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In aerodynamics, Optimal Shape Design (OSD) aims to find the minimum of an objec-
tive function describing an aerodynamic property, by controlling the Partial Differential
Equation (PDE) modeling the dynamics of the flow that surrounds an aircraft.

The objective function minimization is usually achieved by means of an iterative process
which requires the computation of the gradients of the cost function with respect to the
design variables. Gradients can be computed in a variety of ways but, to the best of our
knowledge, the most efficient method to compute the cost function gradient is the so-called
“adjoint method”.

At the computational level there are two approaches to the adjoint system: the con-
tinuous method and the discrete one. In the continuous approach, the adjoint equations
are derived from the flow equations and then subsequently discretized (continuous ad-
joint methodology1, 2), whereas in the discrete approach the adjoint equations are directly
derived from the discretized governing equations (discrete adjoint,3 automatic differentia-
tion,4 finite differences5 or complex step6 methodologies).

In the aeronautical practice, the target is to minimize a discrete objective function and,
consequently, the “discrete approach” seems to be more “natural”. However, as shown
in this paper, there are relevant situations (strong shock waves or wrong numerical grid
orientation) in which the gradient obtained using a discrete approach shows a non-physical
oscillatory behavior. In those cases, the discrete objective function (at the smallest scales)
fails to capture the behavior of the continuous objective function and, consequently, the
discrete approach to compute the objective function gradient could be inappropriate.

In this article, we will analyze the origin of the aforementioned numerical oscillations in
different systems (Burgers’ equation, quasi 1D Euler’s equations and 2D Euler’s equations).
Some numerical experiments will be shown and their impact on the optimization process
will be explained. Finally some conclusions and further recommendation will be presented.

I. Introduction to optimal shape design

A
erodynamic applications of optimal shape design involve systems governed by PDEs formulated on a
fluid domain Ω, containing air delimited by disconnected boundaries divided into a “far field” Γ∞ and

some solid wall boundaries S (airplane surfaces).
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We will restrict ourselves to the analysis of optimization problems involving objective functions J defined
on the solid wall S, whose value depends on the conservative flow variables U obtained from the solution
of the Euler’s equations. In this context, a generic optimization problem can be stated as follows: find
Smin ∈ Sad such that

J(Smin) = min
Smin∈Sad

J(S), (1)

where Sad is the set of admissible boundary geometries and

J(S) =

∫

S

j(P, ~nS) ds, (2)

is the objective function, where j(P, ~nS) is a smooth function which depends on ~nS (inward-pointing unit
vector normal to S) and the pressure P which is computed as a nonlinear combination of the conservative
flow variables U .

In the engineering practice instead of computing the exact continuous objective function one computes
a discrete approximation in which the time and physical domain is discretized. The objective function is
evaluated by means of a discrete integration rule and P is estimated by means of a numerical approximation
scheme for solving the Euler’s equations which provides P∆x.

A key element of the optimization technique is the evaluation of the gradient of J(S) (continuous ap-
proach) or the gradient of J∆x(S) (discrete approach). In principle, the discrete approach seems a more
natural choice. But, some difficulties7, 8 arise when J∆x shows some fluctuations due to the nature of the
numerical scheme.

The objective of this paper is to point at and analyze some circumstances in which the use of an “exact”
discrete approach to compute the gradient of an aerodynamic objective function is not adequate (in particular
at zones where there are strong shocks or where the numerical grid is not well oriented). In the next sections
evidences of this behaviour will be shown in the frame of Burgers’ equation, and Euler’s equations (quasi
1D and 2D).

II. Systems governed by the Burgers’ equation

Burgers’ equation has been chosen as the first reference model of this article because it has a nonlinear
flux term identical to the convection term of the Euler’s equations, being for that reason representative for
the non-linearities occurring in the flow equations.

In this section we will consider two problems, the classical unsteady inviscid Burgers’ problem with a
discontinuous initial data, and a modified version of inviscid Burgers’ equation with a source term, to obtain
a steady state solution9 similar to some transonic results in quasi-1D Euler’s problems.

Unsteady Problem. The inviscid Burgers’ problem. We consider the system
{

∂tu+ ∂x

(

u2

2

)

= 0, −∞ < x <∞, 0 < t < T,

u(x, 0) = u0β(x), −∞ ≤ x ≤ ∞,
(3)

where

u0β(x) =

{

1 if −∞ < x ≤ 0,

−1 + β if 0 < x ≤ ∞.
(4)

and the parameter β ∈ (0, 0.2). Let us take two different objective functions depending on β,

JL(β) =

∫ 2

−2

uβ(x, T ) dx, and JQ(β) =

∫ 2

−2

u2β(x, T ) dx, (5)

where uβ(x, t), is the unique entropy solutions of (3). Note that the solutions of (3) can be obtained from the
initial data by using characteristics. As the objective functions depend on the solution in the interval (−2, 2),
only the characteristcs entering in this interval at time t = T are relevant for the optimization problem. It
is well-known that, in this case, characteristics are straight lines whose slope depend on the value of the
solution at the point where they pass through. For the given initial data the solution is

u(x, t) =

{

1 if x ∈ (−∞, βt/2),

−1 + β if x ∈ (βt/2,∞),
(6)
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and it has a discontinuity at x = βt/2, for each t ∈ [0, T ]. Therefore, the slope of the characteristis is 1
to the left of the shock and −1 + β to the right. This means that only the values of the initial datum in
(−2− T, 2 + T (1− β)) are relevant to compute u(x, T ) in x ∈ (−2, 2).

Steady Problem. The inviscid Burgers’ equation with a source term,











∂tv + ∂x

(

v2

2

)

= ∂x(
sin2 x

2 ), 0 ≤ x ≤ π, 0 < t <∞,

v(0, t) = v(π, t) = 0, 0 < t <∞,

v(x, 0) = v0β(x) = β sin(x), 0 < x < π,

(7)

where 0.7 < β < 0.8. The analytical solution of this problem is:

v∞(x, β) = lim
t→+∞

v(x, β, t) =

{

v+ = sinx, 0 < x < XS

v− = − sinx, XS < x < π
(8)

where the shock position XS = π− sin−1(
√

1− β2) is a function of the parameter β in the initial condition.
On the other hand, we will also consider two objective functions defined by

JL(β) =

∫ π

0

vβ(x,∞) dx, and JQ(β) =

∫ π

0

v2β(x,∞) dx, (9)

where vβ(x, t) is the unique entropy solutions of (7), and vβ(x,∞) = limt→+∞ vβ(x, t).

A. Objective function gradient using the continuous adjoint strategy

In this section we show how classical adjoint calculus can be used to compute the derivative of the functionals
in (5) and (9) with respect to β. Note that the parameter β only affects the initial condition in (4) and (7).
Therefore it is natural to see perturbations in the parameter β as a particular case of a general perturbation
of the initial condition δu0 or δv0.

Therefore it is natural to see the variation of this parameter as a particular case of a general perturbation
of the initial condition δu0, which is a smooth function with a discontinuity at x = 0.

In general, these functions can be perturbed in two ways: by considering smooth variations of u0(x) to
both sides of the discontinuity, or by perturbing the position of the discontinuity itself x = ϕ0. In this way,
any perturbation u0,ε of u0 can be written as

u0,ε(x) = u0(x) + εδu0(x) − [u]ϕ0
χ[ϕ0,ϕ0+εδϕ0] + o(ε),

where χ[a,b] is the characteristic function of the interval [a, b],

χ[a,b](x) =

{

1 if x ∈ [a, b],

0 elsewhere.
(10)

Thus, any perturbation u0,ε may be described, to first order, by the pair (δu0(x), δϕ0).
Unsteady Problem. Note that the solution of (3) has a discontinuity along a curve x = ϕ(t). Thus,

the above description for the perturbation of a discontinuous function u0 applies also to the solution u(x, t)
of (3) for all t > 0. In particular, a perturbation of the initial datum u0,ε will provide a solution uε(x, t)
that, at first order, can be described by the pair (δu(x, t), δϕ(t)), for al time t > 0.

In this case, the variation of the functionals are given by

δJL =

∫ 2

−2

δu(x, T ) dx− [u]ϕ(T )δϕ(T ), and δJQ =

∫ 2

−2

2u(x, T )δu(x, T ) dx− [u
2
]ϕ(T )δϕ(T ), (11)

where the pair (δu, δϕ) satisfies



























∂tδu+ ∂x (uδu) = 0, x ∈ (−∞, ϕ(t)) ∪ (ϕ(t),∞), 0 < t < T,

δu(x, 0) = δu0(x), −∞ ≤ x ≤ ∞,

δϕ′[u]ϕ(T ) + ϕ′[ux]ϕ(T )δϕ

+ϕ′[δu]ϕ(T ) − [uxu]ϕ(T )δϕ− [uδu]ϕ(T ) = 0, 0 < t < T,

δϕ(0) = δϕ0

(12)
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where δϕ0 is the perturbation in the position of the discontinuity for the initial datum.
Following a classical adjoint approach we can write

δJL =

∫ ∞

−∞

δu0(x)p
L
(x, 0) dx+δϕ0qL(0), and δJQ =

∫ ∞

−∞

δu0(x)p
Q
(x, 0) dx+δϕ0q

Q
(0), (13)

where the pairs (pL, qL) and (pQ, qQ) are solutions of the adjoint system



















−∂tp− u∂xp = 0, x ∈ (−∞, ϕ(t)) ∪ (ϕ(t),∞), 0 < t < T

q(t)− p(ϕ(t), t) = 0, 0 < t < T

p(x, T ) = pT (x), x ∈ (−∞, ϕ(t)) ∪ (ϕ(t),∞)

q(t) = q(T ) = qT , 0 < t < T

(14)

corresponding to the final datum

(

pL(x, T ), qL(T )
)

= (χ[−2,2](x), 1),

(

pQ(x, T ), qQ(T )
)

=

(

2u(x, T )χ[−2,2](x),
[u

2
]ϕ(T )

[u]ϕ(T )

)

,

respectively.
For the particular perturbation u0β in (4), we have

δu0 = χ[0,4](x), δϕ0 = 0, p(x, 0) = χ[−2−T,2+T ](x), (15)

and therefore
dJL

dβ
=

∫ 2+T

0

dx = 2 + T . (16)

Steady Problem. Note that the solution of (7) has also a discontinuity along a curve x = ϕ(t). This
discontinuity, however, is not in the initial datum, but is generated at a later time t = T0. In this case, the
variation of the functionals are given by

δJL =

∫ π

0

δv(x,∞) dx − [v]ϕ(T )δϕ(T ), and δJQ =

∫ π

0

2v(x,∞)δv(x,∞) dx − [v
2
]ϕ(T )δϕ(T ), (17)

where the pair (δv, δϕ) satisfies







































∂tδv + ∂x (vδv) = 0, x ∈ (0, ϕ(t)) ∪ (ϕ(t), π), T0 < t < T,

∂tδv + ∂x (vδv) = 0, x ∈ (0, π), 0 < t < T0,

δv(0, t) = δv(π, t) = 0, 0 < t < T,

δv(x, 0) = δv0(x), 0 ≤ x ≤ π,

δϕ′[v]ϕ(T ) + ϕ′[vx]ϕ(T )δϕ

+ϕ′[δv]ϕ(T ) − [vxv]ϕ(T )δϕ− [vδv]ϕ(T ) = 0, T0 < t < T,

(18)

where δϕ0 is the perturbation in the position of the discontinuity for the initial datum.
Following a classical adjoint approach we can write

δJL =

∫ π

0

δu0(x)p
L
(x, 0) dx, and δJQ =

∫ π

0

δu0(x)p
Q
(x, 0) dx, (19)

where the pairs (pL, qL) and (pQ, qQ) are solutions of the adjoint system



















−∂tp− u∂xp = 0, x ∈ (0, ϕ(t)) ∪ (ϕ(t), π), 0 < t < T,

q(t)− p(ϕ(t), t) = 0, T0 < t < T

p(x, T ) = pT (x), x ∈ (0, ϕ(t)) ∪ (ϕ(t), π)

q(t) = q(T ) = qT , T0 < t < T

(20)
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corresponding to the final datum

(

pL(x, T ), qL(T )
)

= (1, 1),

(

pQ(x, T ), qQ(T )
)

= (2u(x, T ),
[u2]ϕ(T )

[u]ϕ(T )

),

respectively. It is important to note that, in this particular case, as we know the analytical solution it is not
necessary to use the adjoint strategy to compute the functional gradient.

Note that boundary conditions are not required in (20) due to the fact that characteristics do not meet
the boundary of the domain.

B. Numerical tests using quadratic objective functions

In this section we will check that quadratic objective functions are not appropriated for a discrete approach
in the gradient computation. As toy model we will use the steady state problem 7. Using the analytical
solution it is possible to compute the value and gradient of the following quadratic objective function:

JQ(β) =

∫ π

0

1

2
u2∞(x, β) dx =

∫ π

0

1

2
sin2(x) dx =

1

4
x−

1

8
sin(2x)|π0 =

1

4
π, and

∂JQ

∂β
= 0 (21)

In figure 1 the solution of the Burgers’ equation is shown for β = 0.75 and β = 0.755. Note that, due
to the 3 points representation of the shock there is an important difference between the analytical and the
discrete solution at the shock location.

Figure 1. Discrete (continuous line) and analytical (dotted line) solution of steady Burgers’ equations (black
line) and square of the solution (red line) for β = 0.75 (left) and β = 0.755 (right).

In figure 2 (left) there is a comparison between the analytical value of the objective function and the
discrete objective functions for different values of β. Finally, In figure 2 (right) the gradient computed with
an “exact” discrete gradient methodology (forward finite differences) is shown.

III. Systems governed by the quasi 1D Euler’s equations

In this section we consider a fluid moving through a duct of variable cross sectional area h(x) and finite
length. The dynamics of the fluid is governed by the quasi-one-dimensional Euler equations, that may be
written as











∂
∂t
(hU) + ∂

∂x
(hF )− dh

dx
Q = 0 on a < x < b,

U(x, 0) = U0(x), on a < x < b,

+ boundary conditions at a and b

(22)

or, for the steady state, as

{

d
dx
(hF )− dh

dx
Q = 0 on a < x < b,

+ boundary conditions at a and b
(23)
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Figure 2. Analytical objective function vs. discrete objective function (left), and discrete gradient computed
with a forward finite difference strategy.

where

U =







ρ

ρu

ρE






, F =







ρu

ρu2 + p

ρuH






, Q =







0

p

0






. (24)

Here, U represents the conserved variables, f is the convective flux vector, Q is the source vector, ρ is
density, u is velocity, p is pressure, E is total energy and H is total enthalpy. The system is closed by the
equation of state for an ideal gas

H = E +
p

ρ
=

γ

γ − 1

p

ρ
+

1

2
u2. (25)

If the solution contains a shock at a point xs, the Rankine-Hugoniot jump conditions connect the smooth
solutions on either side of the shock. For steady flow the conditions can be written as:

[F (U)]xs
= 0, (26)

where [z]xs
denotes the jump of the quantity z at x = xs defined as [z]xs

= z(x+s )− z(x−s ) and z(x
−
s ), z(x

+
s )

are the values of z to the left and right of the point x = xs.
The problem under consideration consists on computing the gradient of the total pressure along the duct

J(α) =

∫ b

a

p(x)dx. (27)

with respect to variation on the duct height h(x) which depends on some design parameters α that define
its shape.

A. Objective function gradient using the continuous adjoint strategy

For steady flow we follow the derivation of Giles and Pierce.10 We briefly outline the main results stated
there. Consider the problem of minimizing the total pressure along the duct for a flow that has a shock wave
located at the point x = xs. Then, the objective function under consideration is:

J =

∫ b

a

p(x)dx =

∫ xs

a

p(x)dx +

∫ b

xs

p(x)dx (28)

The classical adjoint approach starts by considering the flow equations, linearized with respect to varia-
tions in the design variables

d

dx

(

δhF (U) + h
∂F

∂U
δU

)

−
d(δh)

dx
Q −

dh

dx

∂Q

∂U
δU = 0, (29)

where δz is the variation of a quantity z due to a variation in the values of the design variables.
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Equations (29) are then multiplied by a vector of adjoint variables ΨT = (ψ1, ψ2, ψ3). A new adjoint
variable Ψs is introduced in order to enforce the (linearized) Rankine-Hugoniot conditions

[

∂F

∂U
δU

]

xs

+

[

dF

dx

]

xs

δxs = 0. (30)

Integrating by parts one obtains the expression for the gradient:

δJ =

∫ b

a

(

∂p

∂U
− h

dΨT

dx

∂F

∂U
−ΨT dh

dx

∂Q

∂U

)

δUdx

−

∫ b

a

(

dΨT

dx
δhF (U) + hΨT d(δh)

dx
Q

)

dx

− h(xs)
(

Ψs −Ψ(x+s )
)T ∂F

∂U
δU|x+

s
+ h(xs)

(

Ψs −Ψ(x−s )
)T ∂F

∂U
δU|x−

s

− δxs

(

h(xs)Ψs

[

dF

dx

]

xs

+ [p]xs

)

. (31)

In order to make vanish the boundary terms some restrictions are imposed on the adjoint variables. First,
to eliminate the dependence on δU (i.e., the term on the third row of (31)) the condition

Ψ(x+s ) = Ψs = Ψ(x−s ) (32)

is imposed. Next, from the last row of (31) the internal boundary condition at the shock

ψ2(xs) = −
1

dh
dx
(xs)

(33)

is derived. Boundary conditions for the adjoint at the domain boundaries come from

[

hΨT ∂F

∂U
δU

]b

a

= 0. (34)

The value of δJ is then computed as

δJ = −

∫ b

a

(

dΨT

dx
δhF (U) + hΨT d(δh)

dx
Q

)

dx, (35)

where Ψ is the solution of the adjoint equation

∂p

∂U
− h

dΨT

dx

∂F

∂U
−ΨT dh

dx

∂Q

∂U
= 0. (36)

Finally, it is important to mention that the continuous formulation can be solved analytically using
Greens functions, so the solution is free from numerical errors.

B. Numerical tests in a supersonic nozzle

For this numerical test, the area of the nozzle is taken to vary as h(x) = 1.05 + 0.07x+ (0.04(x− 5))3 in a
domain of extent x = [0., 10]. The inlet Mach number is supersonic and the ratio of the exit pressure to the
inlet pressure is set to be 2.5, resulting in a shock in the interior of the nozzle. The objective function J is
taken to be the integral of pressure over the extent of the nozzle. The flow solution employs Roe’s upwinding,
and second order spatial accuracy (when used) is achieved using slope limited MUSCL schemes.11

Figure 3 compares the “discrete” derivative of the objective function with respect to the inlet Mach
number with an “exact” or continuous adjoint procedure as detailed by Giles and Pierce.10 The sawtooth-
like structure of the gradient error is directly related to the resolution of the shock in the numerical solution.
Small numerical errors (for instance, < 0.0005% for the second order scheme) in the flow solution appear to
be greatly amplified in the gradient computation as seen in Figure 4.
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Figure 3. Functional gradient computed with the discrete adjoint method using Roe upwinding
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Figure 4. Functional (left) and functional gradient (right) computed with the discrete adjoint method using
Roe upwinding
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Figure 5. Eigenvalues and pseudospectral contours (of the global Jacobian matrix) corresponding to 1st order
Roe upwinding for Quasi-1D nozzle. Left: M∞ = 1.494606, Right: M∞ = 1.494607
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The cyclical nature of the error is due to the shock location crossing grid cells. It has to be recognized
that when the shock is positioned at the interface, the Roe’s scheme results in perfect shock capturing by
excluding artifical dissipation locally. This is ensured by the fact that one wave speed (uRoe − cRoe) and
two wave amplitudes (corresponding to uRoe and uRoe + cRoe) assume zero values. Such a balance is lost,
however, when the captured shock position deviates from the cell interface by the slightest amount, resulting
in the addition of local artificial dissipation.

Further, the dissipation term typically involves absolute values that introduce discontinuities in the
differentiation chain during the linearisation process. Figure 5 shows the spectra and pseudo-spectra of the
global Jacobian matrix near the origin for the first order Roe upwinding scheme. While the differences in
the flow solutions between the two cases cannot be distinguished clearly, the topological difference in the
eigenstructure is obvious. M∞ = 1.494607 corresponds to a case of near-perfect shock capturing, whereas
M∞ = 1.494606 results in a very small deviation of the shock to the left of the interface.
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−0.1

0

0.1

0.2

0.3

M
∞

%
 E

rr
or

 in
 d

J/
dM
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ROE

Figure 6. Functional gradient computed with the discrete adjoint method using Roe and AUSM based up-
winding

The numerical noise in the gradient was seen to maintain its basic character but reduced by a factor of
half in amplitude with mesh refinement. As shown in Figure 6, the noise is also present for other upwind
schemes.

Thus, while the discrete adjoint gives exact discrete sensitivities and does not require explicit provision
of adjoint Rankine-Hugoniot boundary conditions at discontinuities, numerical noise is to be expected in
gradient computations and could potentially be O(1) in the presence of strong shocks. The adverse effects
of this noise could potentially be reduced by adding additional numerical dissipation near discontinuities, as
suggested in,7 or by filtering the solution, as proposed by.8 Alternatively, shock fitting could prove to be
beneficial.

IV. Systems governed by the 2D Euler’s equations

Ideal fluids are governed by the Euler’s equations, which express the conservation of mass, momentum
(with null viscosity) and energy. The most common way to pose the 2D Euler’s equations is in conservative
form:

{

∂tU + ~∇ · ~F = 0, in Ω,

~v · ~nS = 0, on S,
(37)

where ~nS is an inward-pointing unit vector normal to S, and at the “far field”, boundary conditions are
specified for incoming waves, whereas outgoing waves are determined by the solution inside the fluid domain.
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The conservative variables are U = (ρ, ρvx, ρvy, ρE)
T
and ~F = (Fx, Fy) is the convective flux vector

Fx =











ρvx

ρv2x + P

ρvxvy

ρvxH











, Fy =











ρvy

ρvxvy

ρv2y + P

ρvyH











, (38)

where ρ is the fluid density, ~v = (vx, vy) is the flow velocity in a Cartesian system of reference, E is the total
energy, P the system pressure and H the enthalpy. As in the quasi 1D problem, the system of equations
(37) must be completed by an equation of state which defines the thermodynamic properties of the fluid.

A. Objective function gradient using the continuous and discrete adjoint strategy

In optimal shape design the adjoint formulation is introduced to compute the gradient of an objective function
(2). If a continuous approach is used, the adjoint problem is introduced12 through the Lagrange multipliers
(ΨT ) = (ψ1, ψ2, ψ3, ψ4) which satisfy the following adjoint system:







































− ~AT · ~∇Ψ = 0, in Ω \ Σ,

~ϕ · ~nS = ∂j/∂U, on S \ xs,

ΨT
(

~A · ~nΓ∞

)

−
= 0, on Γ∞,

[

ΨT
]

Σ
= 0, ∂tgΨ

T
[

~F · ~tΣ

]

= 0, L = Ψ|Σ , on Σ,

ΨT (xs)
[

~F · ~tΣ

]

xs

= [j]xs
/
(

~ns · ~tΣ
)

, at xs,

(39)

where ∂ ~F/∂U = ~A, and ∂n = ~n · ~∇ and ∂tg = ~t · ~∇ are the normal and tangential derivatives (respectively),
xs is the shock location, and ~ϕ = (ψ2, ψ3). Finally, the objective function variation is computed as:

δJ(S) =

∫

S\ xs

[

∂nj(P ) + ~t · ∂tg

(

∂j

∂~ns

)

− κ

(

j +
∂j

∂~ns

~ns

)]

δS ds

+

∫

S\ xs

[

(∂n~v · ~nS)ϑ+ ∂tg
((

~v · ~tS
)

ϑ
)]

δS ds

+ [j(P )]xs

~nS · ~nΣ

~nS · ~tΣ
δS(xs)− ~t ·

[

∂j

∂~nS

]

xs

δS(xs). (40)

where κ is the curvature, and ϑ = ρψ1 + ρ~vS · ~ϕ+ ρHψ4. Using (39) and (40) we are able to solve any shape
design problem with the Euler’s equations, and we will use this methodology to compute the continuous
gradient value in the numerical experiment that will be presented in this section.

With respect to the “discrete” gradient computation, we will use a forward difference approximation in
which the value of the first-order derivative is computed as

∂J∆x

∂S
= lim

δS→0

J∆x(S + δS)− J∆x(S)

δS
, (41)

where an especial care must be taken in the calibration of δS, which must be greater than the machine
precision, but small enough to provide the “exact” discrete gradient.

B. Numerical tests of optimal shape design

The aim of this section is to identify numerical oscillations introduced by the discretization of the disconti-
nuities and its effect in the gradient calculation using an “exact” discrete approach.

In this 2D problem it is fair to mention that the evaluation of objective functions using computational
grids that are not well oriented provides also oscillatory results at some small scales. This is, typically, a
multidimensional problem, in which the computational grid introduces some numerical error because it is
not aligned with the shock waves.
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Figure 7. Density field on the finest grid (left) and air velocity on the surface for both grids (right).

As baseline we have chosen a NACA 0012 airfoil, with transonic flow conditions (angle of attack 1.25◦,
Mach number 0.8). Gradients of the cost function are obtained with respect to 50 Hicks-Henne sine “bump”
functions,5 centered at various locations along the upper surfaces of the baseline airfoil.

Regarding the spatial discretization, two computational grids of 5233 (coarse grid) and 7908 points (fine
grid) are tested. As numerical method a second order Roe’s upwind scheme13 is used.

Figure 8. Comparison of ~∇J∆x computed with a Finite Difference strategy (the step calibration is also shown),

with ~∇J computed using a continuous adjoint methodology.

The first step is the calibration of the finite difference step. Then, the “exact” discrete gradient will be
compared with the “continuous” gradient or “exact” analytical gradient (in a hypothetical case in which
we don’t have any numerical error). In figure 8 we have plotted the discrete and the continuous gradient
for both computational grids. It is important to highlight that in the coarsest grid the continuous and the
discrete gradient provides similar results, however in the finest grid there is a relevant difference between
both approaches.

The next test consists in studying the behavior of J∆x when only a design variable on the shock location
is used. In figure 9 both objective functions are compared. Note that for the drag coefficient computation
they are some local minimums.

In this section we have checked that in a 2D Euler transonic case high frequency fluctuations may appear
in the objective function evaluation when the appropriate design variable is chosen. If that situations happens
in a optimization process, and nothing is done, they there are two possibilities:

• If our optimization algorithm is good enough (the optimization step is well selected), a local minimum
will be found, but this minimum could be far away from the global minimum of our problem.

• If the step of the optimization algorithm is not adequate (larger than validity zone of the first deriva-
tive), we will not find the local minimum, neither a global one.
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Figure 9. Drag and lift coefficient computation for a design variable located at the shock position using the
finest grid.

Finally, two optimization problem will be introduced in order to show the relevance of the phenomena
that we have described in the previous paragraphs. As design variables we will use several Hicks-Henne
bump located at strategics points. In the sake of simplicity the objective function will be the drag coefficient
(without any kind of constrains). As optimization algorithm a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization method14 is used.

Figure 10. Optimization history for a problem with 3 design variables (left) and 2 design variables (right)

Figure 10 (left) shows the optimization history of the problem with three design variables (centered at
position 0.53, 0.63 –shock wave location–, 0.73). In that figure it is possible to compare the optimization
using an “exact” discrete gradient strategy, a continuous adjoint method (“exact” analytical method), and
a non-exact discrete gradient strategy (finite differences with a coarse finite step). In this case, it is clear
that the “exact” discrete gradient is not efficient. A continuous adjoint strategy or even a finite difference
strategy with a coarse step provides better results than the “exact” discrete gradient.

We will take advantage of this problem to define the “physical relevance amplitude” as the minimum
amplitude of the design variable which produces a change in the objective function greater than the order
of the numerical method. Below this threshold, the changes in the objective function are mainly due to
adjustments in the artificial dissipation introduced by the numerical scheme. Related with this concept, in
Figure 10 (right), we pose another optimization problem in which the design variables are 2 bump function
centered at position 0.04 (sonic point), 0.63 (shock location point). As before, 3 different strategies are
plotted for computing the gradient. Note that we are putting together two design variables with a very
different “physical relevance amplitude” (first order of accuracy for the point located at the shock and
second order for the point located at the sonic point), and the optimization using “exact” discrete approach
is again not efficient.
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V. Conclusions

Throughout this article we have checked that the way in which the shock wave is discretized can have
a relevant influence in a optimal shape optimization process. Even more, we have establish the “physical
relevance amplitude”, which provides a hint about which design variables can be used together in a opti-
mization problem. This is important because if we mix design variables with different “physical relevance
amplitudes” the optimization algorithm will not work properly.

It is also important to stress that the Automatic Differentiation (AD) techniques provides the “exact”
discrete gradient. However, that gradient could be dominated, at the smallest scales, by the particular
discretization of the discontinuity. In that scenario, the “exact” discrete gradient only represents the behavior
of J∆x for very small (non-physical or below the “physical relevance amplitude”) modifications of some
relevant design parameter.

As conclusions of this article it is possible to give some basic recipes in order to obtain a successful
descend direction dealing with shocked flows:

• Use, if available, the continuous strategy for computing the gradient of the objective function.

• If the continuous adjoint is not available, it is important to apply some filtering techniques to elim-
inate the numerical fluctuations of the discrete functional or add some additional smooth numerical
dissipation near discontinuities.

• If an Automatic Differentiation is available, then it is better to apply the technique on a coarse grid,
where we have interpolated the flow solution obtained in a finest grid (bi-grid strategy). This is
equivalent to do a smoothing of the flow solution.

• Do not introduce the nodes that are inside the discrete representation of the shock in the objective
function evaluation.

• Do not mix in a optimization process design variables with different “physical relevance amplitudes”.

• If possible, always use design variables which provide a linear relationship between the objective func-
tion and the deflection of the surface.

• To avoid orientation effects, use hp-adaptation or a structured numerical grid.

Those are very easy recipes that should improve the convergence of an optimal shape optimization
problem when dealing with shocked flows.
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