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In this paper we develop the continuous adjoint methodology to compute shape sensitivi-
ties in free-surface hydrodynamic design problems using the incompressible Euler equations
and the level set methodology. The identification of the free-surface requires the convection
of the level set variable and, in this work, this equation is introduced in the entire shape de-
sign methodology. On the other hand, an alternative continuous adjoint formulation based
in the jump condition across the interface, and an internal adjoint boundary condition is
also presented. It is important to highlight that this new methodology will allow the spe-
cific design of the free-surface interface, which has a great potential in problems where the
target is to reduce the wave energy (ship design), or increase the size of the wave (surfing
wave pools). The complete continuous adjoint derivation, the description of the numerical
methods (including a new high order numerical centered scheme), and numerical tests are
detailed in this paper.

I. Introduction

In gradient-based optimization techniques, the goal is to minimize a suitable cost or objective function
(drag, lift, etc.) with respect to a set of design variables (a hydrofoil profile, the surface of a ship hull, etc.).
Minimization is achieved by means of an iterative process that requires the computation of the gradients or
sensitivity derivatives of the cost function with respect to the design variables.

Hydrodynamic applications of optimal shape design in systems governed by partial differential equations
are formulated on a fluid domain Ω, delimited by disconnected boundaries divided into an inlet, outlet, and
one or more solid wall boundaries S. From now on we will restrict ourselves to the analysis of optimization
problems involving functionals J defined on the solid wall S, and in the entire domain Ω, whose value depends
on the flow variables U obtained from the solution of the fluid flow equations. In this context, the generic
optimization problem can be succinctly stated as follows: find Smin ∈ Sad such that

J(Smin) = min
Smin∈Sad

J(S)

where Sad is the set of admissible boundary geometries and

J(S) =

∫
S

jS(U,~n) ds+

∫
Ω

jΩ(U) dΩ

is the objective function, where jS(U,~n), and jΩ(U) are smooth functions which depends on ~n (inward-
pointing unit vector normal to S) and the flow variables.

Gradients of this objective function can be computed in a variety of ways, some of the most popular are
the adjoint methods,1,5, 13,21 due, among other factors, to their ability of computing these derivatives at a cost
comparable to solving the state PDEs (Partial Differential Equations). Adjoint methods are conventionally
divided into continuous and discrete.14,20 In the continuous approach,4,15 the adjoint equations are derived
from the governing PDE and then subsequently discretized, whereas in the discrete approach20 the adjoint
equations are directly derived from the discretized governing equations.
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In this work the continuous adjoint approach has been selected because it allows understanding the
physical significance of the adjoint equations and boundary conditions. It also has the advantage that the
adjoint system has a unique form independent of the scheme used to solve the flow-field system, and hence
offers flexibility in choosing the discretization scheme for the adjoint system.

The simulation of free free-surface problem using level set techniques.26,27 These kinds of techniques
can handle nonlinear steep waves, near-breaking waves and complex geometries, however the solution of the
density jump is challenging from the numerical point of view.11 Furthermore, as the density varies with the
location, the gravity forces should be added as source terms and specific techniques have been developed
to perform an accurate integration of the convective terms to remove spurious velocities in the vertical
direction.22,28

In this particular application, the artificial compressibility6 method has been chosen to solve this problem.
This method looks to apply standard hyperbolic numerical techniques to solve the incompressible Euler
equations.23 The key aspect of the technique is the introduction of a parameter that guarantee that the
different wave speeds in the system are not going to be too different (which is the problem with simulating
low speed problems using compressible solvers). A time accurate integration method is required to solve
unsteady problems.

Optimal shape design using free-surface problems has been an important area of research,3,9, 19 and
several successful methodologies have been developed to minimize pressure based functionals using high and
low fidelity models. However, the introduction of the free-surface shape on the optimization process is not
so common, and to the best of our knowledge this paper is one of the first applications of this methodology
to the entire free-surface problem using level set technique. On the other hand, it is important to highlight
that in this work a continuous adjoint formulation based on the exact jump internal conditions is shown.

With respect to the numerical method, second order numerical schemes (upwind or centered) are the
most common choice for solving the incompressible equations using the artificial compressibility methodol-
ogy. In this paper, a modification of the high order Jameson-Schmidt-Turkel (JST) centered scheme16 for
incompressible flows is also presented.

The organization of the paper is as follows: In Sec. II we describe the hydrodynamic model; In Sec.
III we state the optimization problem; and the continuous adjoint method to compute surface is derived in
Section IV; The practical implementation of the method is described in Sec. V; Some numerical experiments
illustrating the relevance of the developments described in this work are presented in Sec. VI; The conclusions
will be in Sec. VII

II. Description of the model

A. Free-surface model using level set and artificial compressibility equations

The incompressible Euler’s equations express the conservation of mass and momentum of an incompressible
fluid. In this paper we will assume that two fluids of different densities (typically water and air) are governed
by these equations on a domain Ω ⊂ IR3, delimited by disconnected boundaries divided into an inlet Γin,
outlet Γout and a solid wall denoted by S. In this particular two phase problem, the density is prescribed via
an auxiliary variable φ = φ(~v, ~x) described below. The non-dimensional artificial compressibility formulation
(only valid for steady-state) can be written in the following form:

RU (U, φ) ≡ ~∇ · ~F − S = −∂tU in Ω, t > 0,

~v · ~n = 0 on S,

U(t0) = U0 in Ω,

(W )~v = Win on Γin,

(W )P = Wout on Γout,

(1)

where U = (P, ρu, ρv, ρw)T stands for the vector of conservative variables, ρ = ρ(φ) is the fluid density,
P is the pressure and ~v = (u, v, w) ∈ IR3 is the flow speed in a Cartesian system of reference, ~n is the
inward-pointing unit vector normal to the surface S. The last two equations in (1) are the inlet/outlet
boundary conditions (imposed velocity at the inlet and pressure at the outlet). Finally, the convective fluxes
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~F = (Fx, Fy, Fz), and the source term S are

Fx =


β2u

ρu2 + P

ρuv

ρuw

 , Fy =


β2v

ρvu

ρv2 + P

ρvw

 , Fz =


β2w

ρwu

ρwv

ρw2 + P

 , S =


0

0

0

− ρ
Fr2

 , (2)

where Fr stands for the Froude number and β2 is the artificial compressibility parameter. Note that, in
free-surface problems, the density depends on ~x and should be inside the divergence operator.

To identify the free-surface, a level set method is used. The main idea is to use the level set function φ,
to track the interface between the gas and the liquid.25–27 In particular, the interface will be the zero level
set of φ, and the level set function will be positive in the gas (density ρg) and negative in the liquid (density
ρl). The value of the density is defined using an approximation of the Heaviside function H = H(φ, ε):

H(φ) =


1 if φ < −ε,
1− 1

2

[
1 + φ

ε + 1
π sin(πφ/ε)

]
if |φ| ≤ ε,

0 if φ > ε,

(3)

where ε is a measure of the interface thickness. Ideally ε should be as small as possible, but numerical
stability issues require an ε greater than zero (5 to 10 computational nodes in the interface is a reasonable
number). Finally, the density is computed as:

ρ(φ) = H(φ) +

(
ρg
ρl

)
(1−H(φ)). (4)

And the level set variable φ should satisfy the following transport equation:
Rφ(~v, φ) ≡ ~∇ · (φ~v) = −∂tφ in Ω, t > 0,

φ(t) = φ0 on S,Γin,Γout,

φ(t0) = φ0 in Ω,

(5)

which simply states that the interface moves with the fluid, and φ0 = φ0(~x) is the initial distance from the
free-surface to the boundaries. Systems (1) and (5) constitute a complete system of equations and boundary
conditions for the flow variables. From the modeling point of view, the viscosity effects and the surface
tension can be added in a very straightforward way.25 Finally, it is important to note that the level set
equation is typically damped (using a function that depend on the distance to the boundaries and the wave
elevation) to avoid reflections at the inlet/outlet.24

As a final remark, note that the water-air interface appears as a mixture zone, showing a transition from
water to air, and if the transition is not smooth a jump condition should be imposed. In short, the Euler
equations are satisfied throughout this mixture, and the same equations are valid everywhere in the domain.

B. Interface jump conditions

The Euler equations applied to an inviscid mixture of air and water admit discontinuities. When this occurs,
jump conditions relate the flow variables on both sides of the discontinuity Σ. For a steady discontinuity
located at Σ, these relations across the sharp gas/liquid interface are:[

~F · ~nΣ

]
Σ

= 0. (6)

Note that the gravity source term has been integrated in the flux function, and the jump function [·]Σ
across the interface Σ is defined by [φ]Σ = φg − φl. In this case along the discontinuity, the following holds:

[ρ]Σ 6= 0,
[
P̂
]

Σ
= 0, [~v · ~nΣ]Σ = 0,

[
~v · ~tΣ

]
Σ
6= 0, (7)

where the surface tension is being neglected in this formulation, and P̂ is computed as

P̂ = P +
ρz

Fr2
. (8)
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III. Optimal shape design problem using the continuous adjoint

A. Objective function definition

Optimal shape design of hydrodynamic problems is an active area of research, and some previous at-
tempts18,19 have been made to apply the adjoint methodology to this particular problem. In this paper
we will introduce a new objective function which not only depends on pressure at the boundary S, but also
on the level set function φ on the entire domain Ω. Thus, we will consider the following general choice of
objective function:

J =

∫
S

~d · (P ~n) ds+

∫
Ω

1

2
(φ− φd)2 dΩ =

∫
S

j(P,~n) ds+

∫
Ω

1

2
(φ− φd)2 dΩ, (9)

where ~d is a constant vector, ~n is the inward-pointing unit vector normal to the surface S, and φd is a target
level set value.

B. Variation of the objective function

As usual in the adjoint approach, flow equations are incorporated into the cost functional as constraints
by means of Lagrange multipliers ΨT

U = (ψ1, ψ2, ψ3, ψ4) for the Euler equations, and ψφ for the level set
transport equation. The Lagrangian reads:

J (S) =

∫
S

j(P,~n) ds+

∫
Ω

1

2
(φ− φd)2 dΩ−

∫
Ω

(
ΨT
URU (U, φ) + ψφRφ(~v, φ)

)
dΩ, (10)

where we have placed a special emphasis on the boundary surface dependence S. Let us consider an arbitrary
(but small) perturbation of the boundary. The cost function varies due to the changes in the solution induced
by the infinitesimal deformation δS of the control surface along the normal direction ~n:

δJ(S) =

∫
δS

j ds+

∫
S

δj ds+

∫
S

1

2
(φ− φd)2δS dΩ +

∫
Ω

(φ− φd) δφ dΩ

=

∫
S

(∂nj − 2Hmj)δS ds+

∫
S

~d · (δP~nS + Pδ~nS) ds+

∫
Ω

(φ− φd) δφ dΩ

=

∫
S

~d · (∂n(P~nS)− 2Hm(P~nS))δS ds+

∫
S

~d · δP~nS ds−
∫
S

~d · P∇S(δS) ds+

∫
Ω

(φ− φd) δφ dΩ

=

∫
S

~d · δP~nS ds+

∫
S

~d · (∂n(P~nS) +∇SP − 2Hm(P~nS)) δS ds+

∫
Ω

(φ− φd) δφ dΩ

=

∫
S

~d · δP~nS ds+

∫
S

(~d · ~∇P )δS ds+

∫
Ω

(φ− φd) δφ dΩ (11)

where we have supposed that the level set solution on the boundaries is constant (φ− φd = 0, on S) and we
have used δ~n = −∇S(δS), which holds for small deformations, and Hm is the mean curvature of S computed
as (κ1 +κ2)/2, where (κ1, κ2) are curvatures in two orthogonal directions on the surface. Here ∇S represents
the tangential gradient operator on S. Note that we have performed an integration by parts and that we
have used the gradient operator on local coordinates in S.

Assuming a regular flow solution U and a smooth boundary S, the variation of the augmented functional
J (S) under the deformation of the geometry can be evaluated as

δJ = δJ(S)−
∫

Ω

(
ΨT
UδRU (U, φ) + ψφδRφ(~v, φ)

)
dΩ, (12)

where δJ(S) has been computed in Eq. (11), and δRU and δRφ represent the variations of RU and Rφ,
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respectively. Supposing a steady-state solution, the linearized system of equations are:
δRU (U, φ) =

∂RU
∂U

δU +
∂RU
∂φ

δφ = 0 in Ω,

δ~v · ~n = ~v∇S(δS)− (∂n~v) δS ~n on S,

(δWin)~v = 0 on Γin,

(δWout)P = 0 on Γout.

(13)

 δRφ(~v, φ) =
∂Rφ
∂U

δU +
∂Rφ
∂φ

δφ = 0 in Ω,

δφ = 0 on S,Γin,Γout.
(14)

where (δW )~v, and (δW )P represent the incoming characteristics on the boundaries. It is also useful to
compute the variation of the density ρ with respect to the level set function:

δρ =


0 if φ < −ε,[(

ρg
ρl

)
− 1
]

1+cos(πφ/ε)
2ε δφ if |φ| ≤ ε,

0 if φ > ε.

(15)

As usual the domain integrals in Eg. (12) are eliminated using integration by parts and introducing the
associated adjoint operators. The integration by parts also provides some boundary terms. These boundary
terms are combined with the boundary terms in Eq. (11) resulting the boundary conditions for the adjoint
operators.

Next, the entire procedure is detailed. Starting with the linearized form of the incompressible Euler and
level set equations, taking the inner product with the adjoint variables, supposing that the functions are
smooth, and then integrating over the domain one gets:

0 =

∫
Ω

ΨT
U
~∇(δ ~F ) dΩ−

∫
Ω

ΨT
UδS dΩ +

∫
Ω

ψφ~∇(φδ~v + ~vδφ) dΩ

=

∫
Ω

ΨT
U
~∇( ~AUδU) dΩ +

∫
Ω

ΨT
U
~∇( ~Aφδφ) dΩ−

∫
Ω

ΨT
UBUδU dΩ−

∫
Ω

ΨT
UBφδφ dΩ

+

∫
Ω

ψφ~∇(φδ~v) dΩ +

∫
Ω

ψφ~∇(~vδφ) dΩ (16)

where ~AU = ∂ ~F/∂U , ~Aφ = ∂ ~F/∂φ, BU = ∂S/∂U = 0, and Bφ = ∂S/∂φ. Integrating by parts

0 = −
∫

Ω

(~∇ΨT
U ) ~AUδU dΩ−

∫
Ω

~∇ψφ(φδ~v) dΩ

−
∫

Ω

~∇ψφ(~vδφ) dΩ−
∫

Ω

(~∇ΨT
U ) ~Aφδφ dΩ−

∫
Ω

ΨT
UBφδφ dΩ

+

∫
S

ΨT
U

(
~AU · ~n

)
δU ds+

∫
S

ψφφ(δ~v · ~n) ds. (17)

Note that the boundary condition of the linearized level set problem has been used, and the integral over
the inlet/outlet boundary can be forced to vanish with the appropriate choice of boundary conditions. The
final step to obtain the adjoint equations is collecting the terms that depend on δU and δφ. The variation
of the velocity must be written in terms of the conservative variables:∫

Ω

~∇ψφ(φδ~v) dΩ =

∫
Ω

φ

ρ
~∇ψφ (δ(ρ~v)− ~v δρ) dΩ =

∫
Ω

φ

ρ
~∇ψφδ(ρ~v) dΩ−

∫
Ω

φ

ρ
~∇ψφ~v

∂ρ

∂φ
δφ dΩ (18)

Combining the previous result with the variation of the objective function, the adjoint equations are:{
− ~ATU · ~∇ΨU = S∗ in Ω,

−~v · ~∇ψφ =
(
~∇ΨT

U
∂ ~F
∂ρ −

φ~∇Ψφ~v
ρ − Ψ4

Fr2

)
∂ρ
∂φ + (φ− φd) in Ω,

(19)
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where

S∗ =
φ

ρ


0

∂xψφ

∂yψφ

∂zψφ

 , ~AU · ~n =


0 β2

ρ nx
β2

ρ ny
β2

ρ nz

nx nxu+Q nyu nzu

ny nxv nyv +Q nzv

nz nxw nyw nzw +Q

 , (20)

From the integral over the solid surface it is possible to compute the boundary conditions for the adjoint
problem. The integral over the solid boundary S gives∫

S

ΨT
U

(
~n · ~AU

)
δU + ψφφ(~n · δ~v) ds =

∫
S

(~n · δ~v)

(
β2

ρ
ψ1 + ~v · ~ϕ+ ψφφ

)
ds+

∫
S

(~n · ~ϕ) δP ds, (21)

where we have used the boundary condition ~v · ~n = 0 to evaluate the jacobian ~AU . To eliminate the
dependence on ~n · δ~v we will use the linearized boundary condition on the surface S to obtain∫
S

ΨT
U

(
~n · ~AU

)
δU + ψφ(~n · δ~v)φds = −

∫
S

((δS∂n~v) · ~n+ δ~n · ~v)

(
β2

ρ
ψ1 + ~v · ~ϕ+ ψφφ

)
ds+

∫
S

(~n · ~ϕ) δP ds

= −
∫
S

((δS∂n~v) · ~n−∇S(δS) · ~v)ϑ ds+

∫
S

(~n · ~ϕ) δP ds

= −
∫
S

((∂n~v · ~n)ϑ+∇S(~v ϑ)) δS ds+

∫
S

(~n · ~ϕ) δP ds. (22)

where ϑ = β2

ρ ψ1 + ~v · ~ϕ + φψφ, and ∂n = ~n · ~∇ and ∂tg = ~t · ~∇ are the normal and tangential derivatives,
respectively. Note that to obtain this last expression we have used the linearized boundary conditions, the
value of δ~n at the surface, and we have also done an integration by parts.

To sum up, the following set of adjoint equations have to be solved to compute the variation of the
functional: 

− ~ATU · ~∇ΨU − S∗ = 0 in Ω,

−~v · ~∇(ψφ)− (φ− φd) = 0 in Ω,
~d · ~n = ~n · ~ϕ, ψφ = 0 on S,

(δWin)~v = 0 on Γin,

(δWout)P = 0 on Γout..

(23)

Once the adjoint system is solved, the variation of the functional is computed as

δJ =

∫
S

(
~d · ~∇P + (∂n~v · ~nS)ϑ+∇S(~v ϑ)

)
δS ds, (24)

where it is important to recall here that using this formulation it is possible to do inverse design of the
interface between two fluids just by selecting the appropriate value for φd = φd(~x) (distance function from
the target free-surface).

C. Alternative formulation using jump conditions

When developing an adjoint method to address free-surface optimal design problems, the main mathematical
difficulty is the presence of discontinuities (e.g. air/water interfaces). In this case, the formal linearization
of the state equations, which can be rigorously justified for smooth solutions, fails to be true and the adjoint
system changes its nature. Indeed, when this occurs, the state of the system needs to be understood instead
as a multibody one in which both the state itself at both sides of the discontinuity and its geometric location
are considered as part of the state.

Thus, the sensitivity of the model needs to take into account both perturbations of the solution and of
the location of the free-surface. The linearized flow equations turn out to be the classical ones on both sides
of the discontinuity, but with an additional linear transport equation along the free-surface, which stems
from the linearization of the jump condition. This allows us to defining the adjoint solution in a unique way.
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As before, the adjoint formulation is applied to an optimization problem, and the objective is to evaluate
the variation of the functional (9) under shape changes of the surface S, where the flow governing equations
are the steady Euler equations.

Assuming a flow discontinuity located along a smooth curve Σ, the variation of the functional δJ is given
by Eq. (11). δU stands for the infinitesimal deformation of the state to both sides of the discontinuity line
and solves the linearized Euler equations, while δΣ describes the infinitesimal normal deformation of the
discontinuity and solves a linearization of the free-surface jump condition:

~∇ ·
(
~AU δU

)
= 0 in Ω \ Σ,

δ~v · ~n = ~v∇S(δS)− (∂n~v) δS ~n on S,

(δW )+ = 0 on Γ,[
~AU (δΣ ∂nU + δU)

]
Σ
· ~nΣ +

[
~F
]

Σ
· δ~nΣ = 0 on Σ,

(25)

with (δW )+ representing the incoming characteristics on the inlet/outlet boundaries which correspond to

physical boundary conditions in the Euler problem. ∂ ~F/∂U = ~AU is the Jacobian matrix. Recall that δΣ
is not a design parameter, but rather a dependent variable whose value is determined by the simultaneous
solution of the linearized Euler equations (25) and the linearized jump conditions.

The adjoint problem is introduced through the Lagrange multipliers (ΨT ;LT ) = (ψ1, ψ2, ψ3; l1, l2, l3). It
is possible to demonstrate that (ΨT ;LT ) satisfies the following adjoint system in 2D:2

− ~ATU · ~∇Ψ = 0, in Ω \ Σ,

ΨT ( ~AU · ~nΓ)− = 0, on Γ,[
ΨT
]
Σ

= 0, on Σ,

∂tgΨ
T
[
~F · ~tΣ

]
Σ

= 0, on Σ,

L = Ψ|Σ, on Σ,

(26)

To sum up, solving the adjoint Euler equations plus a source term based on the adjoint level set equation
is equivalent to solving the adjoint equations plus an internal adjoint boundary condition.

IV. Numerical implementation of the direct, and adjoint problem

A. Numerical implementation of the direct problem

The incompressible Euler equations (1) are solved using the artificial compressibility method7,8, 10,17 first
proposed by Chorin.6 The Euler equations have been discretized using an standard edge-based finite volume
formulation on the dual grid, obtained by applying the integral formulation of the equations to a dual grid
control volume surrounding any given node of the grid and performing an exact integration around the outer
boundary of this control volume.

In this paper a Roe upwind scheme and a central scheme with Jameson-Schmidt-Turkel (JST)-type scalar
artificial dissipation (with just high order dissipation) are used for the discretization of the convective flux.
Additionally, an agglomeration multigrid method is used to speed up the computation.

It is important to note that in this particular application the gravity term in the z-momentum equation
is added as a source term to the sum of the fluxes in each cell, and thus the cell-face states for the Riemann
solver (or centered solver) must be adapted to avoid incorrect vertical velocity at the cell face (e.g. when
using first order method, the problem is reduced by subtracting the pressure gradient due to gravity from
the input states for the Riemann solver).

The time integration is implicit, and a dual time stepping artificial compressibility method has been also
implemented to perform non-steady simulations.

Finally, the convection (see Eq. (5)) of the level set variable φ is discretized using an upwind scheme,
second order accuracy is easily achieved via reconstruction of variables on the cell interfaces.

The entire implementation has been math with the Stanford University Unstructured (SU2) flow solver.
SU2 is a suite of C++ analysis tools (including an iterative PDE solver, mesh perturbation and adaptation
tools, among others) linked through python-based driver scripts, specifically architected to perform analysis
and design of multiphysics problems on unstructured grid topologies.
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B. Numerical implementation of the adjoint problem

As in the direct problem, a standard edge-based finite volume formulation has been used on the dual grid.
To preserve consistency with the direct solver, the level set adjoint variable ψφ is also discretized using a
second-order upwind scheme with face reconstruction. The solution is advanced in time using the same
methods as in the direct problem.

A modified version of the JST scheme without low-order dissipation is used for the discretization of the
adjoint convective term. The artificial dissipation between nodes i and j is computed as:

Dij = κ(4)ε(4)
(
∇2Ψi −∇2Ψj

)
ωijλij (27)

ε(4) =

(
3
Ni +Nj
NiNj

)2

(28)

λi = |~vi · ~S|+ ci|~S|, λij = |~vij · ~S|+ cij |~S| (29)

ωi =

(
λi

4λij

) 1
2

, ωij =
ωiωj
ωi + ωj

(30)

where ∇2Ψi =
∑
j∈Ni(Ψj − Ψi) denotes the undivided Laplacian operator, where Ni represents the set of

neighboring points to node i with Ni its size, ~vij = 1
2 (~vi + ~vj) and cij = 1

2 (ci + cj) are the fluid and sound

speeds at the cell face, and κ(4) is an adjustable parameter.
In addition to the central scheme, an upwind scheme based upon Roe’s flux difference splitting scheme

has been developed for the adjoint equations. In our case, the aim is to use an upwind-type formula to
evaluate a flow of the form ATU ·Ψ. Taking into account that ~ATU = −(PT )ΛPT , where ATU = −(PT )−1ΛPT ,

in which ATU = ~ATU · ~n is the projected Jacobian matrix, Λ is the (diagonal) matrix of eigenvalues and P is
the corresponding eigenvector matrix. The upwind flux is computed as:

fij =
1

2
(ATUi)(Ψi + Ψj)− (PT )−1|Λ|PT (Ψj −Ψi)

Note that, as in the previous case, the numerical method is not conservative.

C. Modification of the Jameson-Schmidt-Turkel (JST) centered scheme

As we commented above, a central scheme with Jameson-Schmidt-Turkel (JST)-type scalar artificial dissi-
pation is used for the discretization of the convective flux. This numerical method introduces a dissipation
that is proportional to the Laplacian of the conservative variables. Focusing on the 2D mass conservation
equation:

∂P

∂t
+ β2∇~v = 0, in Ω, t > 0, (31)

where ~v = (u, v) is the velocity, P the pressure, and β2 the artificial compressibility coefficient.
If a finite volume method is used, the fully discrete numerical scheme at node i can be written as:

Ωi
Pn+1
i − Pni

∆t
+
∑
j∈Ni

f̄nij = 0, (32)

where an Euler’s explicit time integration has been used, Ωi is the area of the dual control-volume i, Ni
represents the set of neighboring nodes to node i, and the numerical flux f̄ij between nodes i and j is defined
by

f̄ij = f

(
~vi + ~vj

2

)
· ~nij −Dij , (33)

where f(~vi) = β2~vi is the analytical flux at point i, ~nij is the normal vector to the control-volume face
between i and j, and Dij is the artificial dissipation. In this particular application, the artificial dissipation
is based on the JST model, and can be expressed as:

Dij = κ(4)ε(4)
(
∇2Pi −∇2Pj

)
ωijλij , (34)

where we are using the same notation as in the previous subsection. The key issue of this formulation is
the evaluation (in unstructured grids) of ∇2Pi where ∇2 denotes the undivided Laplacian operator. Several
numerical methods are available for the numerical estimation of this operator:
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1. Direct approach: the gradient at the control-volume face ij is taken as the average of the two computed
gradients (e.g. using Green-Gauss) within each neighboring control volume i and j. This method leads
to an extended stencil of neighbors of neighbors, and does not suppress odd-even decoupling modes.

∇2Pi ≈
∑
j∈Ni

1

2
(∇Pi +∇Pj) · ~nij (35)

where ∇Pi, and ∇Pj are numerical approximation of the true gradients at point i and j.

2. Normal derivative approach: an approximate undivided Laplacian of the pressure is constructed by
integrating the normal derivative around the control volume. This approach only constitutes a consis-
tent discretization of the undivided Laplacian for cases where the control-volume face normal is aligned
with the segment joining the two nodes.

∇2Pi ≈
∑
j∈Ni

(Pj − Pi)
|~xj − ~xi|

|~nij | (36)

where |~nij | is the area of the control-volume face, and ~xi are the coordinates of the node i.

3. Mixed method: a combination of both methodologies using the following expression:

∇2Pi ≈
∑
j∈Ni

(
(Pj − Pi)
|~xj − ~xi|

αij +
1

2
(∇Pi +∇Pj) · (~nij − αij~sij)

)
(37)

where ~sij = (~xj − ~xi)/|~xj − ~xi| is the normalized vector connecting nodes i and j, and αij = ~sij · ~nij .
The gradients at the nodes are computed using the Green-Gauss theorem.

4. Simplified method: Most numerical unstructured CFD codes use the following simplified formula (based
on the normal derivative approach):

∇2Pi ≈
∑
j∈Ni

(Pj − Pi) (38)

where it is assumed that the distance between nodes is of the order of the size of the control-volume
face (reasonable approximation for isotropic grids).

All this methods are approximations of the undivided Laplacian using the value of the pressure in the
neighbor nodes. However, it is important to note that when dealing with incompressible flows, the undivided
Laplacian of the pressure can be evaluated in 2D as:

∇2Pi ≈ −
(
∂ui
∂x

∂ui
∂x

+
∂vi
∂y

∂vi
∂y

+
∂ui
∂x

∂vi
∂y

+
∂ui
∂y

∂vi
∂x

)
Ωi, (39)

where only first order velocity derivatives are needed. The gradient at the control-volume face ij is taken as
the average of the two computed gradients within each neighboring control volume i and j:

∂xui ≈ Dx,i(u) =
1

Ωi

∑
j∈Ni

1

2
(ui + uj)nx,ij , ∂yui ≈ Dy,i(u) =

1

Ωi

∑
j∈Ni

1

2
(ui + uj)ny,ij ,

∂xvi ≈ Dx,i(v) =
1

Ωi

∑
j∈Ni

1

2
(vi + vj)nx,ij , ∂yvi ≈ Dy,i(v) =

1

Ωi

∑
j∈Ni

1

2
(vi + vj)ny,ij , (40)

and finally, the undivided Laplacian (in 2D) is estimated as

∇2P ≈ (Dx,i(u)Dx,i(u) +Dy,i(v)Dy,i(v) +Dx,i(u)Dy,i(v) +Dx,i(v)Dy,i(u)) Ωi. (41)

where this last expression will be used to compute the undivided Laplacian instead of performing a numerical
approximation using the value of the pressure. Results of this new technique will be presented in the numerical
result section.
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V. Numerical results

A. Validation of the artificial compressibility solver (without free-surface)

The objective of this section is to validate of the artificial compressibility method implemented in this work
(including the modified JST method). As test case a symmetric NACA 0012 hydrofoil has been selected
(angle of attack = 0.0◦, density = 998Kg/m3, free-stream pressure = 101325N/m2, free-stream velocity
1.77m/s). The steady-state simulations have been performed using first and second order upwind schemes,
and a multigrid strategy.
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Figure 1. Pressure distribution on a NACA 0012 hy-
drofoil (symmetric configuration), first order upwind
scheme. Note the important dependence on the arti-
ficial compressibility factor.
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Figure 2. Convergence of the pressure residual us-
ing a first order upwind scheme. Machine precision is
obtained in ≈ 50 multigrid 2V iterations.

The convergence history is presented in Fig. 2 (first order in space) and Fig. 4 (second order in space).
Between 50 and 100 multigrid iterations are needed to obtain machine precision, and note that an increasing
value of the artificial compresibility factor degrades the convergence. In Fig. 1 the pressure distribution on
a NACA 0012 hydrofoil is shown using a first order upwind scheme, note the important dependence on value
of the artificial compressibility factor. On the other hand, if a second order space integration is used (see
Fig. 3), the dependence on the compressibility factor disappears.

In this paper a new centered scheme has also been developed. This new scheme is based on computing
the undivided Laplacian of the pressure using the momentum equations instead of a direct discretization of
the undivided Laplacian. As a test bed, the incompressible flow around a cylinder have been selected. In
Fig. 5, the mach number distribution using a second order Roe scheme is compared with the traditional JST
method. If the new method used (see Fig. 6) the solution symmetry is improved, but the convergence of
the simulation is degraded, further numerical tests should be done to determine the advantages of the new
procedure.

B. Validation of the Free-Surface simulations

A 2D super-critical and sub-critical steady-state flow over a submerged bump without wave breaking is
presented as a baseline configuration. The selected 2D bump has the following shape.

z =
2.7

4
x(x− 1)2, 0 ≤ x ≤ 1

The bump is placed on the bottom of a channel. For the cases studied here a final steady-state solution is
achieved. Two free-surface cases with different Froude number (based on the bump length, L = 1.0) and
undisturbed depth water H were selected:
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Non­dimensional x coordinate
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Figure 3. Pressure distribution on a NACA 0012 hy-
drofoil (symmetric configuration), second order up-
wind scheme. In this case the steady solution does
not depend on the artificial compressibility factor.
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Figure 4. Convergence of the pressure residual using
a second order upwind scheme. Machine precision is
obtained in ≈ 100 multigrid 2V iterations.

Figure 5. Mach number comparison between a second
order upwind scheme (black), and the JST method
(red).

Figure 6. Mach number comparison between a sec-
ond order upwind scheme (black), and a new method
using the gradient of the velocity to estimate the the
undivided laplacian of the pressure (red).
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• Super-critical case, FrL = 1.0 and H = 0.228.

• Sub-critical case, FrL = 0.304 and H = 0.500.

The computation domain extends from −24 < x < 25, −H < z < 1, which includes extended regions at
the inlet and outlet (used to reduce reflections). Appropriate absorbing boundary conditions for free-surface
waves has been also implemented.24 The air/water density ratio is 1.2 10−3, and the air/water transition
thickness was set to 0.1 (sub-critical case), and 0.2 (super-critical case).

Both super-critical and sub-critical simulations admit steady-state solutions and have been investigated
by Cahouet.12 In Fig. 7, a comparison between the simulation and the numerical super-critial experiment is
presented. In Fig. 8, the sub-critical case is compared with the experiments. In both cases the wave profile
shows good agreement with measurement, and we note that the under-predicted second wave crest has been
reported by other numerical experiments.
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Figure 7. Comparison between experiments and invis-
cid simulations of this work (super-critical case, Ca-
houet experiment).

Non­dimensional x coordinate

F
re

e
­s

u
rf

a
c

e
 l
o

c
a

ti
o

n

0 0.5 1 1.5 2
­0.05

­0.04

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

Experiment (Fr = 0.304, H = 0.5)

Simulation (inviscid)

Figure 8. Comparison between experiments and invis-
cid simulations of this work (sub-critical case, Cahouet
experiment).

In Fig. 9, and Fig. 10 it is possible to see the velocity profile for the sub-critical case (x and y components).
In Fig. 11, and Fig. 12 the pressure field distribution and density field are plotted.

Figure 9. Velocity profile (x component), sub-critical
simulation.

Figure 10. Velocity profile (y component), sub-critical
simulation.

Once the code has been validated in 2D configurations, the simulation machinery has been tested in 3D
problems. In Fig. 13, and Fig. 14 the the geometry of a 3D channel and the pressure field distribution
(sub-critical case, FrL = 0.304 and H = 0.500) are shown.
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Figure 11. Pressure distribution, sub-critical simula-
tion.

Figure 12. Density distribution, sub-critical simula-
tion.

Figure 13. Channel geometry and bump defined with
a Free Form Deformation box.

Figure 14. Pressure distribution and level set location,
3D sub-critical simulation.
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C. Gradient validation

The first step in the gradient validation process is the comparison between finite differences and the contin-
uous adjoint. As a test bed, the sub-critical case have been chosen. In the present work, the shape functions
introduced by Hicks-Henne have been used as design variables. The Hicks-Henne function with maximum
at point xn is given by

fn(x) = sin3 (πxen) , en =
log(0.5)

log(xn)
, x ∈ [0, 1] (42)

so the final deformation of the surface can be computed as ∆y =
∑N
n=1 δnfn(x), N being the number of

bump functions and δn the design variable step. These functions are directly applied to the bump. Once
the boundary displacements have been computed, a torsional spring method is used to reallocate the rest of
vertices of the unstructured mesh.

In this particular problem, the objective function is the lift computed on the bump. The validation has
been performed with and without free-surface in sub-critical problems. In Fig. 15 the continuous adjoint
gradient is compared with the finite different gradient using different grid resolutions (FrL = 0.304, without
free-surface), the pressure adjoint variable is shown in Fig. 16. Note that the greatest difference is located in
the front of the bump, and a very good agreement is obtained at the rear of the bump. The same results are
computed for the sub-critical case with an depth undisturbed water of H = 0.500. In Fig. 17 the sensitivity
is presented, and in Fig. 18, the pressure variables are also shown. In all this cases the objective function is
the pressure over the bump.

Design variable

L
if

t 
g

ra
d

ie
n

t

0 5 10 15

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Continuous adjoint (250x100)

Finite differences (250x100)

Continuous adjoint (562x225)

Finite differences (562x225)

Figure 15. Comparison between continuous adjoint
and finite differences, using different grid sizes (no
free-surface).

Figure 16. Adjoint variable of the pressure (no free-
surface).

Apart from the classical lift functional, in this paper we have introduced the capability to do inverse
design using the shape of the free-surface. In Fig. 19 the initial and the target free-surfaces are shown, in
Fig. 20 the sensitivity of the functional with respect to infinitesimal variations of the surface is presented
(note that the domain has been extended to design downstream of the original bump). Finally. in Fig. 21
and Fig. 22 the adjoint variables (pressure, and level set) are shown.

VI. Conclusions

In this work the continuous adjoint approach has been applied to shape design of free-surfaces. An
alternative formulation based on jump conditions has been presented, and a new centered numerical method
for incompressible flows using the artificial compressibility strategy has been developed.

Once the adjoint variables have been computed, this methodology only requires an integration on the
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Figure 17. Lift shape sensitivity over the bump (sub-
critical case, FrL = 0.304, and H = 0.500).

Figure 18. Adjoint of the pressure (sub-critical case,
FrL = 0.304, and H = 0.500), lift objective function.

Figure 19. Initial and target free-surface location. Figure 20. Inverse level set design shape sensitivity
over the channel (sub-critical case, FrL = 0.304, and
H = 0.500).
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Figure 21. Adjoint of the pressure (sub-critical case,
FrL = 0.304, and H = 0.500), level set objective func-
tion.

Figure 22. Adjoint of the level set variable (sub-
critical case, FrL = 0.304, and H = 0.500), level set
objective function.

surface to evaluate the gradient of the functional of interest under deformations of the body surface. This
new methodology will allow the specific design of the free-surface interface, which has a great potential in
problems where the target is to reduce the wave energy (ship design), or increase the size of the wave (surfing
wave pools).

The code has been validated using the bump in channel problem (with sub- and super-critical examples).
And the accuracy of the sensitivity derivatives that result from the application of the new method has been
assessed by comparison with finite-difference computations.

The results presented here are very promising, but further numerical tests are still necessary before the
complete continuous adjoint methodology can be applied to more complex problems. In particular, a full
comparison with finite differences, optimization of complex configurations and convergence improvements
are topics that have to be addressed in the future.
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