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In the recent past, adjoint methods have been successfully applied in error estimation of integral outputs

(functionals) of the numerical solution of partial differential equations. The adjoint solution can also be used as a grid

adaptation indicator, with the objective of optimally targeting and reducing the numerical error in the functional of

interest below a prespecified threshold. In situations where we seek to quantify the effect of aleatory uncertainties on

statistical moments of the output functional, it becomes necessary to evaluate the functional accurately at multiple

sample points in probability space. If the numerical accuracy of these sample evaluations is not uniform, variations in

thenumerical error canaffect the evaluation of the statisticalmoments.Although it is possible to independently adapt

the meshes to obtain more accurate solutions at each sample point in stochastic space, such a procedure can be both

cumbersome and computationally expensive. To improve the efficiency of this process, a new robust grid adaptation

technique is proposed that is aimed at minimizing the numerical error over a range of variations of the uncertain

parameters of interest about a nominal state. Using this approach, it is possible to generate computational grids that

are insensitive to small variations of the uncertain parameters that can both locally and globally change the solution

and, as a result, the error distribution. This is in contrast with classical adjoint techniques, which seek to adapt the

gridwith the aim ofminimizing numerical errors for a specific flow condition (and geometry). It is demonstrated that

flow computations on these robust grids result in low numerical errors under the expected range of variations of the

uncertain input parameters. The effectiveness of this strategy is demonstrated in problems involving the Poisson

equation and the Euler equations at transonic and supersonic/hypersonic speeds.

Nomenclature

E = flow total energy
F = vector of convective fluxes
H = flow total enthalpy
j = objective function defined on the surface S
M1 = freestream Mach number
n = exterior normal to the surface S
P = static pressure
Ru = residual of the direct problem
Rv = residual of the adjoint problem
S = Euler wall boundary of the physical domain
U = vector of conservative variables
v = flow speed in an inertial Cartesian system of reference
� = angle of attack
�S = infinitesimal deformation of the wall surface
��W�� = incoming characteristics on the far-field boundary
@n = normal derivative to a curve
@t = tangential derivative to a curve
@� = boundary of the physical domain
� = numerical error in the functional evaluation
u = exact solution of the direct problem

uh = numerical solution of the direct problem in a
numerical grid with average spacing h

� = flow density
v = exact solution of the adjoint problem
vh = numerical solution of the adjoint problem in a

numerical grid with average spacing h
’ = adjoint velocity vector
� = vector of Lagrange multipliers of the flow equations
� = physical domain

I. Introduction

A N IMPORTANT aspect of uncertainty quantification (UQ) in
predictive simulations involves the propagation of the effect of

variability in input and system parameters (hereafter referred to as
input parameters or random input parameters) on system outputs of
interest, where we assume that the variability in the input parameters
can be represented by known probability distributions. In such
exercises, one is typically interested in the statistical moments of an
output functional within the space of random input parameters. The
nonintrusive approach [1–3] to UQ involves sampling of the
governing equations in stochastic space. Because of variations in the
input parameters and the resulting changes in the magnitude,
distribution, and character of the solution of the governing equations,
the numerical accuracy of these sample evaluations is not uniform,
and significant errors could appear in the evaluation of the statistical
moments of the outputs. An obvious strategy for coping with this
problem would be to apply adjoint-based error estimation and mesh
adaptation at every sample point [4–10] so that the numerical errors
for all functional evaluations are kept below an acceptable threshold.
However, such a procedure can be both cumbersome and
computationally expensive. New approaches that can retain the
accuracy of such an approach but with much lower computational
effort are sought in this paper.

In this work, we propose a robust grid adaptation technique, which
is aimed at minimizing the numerical discretization error over small
variations of the input parameters around a baseline flow state. In this
approach, computational grids are generatedwith the knowledge that
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small variations of uncertain parameters (or design variables) can
locally and globally change the solution (and, hence, the error
distribution).

This grid-adaptation strategy is expected to be useful in many
applications, including UQ, robust design, and also in response
surface generation with applications in multiple fields of computa-
tional science. In all of these situations, it is desirable to have a fixed
computational grid, which produces low numerical errors when the
input parameters of the problem (e.g., shape of the airplane, Mach
number, angle of attack, coefficients of different physical models,
etc.) change by a small amount. It will be shown that this robust grid-
adaptation technique is closely related to ideas of error estimation in
integral outputs (functionals) of partial differential equations, but the
objective in this work is to minimize the variation of the numerical
error when an infinitesimal change over the nominal conditions
takes place. The first obvious benefit is that an adapted mesh is
only constructed once and can be reused, without modific-
ation, over large numbers of sample function evaluations, thus
decreasing the computational costs.Moreover, removing the require-
ment of independent mesh adaptation for each sample function
evaluation increases the robustness of the procedure, particularly
when these sample evaluations constitute an inner loop for other
processes, such as optimization (in both robust design and reliability-
based design) and in other nested UQ approaches based on the
generation of response surfaces in stochastic space [11].

II. Robust Grid-Adaptation Methodology

A. Foundations of the Methodology

It is well known that the error estimate of integral outputs of partial
differential equations can be used as a grid-adaptation indicator
[5–7,9,10]. These techniques produce good (and even optimal)
numerical grids for the accurate estimation of an output functional.
However, in principle, this strategy is not well suited for situations in
which certain parameters of the baseline configuration change while
the grid remains unchanged. In such a scenario, a robust grid
adaptation is desirable.

To illustrate the main idea behind this technique, assume a system
governed by a linear partial differential [12]. Let u be the solution of
the following equation:

�
Au� f; in �;

u� 0; on @�
(1)

where, for purposes of demonstration, the domain � is subject to
homogeneous boundary conditions for which the problem is well
posed. The dual or adjoint problem can be introduced as

�
A�v� g; in �;

v� 0; on @�
(2)

and, due to the duality property, it is possible to verify that

�v; Au� � �A�v; u� (3)

where ��; �� represents the scalar inner product, i.e., �v; u��R
� v

Tu dV.
We are interested in functionals of the solution u, Lg�u�, and for

purposes of this discussion, a linear function of the state u will be
considered. The weight or density function g that defines our
functional of interest is given by

Lgu� �g; u� � �v; f� � Lfv (4)

where u satisfies the primal Eq. (1), and v satisfies the dual or adjoint
equation found in Eq. (2). Next, we introduce a standard finite-
element method approximation, where uh and vh (h is meant to
represent an averagemesh-sizemeasure) are discrete approximations
to u and v, respectively. The objective is to find a suitable expression
for the numerical error �� �g; u � uh� in the functional evaluation.
The standard procedure [4,12] is as follows:

�� �g; u � uh� � �A�v; u � uh� � �A�vh; u � uh�
� A� vh � �� �; u � uh� 	 � vh; A u � uh� �� 	
� vh � �; A u � uh� �� 	 (5)

We introduce the discrete flow and adjoint equation residuals Ru 

Auh � f and Rv 
 A�vh � g. Note that the residual is a computable
indicator of the extent to which uh and vh depart from the exact
solutions on the numerical grid characterized by h. The final
expression for the error estimate is

�� �vh; Ru� � vh � v; A u � uh� �� 	 (6)

The first term of Eq. (6) is called the computable correction. If the
governing Eq. (1) is solved using a Galerkin approximation method,
the computable correction contribution will vanish because the
residual is orthogonal to all members of the finite-element space. The
second term in Eq. (6) is called the remaining error after the adjoint-
based error correction, and it cannot be evaluated because it requires
the exact values of either u or v.

Our next step is to develop an adaptive strategy that does not
require the exact solutions, u and/or v, of the direct and/or adjoint
problems. Some studies [5,9,10,13] advocate the use of the following
strategy: because u and v cannot be computed with finite cost, one
can approximate these on a finer grid with average spacing h=2:

�h � �vh; Ru� � vh � vh=2; A uh=2 � uh
� �� �

(7)

Here, Ru 
 Auh � f. A computable form of the error estimate is
derived by using a measure of the interpolation error in u and v that
replaces uh=2 � uh and vh=2 � vh, respectively, in the preceding
expression. The interpolation error is expressed as the difference
between the high- and low-order approximations to the primal and
adjoint solutions on meshes of spacing h=2, where the low-order
approximation/interpolation uLh=2 is usually obtained via piecewise

linear interpolation and the high-order one, uHh=2, is derived using

quadratic interpolation obtained with Hermitian polynomials. The
final form of the computable expression for the error estimator is,
then,

�h � vLh=2; Rh=2 u
L
h=2

� �h i
� vLh=2 � vHh=2; Ah=2 uHh=2 � uLh=2

� �h i
(8)

whereRh=2�uLh=2� stands for the residual of the coarse grid solution on
the fine grid.

It is important to note that, in this procedure, the following
statements are applicable:

1) The approximate flow solution is only required on the coarse
grid. This key attribute avoids the cost of a flow solution on the finest
grid.

2) The error estimator is evaluated on a grid that is finer (h=2) than
the baseline grid (h). But we are interested in the error of the solution
evaluated in the baseline grid (h): Thus, a postprocessing step is
needed to obtain the error estimator in the baseline (h) grid. Inmost of
the cases, as the location of the coarse grid points coincidewith some
fine grid points, a simple injection is done to obtain the value of the
adaptation sensor on the coarse grid.

These ideas allow the computation of an adaptation indicator
without the knowledge of the exact solutions to the flow or adjoint
problems. Such concepts have been tested by several studies [5–
7,9,13] with a significant level of success. Our intention in this paper,
however, is to develop a new approach that focuses, instead, on UQ
applications. A robust numerical grid is defined as a computational
grid in which the numerical error remains nearly constant for small
variations of the parameters that affect the solution. In an ideal
situation, the variation of the numerical errorwould be zero as a result
of variations in the parameters of the problem.

For purposes of in our model problem, we assume that
uncertainties enter the system through the right-hand side f of
Eq. (1), and they are represented by the variation �f, which is
unknown. This leads also to an unknownvariation of the state �u that
can be computed using the following equation:
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�
A�u� �f; in �;

�u� 0; on @�
(9)

Using Eq. (6), and keeping in mind that v does not depend on f, it
is possible to compute the variation of the numerical error as

��� �vh; �Ru� � fvh � v; A � u � uh� �� 	g (10)

where �Ru � ��Auh � f� � A�uh � �f. This estimation of the
variation of the error �� presents two main difficulties:

1) The exact solution of the adjoint problem, v, is required to
evaluate the second term of the variation of the numerical error.

2) Equation (10) requires the computation of variations of the
residuals in Eq. (9). Note that, in principle, one adjoint problem
should be solved for each uncertain parameter �f.

To obtain an adaptation sensor, we apply an analogous strategy as
the one used inEq. (8). Thevariation of the errorwill be estimated in a
finer grid, and two interpolation operators (low- and high-order ones,
respectively) will be used. In this way, we obtain the following
expression for the variation of the error

��h � vLh=2; �Rh=2 u
L
h=2

� �h i
� fvLh=2 � vHh=2; A � uHh=2 � uLh=2

� �h i
g

(11)

Note that a significantly well-refined grid for solving the primal
problem uLh=2 � uHh=2 � 0 does not guarantee a low, or even a

constant, error variation. On the other hand, if a significantly well-
refined grid is used to solve the adjoint problem, we expect that
vLh=2 � vHh=2 � 0, and the variation of the error can be estimated as

��h � vLh=2; �Rh=2 u
L
h=2

� �h i
(12)

Thus, to estimate (to later reduce) the value of ��h, it is necessary to
evaluate �Rh=2�uLh=2�, which, itself, requires the solution of the

sensitivity problem in Eq. (9). In the next section, we introduce the
way in which this quantity is used on practical grid-adaptation
procedures.

B. Practical Implementation

The robust adaptation technique seeks a grid with low numerical
error, even under variations of the input parameters of the governing
equation. Such a grid would require that

�
vLh=2 � vHh=2 � 0;

vLh=2�Rh=2�uLh=2� � 0
(13)

where, to satisfy the first equation, we can adapt the numerical grid
using as an indicator the value ofRh=2�vLh=2�. On the other hand, note
that the second equation arises from the estimation of the error
variation. It is important to note that, to obtain awell-resolved adjoint
solution, one could also propose an a posteriori error-estimation
procedure for the adjoint variables that would result in an adaptation
method based on weighted residuals. As before, note that Rh=2
represents the residual on the finest grid, and uLh=2 and v

L
h=2 are the

flow and adjoint solutions, respectively, computed on the coarse grid
and interpolated to the finest grid using a low-order (linear)
interpolator. To simplify the notation, �RU and RV will be used to
represent �Rh=2�uLh=2� and Rh=2�vLh=2�, respectively. Also, the low-

order approximation of the adjoint solution vLh=2 will be denoted by v.
To achieve a solution with a low numerical error of the adjoint
solution on the baseline grid [first equation of Eq. (13)], we require
that RV � 0. Moreover, because the adjoint operator in a general
frameworkwill depend on the flow solution (e.g., for Euler equations
the adjoint operator is the transpose of the Jacobian of thefluxes), it is
also desirable to haveRU � 0. As a result, the numerical gridmust be
adapted to minimize the following objective function:

eres � kRUk2 � kRVk2 (14)

As far as the robust computable correction terms are concerned,
assuming that N uncertain parameters affect the values of the right-
hand side, f, in Eq. (1), the objective function to be minimized
through the adaptation process is

ecomp �
XN
i�0
kv�RUi k2 (15)

where �RUi is the sensitivity of the primal problem residual to
variations in the ith uncertain parameter.

In summary, using the robust grid strategy, it is possible to define
two different error indicators: the residual robust adaptation (RRA)
error indicator, Eq. (14), and the computable robust adaptation
(CRA) error indicator, Eq. (15). Note that theRRAmethodwill adapt
a numerical grid to minimize the error in the adjoint solution. In this
way, the variation of the numerical error will depend only on the
residual of the linearized solution, scaled by the adjoint variables.

The final form of a global error indicator is, then,

eind � eres � ecomp (16)

Note that, when dealing with nonlinear problems, it is customary to
multiply the error in each computational cell by j�j�, where j�j is the
volume of a particular cell. The advantage of scaling the indicator
with a positive value of � is that the adaptation can terminate
automatically in relevant regions after several cycles, even when
discontinuities are present in the flowfield.

From a practical point of view, it is useful to define a limit for the
grid-adaptation process so that a stopping criterion exists:

elim � em � climes (17)

where elim is the error limit, em is the mean of the error indicator, es is
the standard deviation of the error indicator, and clim is a user-
specified constant. Typically, a value near unity is used for this
constant. More detailed information on the implementation of error
limits for grid adaptation can be found in Fidkowski and Darmofal
[6]. Finally, to carry out the refinement process, we use a standard
homothetic subdivision approach [14] that splits each triangle into
four new triangles by adding three new vertices at the middle of each
edge. It has to be noted that elements sharing these edgesmust also be
divided if hanging nodes are to be avoided.

III. Numerical Examples

The objective of this section is to illustrate the performance of the
new adaptation techniques described in this paper:

1) The first is the RRAmethod based on the use of a function of the
direct and adjoint residuals as an adaptation sensor; see Eq. (14). In a
ideal scenario, this kind of adaptationwill remove the influence of the
second term that appears in the error variation; see Eq. (11).

2. The second is the CRA method based on the use of the adjoint
problem multiplied by the residual of the linearized problem as
adaptation sensor; see Eq. (15).

In addition, in this section, we also compare these new adaptation
techniques with three well-known nonrobust adaptation method-
ologies: 1) uniform adaptation based on the uniform subdivision of
each cell of the mesh, 2) computable correction based on an
adaptation sensor constructed with the residual of the direct problem
multiplied by the adjoint solution [see Eq. (8)], and 3) gradient-based
adaptation, where the flowfield is adapted in areas where the gradient
of the direct solution is greater than a prescribed value.

It is important to highlight that, once the adaptation sensor is
computed, the rest of the adaptation methodology is the same for all
the methods.

A. Two-Dimensional Poisson’s Equation on Structured Grids

To clarify the robust adaptation method already described, wewill
solve the two-dimensional (2-D) Poisson equation based on an
example proposed by Giles and Pierce [15]:
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�r2u� x�1 � x��y�1 � y�; in �;

u� 0; on @�
(18)

on the unit square �0; 1	 � �0; 1	 subject to homogeneous Dirichlet
boundary conditions, where � is an uncertain parameter. We also
consider the following objective function:

Z
�

u sin��x� sin��y� dV (19)

The dual or adjoint problem is given by

�r2v� sin��x� sin��y�; in �;

v� 0; on @�
(20)

The equation for the sensitivity of the solution with respect to the
source term is

�r2��u� � x�1 � x��y�1 � y� ln �1 � x���; in �;

�u� 0; on @�
(21)

These equations are approximated using a classical Galerkin FEM
with piecewise linear elements on a numerical grid made up of
triangles. Figure 1 shows the numerical solution of the direct problem
for �� 1 (left), the adjoint solution (middle), and the solution of the
sensitivity problem (right) for ��� 1. The baseline triangulationwas
constructed by splitting each quadrilateral element of a Cartesian
mesh into two triangles.

To estimate the exact solution, a veryfine gridwith 10,000 nodes is
used. As a baseline for the adaptation process, we use a numerical
grid with only 1600 nodes. The numerical experiment involves
computing the value of the functional for 1:0< � < 2:0 and
comparing the numerical error for the following adaptation
strategies: 1) computable method min�v; RU�, 2) CRA method
min�v; �RU�, and 3) RRA method minRU and minRV .

In Fig. 2 (left), the value of the functional on the finest grid is
plotted for different values of�. In Fig. 2 (right), the difference (error)
between the truth solution and the numerical solution on the coarse
grid is shown. In Fig. 3, the resulting grids using the computable error
(left), CRA method (middle), and RRA methods (right) are shown.
The number of points of the computational grids are approximately
the same: 6806, 6721, and 6862, respectively.

Finally, in Fig. 4, a comparison between the numerical errors for
different values of � is shown. In all cases, the numerical error is
under 1%, but the CRAmethod produces a lower error level than the
others. Regarding the shape of distribution of the error, it is important
to highlight that the RRAmethodmaintains the same behavior as the
original coarse grid. However, using the CRA method, the error
derivative with respect to the uncertain parameter is constant.
Moreover, the computational grid adapted using the computable
errormethod (one point adaptation) shows aminimum for the error at
�� 1:5, pointing to the fact that the grid has been adapted to a
specific value of the parameter, but, due to imprecisions of the
adaptation procedure, theminimum error is not exactly at �� 1:0, as
we could have expected.

B. Application of CRA Method to Variations in Freestream Mach
Number Using the Euler Equations

Inviscid compressible flows are governed by Euler’s equations,
which express mathematically the statements of conservation of
mass, momentum (with null viscosity), and energy. The conservative
steady-state form of the 2-D Euler equations is given by

�
r � F� 0; in �;

u � n� 0; on S
(22)

wheren is an inward-pointing unit vector normal to S (solid surface).
At the far field, boundary conditions are specified for incoming
waves, whereas outgoing waves are determined by the solution
inside the fluid domain.

Fig. 1 Solution of the direct (left), adjoint (middle), and sensitivity (right) problems on the finest grid (10,000 nodes) for ��� 1:0.
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In 2-D, the conservative variables areU� ��; �vx; �vy; �E�T , and
F� �Fx; Fy� is the convective flux vector as follows:

Fx �

�vx
�v2x � P
�vxvy
�vxH

0
BB@

1
CCA; Fy �

�vy
�vxvy
�v2y � P
�vyH

0
BB@

1
CCA (23)

where � is the fluid density,u� �vx; vy� is the flow velocity vector in
a Cartesian reference frame,E is the total energy of the fluid (internal
plus kinetic),P the static pressure, andH the enthalpy. The system of
equations in Eq. (22) must be completed by an equation of state,
which defines the thermodynamic properties of the fluid. In this case,
we use the ideal gas law p� �RT.

The linearized Euler’s equations (for smooth solutions of the direct
problem) with respect to variations on the shape of the solid surface S
or in the far field are

8>><
>>:
r �

�
@F
@U
�U
�
� 0; in �;

�v � n���S@nv � n� �@t�S�v � t on S;

��W�� � 0; on �1

(24)

where the variable �U solves the linearized Euler’s equations, @n �
n � r and @t � t � r are the normal and tangential derivative
operators, respectively, and ��W�� represents the incoming
characteristics in the far field. More details of the notation used for
the linearized problem can be found in Baeza et al. [16].

On the other hand, the continuous adjoint system for Euler’s
equations (again, for smooth solutions of the direct problem) is
given by

8<
:
�AT � r�� 0; in �;

’ � n� @j=@U; on S;

�T�A � n�� � 0; on �1

(25)
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Fig. 3 Numerical grid after adaptation using computable adaptation (left), CRA method (middle), and RRA method (right).
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Fig. 4 Numerical error using computable (upper), CRA (lower left), and RRA (lower right) methodology.
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where ��T� � � 1;  2;  3;  4� are the adjoint variables, j is the
functional of interest, the Jacobian is written as @F=@U�A, and
’� � 2;  3�. As before, a characteristic-based method is used at
the far-field boundary. Again, more details of the notation used for
the adjoint system and its development can be found in Bueno-
Orovio et al. [17].

For this example, a NACA0012 airfoil in the subsonic regime
(Mach number of 0.5 and angle of attack of 2.0) has been chosen as
the baseline configuration. The objective of this numerical test is to
compare the performance of the CRA strategy (for variations in the
freestream Mach number from 0.4 to 0.6) with more classical
computable adaptation procedures. The objective function
throughout this example is taken to be the lift coefficient of the
airfoil. As a starting point, a baseline grid consisting of 1341 nodes
(see Fig. 5, left) is created. Then, three homothetic isotropic grid
adaptation cycleswere performed and, in Fig. 6 (left), the value of the
airfoil lift coefficient is plotted for the different grids. Note that an
analytical definition of the airfoil surface is used to add new nodes
over the surface to guarantee numerical convergence.

The next step is to adapt the baseline grid using the new CRA
strategy and a classical computable adaptation approach [9]. In Fig. 5
(middle), the numerical grid adapted with the computable approach
is presented, and in Fig. 5 (right), the new robust adapted grid is
shown (using CRA). Note that we have performed two adaptation
cycles, and the final number of points is 3097 (for the classical
computable approach) and 3075 (using the CRA strategy).

To evaluate the errors in the numerical results, we have computed a
solution on a uniformly refined grid containing 82,324 points that
will be referred to as the truth solution. We have, then, computed the
error in the lift coefficient using the baseline/isotropic, computable,
and CRA procedures with respect to this solution. Note that,

although the baseline Mach number had been selected as 0.5, results
have been computed for different values of the freestream Mach
number; note that the adaptation criteria were computed using the
adjoint solution corresponding to the baseline Mach number 0.5. In
Fig. 6 (right), the error in the lift coefficient is plotted for the three
adaptation approaches as a function of the freestreamMach number.

One can see from the results in Fig. 6 that, just as in the Poisson
equation example, the CRA strategy not only results in a more robust
grid (in the sense that it is less sensitive to variations in the freestream
Mach number), but it also results in smaller numerical errors with
essentially the same number of points compared to the classical
computable adaptation. It is important to highlight that, in both
adjoint-based adaptation strategies, the solution of the adjoint system
of equations is necessary; therefore, the differences between the
results for the classical computable strategy and the CRA approach
represent true differences for a given computational budget. The
isotropic/baseline adaptation strategy does not require the solution of
an adjoint system and is, therefore, computed at a lower cost than the
other two approaches. However, observing Fig. 6 (left), just doubling
the points of the isotropic adaptation strategy (to obtain an equivalent
computational effort as solving the adjoint problem) is not sufficient
to obtain a competitive lift error with respect to the other strategies.

C. Response Surface Computation for Supersonic Inlet Flows Using

the RRA Method

UQ using nonintrusive methods, such as stochastic collocation,
typically involves the construction of a response surface of the
quantity of interest as a function of the variation of several uncertain
parameters. To achieve the desired level of accuracy, a large number
of computational fluid dynamics (CFD) simulations is typically
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Fig. 5 Coarse/baseline grid (left), numerical grid obtained with the computable adaptation strategy (middle), and numerical grid obtained with the

CRA strategy (right).

Fig. 6 Convergence history for different adaptation strategies (left) and lift coefficient value for different Mach numbers (right).
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required. To improve the efficiency of this process, we propose to
employ our robust grid-adaptation technique that is aimed at
minimizing the numerical error over small variations of the
parameters around a nominal state.

To study the applicability of this method, a 2-D Euler supersonic
inlet test case has been selected. In particular, we are interested in
creating a robust grid for a subset of the Clemens experimental
configuration [18]. The nominal conditions (as in the experiments)
are an inlet Mach number of 5.0 and a ramp angle 6.0 deg (Fig. 7).
The adjoint computation (Fig. 8) has been performed using a second-
order continuous adjoint formulation. The objective of this test is to
verify whether the grid adapted (using the new robust technique) for
those nominal conditions also provides a good value of the objective
function for the complete response surface. In this case, we are
interested in predicting accurately the pressure signature in an area of
the lower wall that is located slightly downstream of the end of the
inlet ramp. This choice ismade as a surrogate for variousmeasures of
precursors to the unstart phenomenon that we are exploring in other
current efforts [19]. The baseline grid has a total of 1356 nodes and
2450 triangular elements. The total length of the setup is 333.0 mm,
and the pressure sensor is located on the lower wall at 116.08 mm
from the inlet (the size of the pressure sensor is 5.08 mm). To
compare the performance of the different grid-adaptation techniques
(Fig. 9), we have used three different error indicators: gradient-based,
classical adjoint-based (computable error), and the new RRA
method. It is important to note that, even though the flow conditions
are uniform at the inlet, the RRA method indicates a need for
adaptation along certain portions of the inlet. This is because the
RRA method is based on minimizing the flow and adjoint residuals,
and the adjoint residuals will be active at the inlet due to the
nonuniformity of the adjoint variables.

Once the adaptation (based on the nominal conditions) is
complete, the final step consists of computing the entire response
surface of the quantity measured by the pressure sensor and

comparing the results with the exact response surface that has been
computed using a very fine reference grid. In this particular
simulation, the Mach number varies from 3.5 to 5.5, whereas the
ramp angle changes from 5.6 to 6.1 deg (see Fig. 10).

In Fig. 11, we compare four different methods for grid adaptation
with the solution obtained on a very fine grid. The gray color
represents an absolute value of the error that is less than 4.0%.
Starting with the no adaptation case, the numerical error is greater
than 4.0% almost everywhere, except when the shock wave is far
from the pressure sensor (for the entire Mach number range). When
using the flow gradient-based adaptation, a similar behavior is
observed, but the zones with error greater than 4.0% are narrower.
Using the computational correction adaptation, it is interesting to

Fig. 7 Density contours for nominal conditions (inflow Mach number of 5.0 and ramp angle of 6.0 deg).

Fig. 8 Adjoint density contours for nominal conditions and pressure sensor located on the lower wall.

Fig. 9 Grid adaptation using a gradient-based method (upper), adjoint-based computable error (middle), and the new robust method (lower).

Fig. 10 Fine grid solution (baseline response surface).
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note that the error is lower than 4.0% at the baseline design point, but
it increases rapidly with changing Mach number. As in other cases,
however, when the shock is far from the sensor, the numerical error is
low. Finally, as expected, the robust grid adaptationmethod produces
the best results: the numerical error is lower than in the other cases,
except when the shock wave crosses the pressure sensor at a Mach
number of 4.75. This particular flow condition is, however, difficult
for all methods due to the presence of strong pressure gradients.

In conclusion, for the complete response surface computation, the
robust grid strategy provides a lower error compared with the other
techniques, despite the fact that only one adaptation aroundMach 5.0
and ramp angle 6.0 deg is used. In particular, using the computational
correction adaptation method (see Fig. 12, we obtain a numerical
error less than 4.0% in approximately 70% of the response surface,
whereas, using the RRA method, 90% of the flow domain has a
numerical error less than 4.0%.

It is important to note that, because adjoints are used, the proposed
adaptation strategy provides an indication of regions to which the
functional of interest is most sensitive. Even though different grids
are employed for changes in geometric parameters (ramp angle in
this case), regions of refinement are based on adaptation indicators

developed around the baseline state and are held fixed while
parameters are varied.

IV. Conclusions

This paper has described the foundations of two new grid
adaptation strategies termed the computable robust adaptation
(CRA) method and the residual robust adaptation (RRA) method. It
has been demonstrated that it is possible to obtain a grid that is robust
with respect to small variations of the input parameters (in the sense
that the numerical error is constant even if some input parameters are
changed). This technique can be useful in improving the efficiency
and accuracy in applications, such as optimal shape design, response
surface development, robust design/optimization, and in uncertainty
quantification (UQ) of systems governed by partial differential
equations, which is the initial motivation of this work. Based on
preliminary results on model problems, this paper has also shown
that numerical grids adapted using the CRA method exhibit better
properties than those adapted using a classical computable
adaptation method for goal-oriented error estimation and adaptation.
The main drawback of this new CRA technique is the requirement of
solving an additional linearized problem for each variable of the
problem. The RRA method, which is based on adapting
independently the direct and adjoint residuals, does not suffer from
such a limitation. With regard to computational cost, the RRA
method is equivalent to two computational fluid dynamics runs on
the coarse grid, whereas, on the other hand, theCRAmethod requires
N � 2 runs, where N is the number of uncertain parameters.

This technique has been tested in a response surface computation
and has demonstrated a numerical error that is less than 4.0% in
90.0% of the domain of the response surface, whereas a
computational correction-based adaptation produced acceptable
results in only 70.0% of the response surface.

It has to be emphasized that the proposed approach has been
developed for use in problems with small perturbations of input
variables from a baseline state. The error estimate is not guaranteed to
be accurate for large variations of the parameters because the adjoint
solution is evaluated only for one combination of parameters. If used
in UQwith large parameter variations, adjoint solutions may need to
be evaluated around multiple sample points, and grid adaptation
indicators may be derived using a composite of these samples.

Future work will be focused on improving this new technique
when applied to nonlinear equations and to seek clear explanation as
to why the CRA results in lower numerical errors than the classical
computable method even at the design point.
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