

(
∂j

∂U

)T
)T

δUdx−

∫ xe

xs

(
L∗

E(ν) − β

(
∂j

∂U

)T
)T

δUdx

+

N∑

k=1

(
(1− β)

DJD

DUk
+

N∑

l=1

µT
l

DRλ,l

DUk

)
∆Uk

−

(
hsν

T
s

[
dFE

dx

]x
s+

x
s−

+ [j]
x
s+

x
s−

)
δxs

−hs
(
νTs − νT (xs+)

) (∂FE

∂U
δU

)∣∣∣∣
x
s−

+ hs
(
νTs − νT (xs−)

) (∂FE

∂U
δU

)∣∣∣∣
x
s+

−

[
hνT

∂FE

∂U
δU

]xe

xi

(65)
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where:

L∗

E(ν) = −h

(
∂FE

∂U

)T
dν

dx
−
dh

dx

(
∂PE

∂U

)T

ν) (66)

We then proceed by appropriately restricting the adjoint variables ν and µ such that the explicit de-
pendence of the Lagrangian perturbation on the flow perturbation and shock movement can be removed.
Canceling the last three lines leads to:

νs = ν, (67)

the external boundary condition: [
hνT

∂FE

∂U
δU

]xe

xi

= 0, (68)

and the internal shock boundary condition:

ν2(xs) = −

(
dh

dx
(xs)

)−1

(69)

The final step is then to define the hybrid adjoint equation:

∫ xe

xi

(
L∗

E(ν) − β

(
∂j

∂U

)T
)T

δUdx =

N∑

k=1

(
(1− β)

DJD

DUk
+

N∑

l=1

µT
l

DRD,l

DUk

)
∆Uk (70)

and thus the perturbation to the objective function can be written:

{δ,∆}JH = {δ,∆}L =

∫ xs

xi

νT
∂NE

∂α
δαdx +

N∑

k=1

µT
k

DRλ,k

Dα
∆α

+β

∫ xs

xi

∂j

∂α
δαdx+ β

∫ xe

xs

∂j

∂α
δαdx + (1− β)

DJD

Dα
∆α

(71)

However, it can be seen that the hybrid equation still retains a dependency on the flow perturbation
through δU and ∆U . To remove this we first write the integral over the domain as a sum of the integrals
over each cell:

N∑

k=1

∫

k

(
L∗

E(ν)− β

(
∂j

∂U

)T
)T

δUdx =

N∑

k=1

(
(1 − β)

DJD

DUk
+

N∑

l=1

µT
l

DRD,l

DUk

)
∆Uk (72)

and then impose the condition that as well as this being true over the whole domain, this is also true over
each cell, allowing us to drop the leading summation signs:

∫

k

(
L∗

E(ν)− β

(
∂j

∂U

)T
)T

δUdx =

(
(1− β)

DJD

DUk
+

N∑

l=1

µT
l

DRD,l

DUk

)
∆Uk (73)

We also now assume that the flow perturbation is in general small, and thus only varies gradually over
the domain. This means that as the cell width decreases it can be treated to be constant within each cell,
allowing us to factor δU out of the integral:



∫

k

(
L∗

E(ν)− β

(
∂j

∂U

)T
)T

dx


 δUk =

(
(1− β)

DJD

DUk
+

N∑

l=1

µT
l

DRD,l

DUk

)
∆Uk (74)

Finally asserting that δUk → ∆Uk as ∆x→ 0, we factor out the flow perturbation and arrive at the final
hybrid adjoint equation:

∫

k

(
L∗

E(ν)− β

(
∂j

∂U

)T
)
dx = (1 − β)

(
DJD

DUk

)T

+

N∑

l=1

(
DRD,l

DUk

)T

µl, xi ≤ x ≤ xe (75)
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2. Solution strategy

Similar to the continuous method, the steady-state problem can be solved by discretizing and then iterating
the following equation, noting that the hybrid equation is already presented in a semi-discretized format,
until the variation in the adjoint variables {ν, µ} between each time-step is sufficiently small:

hk
∆{ν, µ}k

∆t
+

∫

k

(
L∗

E(ν)− β

(
∂j

∂U

)T
)
dx = (1− β)

(
DJD

DUk

)T

+
N∑

l=1

(
DRD,l

DUk

)T

µl (76)

We again intend to make use of existing methods by first splitting this equation into a set of coupled
equations, one for the Euler adjoint variables, and another for the combustion adjoint variable. However, we
must again be careful due to the explicit coupling between the two sets of equations. For the Euler part we
have:

hk
∆νk
∆t

+

∫

k

(
L∗

E,E(ν)− β

(
∂j

∂UE

)T
)
dx = (1− β)

(
DJD

DUE,k

)T

+

N∑

l=1

(
DRD,l

DUE,k

)T

µl, (77)

where:

L∗

E,E(ν) = −h

(
∂FE

∂UE

)T
dν

dx
−
dh

dx

(
∂PE

∂UE

)T

ν, x ∈ (xi, xe) (78)

and for the combustion part:

hk
∆µk

∆t
+

∫

k

(
L∗

E,λ(ν)− β

(
∂j

∂Uλ

)T
)
dx = (1− β)

(
DJD

DUλ,k

)T

+

N∑

l=1

(
DRD,l

DUλ,k

)T

µl (79)

where:

L∗

E,λ(ν) = −h

(
∂FE

∂U

)T
dν

dx
−
dh

dx

(
∂PE

∂U

)T

ν, x ∈ (xi, xe) (80)

Identifying the integral as the equivalent of applying a finite volume method for the cell k, we can then
obtain:

∆νk
∆t

∆x− hk+ 1
2
ĜE,k,k+ 1

2
− hk− 1

2
ĜE,k,k− 1

2
−
dhk

dx

(
∂PC

∂UE

)T

k

νk∆x− β

(
∂j

∂UE

)T

k

∆x

= (1− β)

(
D̄

DUE

)T

k

+

(
DRD

DUE

)T

k

µk

, (81)

and:
∆µk

∆t
∆x− hk

(
∂FC

∂Uλ

)T

k

∆νk −
dhk

dx

(
∂PC

∂Uλ

)T

k

νk∆x− β

(
∂j

∂Uλ

)T

k

∆x

= (1 − β)

(
D̄

DUλ

)T

k

+

(
DRD

DUλ

)T

k

µk

(82)

where the numerical fluxes for the Euler adjoint variables are again given via a method based on the Roe
scheme:

ĜE,k,k+ 1
2
=

1

2

(
∂FC

∂UE

)T

k

(νk+1 + νk) +
1

2

∣∣∣∣∣∣

˜(∂FC

∂UE

)T

k+ 1
2

∣∣∣∣∣∣
(νk+1 − νk) (83)

Each complete iteration is again wrapped within a fourth-order Runge-Kutta step. Since we consider only
supersonic flow and are solving for the adjoint variables, the right-hand boundary conditions are Dirichlet,
and set so that {ν, µ} = 0, and the left-hand uses extrapolation from within the domain to find the outgoing
flux.
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VI. Results

A. Theoretical Analysis

Careful analysis of the numerical implementation of the three different adjoint methods used in this paper
highlights certain key differences between the approaches:

1. As noted earlier, there is a sign difference between the continuous and hybrid methods and the discrete
method, i.e. φ ≈ {ν, µ} ≈ −ψ. This relates purely to the sign convention used when enforcing the
governing equations.

2. The primal problem was solved by first decoupling the Euler and combustion variable parts of the
governing equations. Considering the general upwind formulation for the numerical flux:

ĥF k+ 1
2
=

1

2
(hFk+1 + hFk)−

1

2

∣∣∣∣
∂F

∂U

∣∣∣∣
k+ 1

2

(hUk+1 − hUk) (84)

For the coupled system this would expand to give:

(
ĥFE

ĥFλ

)

k+ 1
2

= 1
2

((
hFE

hFλ

)

k+1

+

(
hFE

hFλ

)

k

)

− 1
2

∣∣∣∣∣∣∣

∂FE

∂UE

∂FE

∂Uλ
∂Fλ

∂UE

∂Fλ

∂Uλ

∣∣∣∣∣∣∣
k+ 1

2

((
hUE

hUλ

)

k+1

−

(
hUE

hUλ

)

k

) (85)

but for the uncoupled approach, gathering the two uncoupled equations into one, we have:

(
ĥFE

ĥFλ

)

k+ 1
2

= 1
2

((
hFE

hFλ

)

k+1

+

(
hFE

hFλ

)

k

)

− 1
2

∣∣∣∣∣∣∣

∂FE

∂UE
0

0
∂Fλ

∂Uλ

∣∣∣∣∣∣∣
k+ 1

2

((
hUE

hUλ

)

k+1

−

(
hUE

hUλ

)

k

) (86)

where it can be seen that the cross terms in the artificial dissipation term are absent.

This difference is expected to affect the discrete adjoint, which depends explicitly on the form of the
flow residuals, and also parts of the hybrid adjoint. However, assuming that the methods are consistent
and the same flow solution is obtained, the continuous adjoint should be unaffected.

3. The Jacobian, D()
D() , at a point in the discrete adjoint equation is a derivative of some quantity at

that point relative to parameters defined at every other point throughout the domain. In contrast,

in the continuous adjoint the Jacobian, ∂()
∂() , at a point is a derivative of the quantity at that point

to parameters only at that same point. This immediately implies that the Jacobians in the discrete
formulation are much larger than for the continuous, the the actual stencil used in the flow residual
calculation is likely to mean the Jacobian matrix will contain mostly zeros. As it includes both discrete
and continuous Jacobians, the hybrid approach lies somewhere between the discrete and continuous in
terms of the memory requirements that would be needed to store these terms.

4. When applying Automatic Differentiation to find the discrete Jacobians, additional terms that give
the sensitivity of the artificial dissipation of the Roe and upwinding schemes to the flow variables will
be automatically included. For example, considering the following numerical flux:

ĥFE,k+ 1
2
=

1

2
(hFE,k+1 + hFE,k)−

1

2

∣∣∣∣∣
∂̃FE

∂UE

∣∣∣∣∣
k+ 1

2

(hUE,k+1 − hUE,k) (87)
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we can see that taking derivatives with respect to UE,k will introduce the Hessian term:

−
1

2


 D

DUE,k

∣∣∣∣∣
∂̃FE

∂UE

∣∣∣∣∣
k+ 1

2


 (hUE,k+1 − hUE,k) (88)

Though we expect this to be small, a cumbersome term-by-term expansion of the numerical methods
used to solve the continuous, discrete and hybrid adjoints in this case reveals that the only difference
between them is due to such terms. The continuous has no such terms, and the hybrid has fewer than
the discrete.

5. The derivation of the hybrid reveals two important points. The first is that the terms treated continu-
ously do not involve the combustion source term ω, and the second is that it is possible to deal with a
purely discrete objective function in the definition of the adjoint equation. The implications of both of
these are that once the continuous part has been derived once, it will not be altered by modifications
to the source term, and that it will be valid for non-differentiable source and objective functions.

B. Numerical Analysis

1. Flow conditions

The test case used to investigate the characteristics of the hybrid adjoint method is a compression-expansion
nozzle, as used by Giles and Pierce.16 The nozzle area (height) is given by:

h(x) =

{
2 for x ≤ − 1

2 or x ≥ − 1
2

1 + sin2(πx) for − 1
2 < x < 1

2

(89)

and shown in Figure 2.

xi xe

h(x)

Figure 2. Compression-expansion nozzle

The flow conditions and mesh used in this paper are:

• Inlet Mach number, Mi = 4.0

• Inlet stagnation enthalpy, Hi = 4.0

• Inlet stagnation pressure, p0i = 2.0

• CFL number = 0.5

• Number of mesh cells = 100

• Exponential source term constant, C = 0.1

• Gas constant, R = 1.0

• Ratio of specific heats, γ = 1.4
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• Heaviside source term constant, b = 1.0

• Specific heat release, q = 1.0

• Heaviside initiation temperature, T ∗ = 0.3

• Absolute value functional pressure constant, p∗ = 0.03

Figures 3 and 4 show the pressure and progress variables for the flow solutions with the exponential and
Heaviside source terms, respectively. Of note, the step nature of the Heaviside source function can be seen
in Figure 4b), where the combustion progress variable remains constant until the duct height has changed
sufficiently to cause the temperature to rise above T ∗.

a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

x
b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

Figure 3. Flow solution with exponential combustion source term: a) pressure, b) combustion progress variable
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x
b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.5

0.6

x

Figure 4. Flow solution with Heaviside combustion source term: a) pressure, b) combustion progress variable

2. Adjoint variables

The first and fourth adjoint variables (related to the density and combustion variable parts of the flow,
respectively) computed by the discrete, continuous and hybrid approaches are shown is the following graphs
for the cases: exponential source term and integral of pressure functional (Figure 5), Heaviside source term
and integral of pressure functional (Figure 6), and exponential source term and absolute value functional
(Figure 7). In all three, close agreement is seen between the adjoint variables produced by the different
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methods, and inset windows are included to show close-up views of the actual differences. It can be seen
from this that in general (Figure 5) the hybrid adjoint agrees better with the continuous adjoint.

Additionally, Figures 6 and 7 show cases in which there are difficulties with applying the continuous
adjoint due to non-differentiability in the source function and objective function, respectively. In these cases
we compare just the discrete and hybrid variables, demonstrating that the hybrid adjoint can be used in
situations that could be problematic for the continuous method.
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Figure 5. Adjoint variables (discrete (ψ), continuous (φ) and hybrid (ν & µ)) for the exponential combustion
source term and the integral of pressure functional: a) first variable, b) fourth variable
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Figure 6. Adjoint variables (discrete (ψ) and hybrid (ν & µ)) for the Heaviside combustion source term and
the integral of pressure functional: a) first variable, b) fourth variable

3. Difference in adjoint variables

Figure 8 shows the difference between the hybrid and discrete, and hybrid and continuous variables for the
first and fourth adjoint variables. This again shows, in general, closer agreement between the hybrid and
continuous approaches. It is also possible to see that this difference fluctuates most where the duct height
changes most rapidly (x = ±0.25).
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Figure 7. Adjoint variables (discrete (ψ) and hybrid (ν & µ)) for the exponential combustion source term and
the absolute value functional: a) first variable, b) fourth variable
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Figure 8. Size of difference in adjoint variables (the hybrid and discrete (|{ν, µ} − ψ|), and the hybrid and
continuous (|{ν, µ} − φ|)) for exponential combustion source term and integral of pressure functional: a) first
variable, b) fourth variable
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4. Sensitivity

The perturbation of the objective function J relative to a change in the inlet Mach number can be written,
substituting α for Mi, neglecting any explicit dependence of the functional on Mi and only including the R
and N that explicitly depend on this, as:

• Discrete approach:

∆JD = ψT
i

DRi

DMi

∆Mi

∆x
(90)

• Continuous approach:

δJC = φTi
∂Ni

∂Mi
δMi (91)

• Hybrid approach:

{δ,∆}JH = νTi
∂NE,i

∂Mi
δMi + µT

i

DRλ,i

DMi

∆Mi

∆x
(92)

giving the formulae for the sensitivities, with δMi ≈ ∆Mi:

• Discrete approach:
dJD

dMi
= ψT

i

D

DMi

Ri

∆x
(93)

• Continuous approach:
dJC

dMi
= φTi

∂Ni

∂Mi
(94)

• Hybrid approach:
dJH

dMi
= νTi

∂NE,i

∂Mi
+ µT

i

D

DMi

Rλ,i

∆x
(95)

where we note that as ∆x→ 0, R

∆x → N and the equations become identical.
Figure 9 shows the variation of the sensitivity to the inlet Mach number over a range of Mach numbers

calculated by finite differencing and all three adjoint methods for all four combinations of source and objective
function considered in this paper. It can be seen that for all the cases considered, the four methods give
very good agreement, which is expected since the adjoint variables shown previously in Figures 5, 6 and 7
demonstrated very good agreement over the domain, including at the inlet. It also should be noted that
combinations b), c) and d) include non-differentiable terms, and thus again confirm the applicability of the
hybrid to cases that could be problematic for the continuous adjoint.

5. Grid convergence

Using the formulae for the sensitivity of the objective function to the inlet Mach number, a grid refinement
study of all four combinations of source and objective functions is shown in Figure 10. From Figures 10a,b it
can be seen that the finite difference and discrete adjoint compare very well, as do the hybrid and continuous
adjoint methods. However, the latter two methods appear to give a better approximation to the fine grid
sensitivity on the coarser meshes.

The computed sensitivities do not reach a steady value in a monotonic fashion as the grid is refined
(Figures 10c, d) though the three methods agree well with each other. On further investigation, it was seen
that replacing the absolute value integrand of the functional with a smooth and differentiable approximation
produced very similar results, and thus it can be concluded that the non-differentiability of the cost function
is not the cause of the non-smooth convergence rate. Instead, it appears that this specific form of the
functional is highly sensitive to the error in the flow solution, especially on a coarse grid.
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Figure 9. Sensitivity of functional to incoming Mach number along Mach regime: a) exponential source term
and integral of pressure functional, b) Heaviside source term and integral of pressure functional, c) exponential
source term and absolute value functional, d) Heaviside source term and non-differentiable functional
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Figure 10. Sensitivity of functional to incoming Mach number at different grid refinement levels: a) exponential
source term and integral of pressure functional, b) Heaviside source term and integral of pressure functional,
c) exponential source term and non-differentiable functional, d) Heaviside source term and absolute value
functional
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VII. Conclusions and Future work

The concept of a hybrid adjoint which combines the properties of a discrete adjoint and a continuous
adjoint has been introduced and the theory has been applied to the quasi one-dimensional compressible
flow with a simple model of combustion. Numerical experiments indicate that the hybrid adjoint approach
can be used to estimate the sensitivity, showing generally good agreement with finite differencing, discrete
adjoints and continuous adjoints. It is also seen to better match the continuous adjoint result where available,
but, perhaps most importantly can be applied to problems where the development and application of the
continuous method would be difficult. In terms of the ease of development, the initial hybrid derivation is
of a similar level of complexity as that of the continuous adjoint, but once derived, can easily be applied to
more complex problems with minimal mathematical development.

Table 2 updates Table 1 from the introduction, summarizing the relative advantages and disadvantages
of the hybrid approach in comparison with the standard methods.

Table 2. Simple comparison between the discrete, continuous and hybrid adjoint approaches. A + sign indicates
favorable characteristics, a − sign indicates undesirable characteristics, a ± sign indicates status quo and a ?
indicates that further investigation is required.

Discrete Continuous Hybrid

Ease of development + − ±±±

Compatibility of numerical gradients to the discretized PDE + − ?

Compatibility of numerical gradients to the continuous PDE − + ?

Surface formulation − + ?

Ability to handle arbitrary functionals + − +++

Ability to handle non-differentiability + − +++

Computational cost − + ???

Having developed the general hybrid adjoint approach, and applied it to a simple test case of supersonic
quasi-1D flow with a simple combustion model, the next steps in this research are to extend the development
and application to more complex problems. Though the treatment of discontinuities in the flow solution has
been been addressed, numerical experiments have not been conducted. Such an exercise will be undertaken
in the near future. Furthermore, we are currently focusing on the application to 2D and 3D problems of
interest in aerospace engineering. With the demonstrated flexibility of handling arbitrary expressions in the
governing equations (using discrete representations), the method can be naturally extended to treat Reynolds
Averaged Navier–Stokes based turbulence models. In such a situation, the conservation equations of mass,
momentum and energy will be handled continuously while the set of equations for turbulence scalars will be
treated discretely.

While the approach holds promise in combining the best properties of continuous and discrete adjoint
methods, some of the aforementioned exercises will confirm the viability of the hybrid adjoint approach as
a useful tool in several areas of computational science.
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