
ADjoint: An Approach for the Rapid Development
of Discrete Adjoint Solvers

Charles A. Mader∗ and Joaquim R. R. A. Martins†

University of Toronto, Toronto, Ontario M3H 5T6, Canada

and

Juan J. Alonso‡ and Edwin van der Weide§

Stanford University, Stanford, California 94305

DOI: 10.2514/1.29123

An automatic differentiation tool is used to develop the adjoint code for a three-dimensional computational fluid

dynamics solver. Rather than using automatic differentiation to differentiate the entire source code of the

computational fluid dynamics solver, we have applied it selectively to produce code that computes the flux Jacobian

matrix and the other partial derivatives that are necessary to compute total derivatives using an adjointmethod. The

resulting linear discrete adjoint system is then solved using the portable, extensible toolkit for scientific computation.

This selective application of automatic differentiation is the central idea behind the automatic differentiation adjoint

(ADjoint) approach. This approach has the advantage that it is applicable to arbitrary sets of governing equations

and cost functions, and that it is exactly consistent with the gradients that would be computed by exact numerical

differentiation of the original solver. Furthermore, the approach is largely automatic, thus avoiding the lengthy

development times usually required to develop adjoint solvers for partial differential equations. These significant

advantages come at the cost of increased memory requirements for the adjoint solver. Derivatives of drag and lift

coefficients are validated, and the low computational cost and ease of implementation of the method are shown.

Introduction

A DJOINT methods for sensitivity analysis involving partial
differential equations (PDEs) have been known and used for

over three decades. They were first applied to solve optimal control
problems and thereafter used to perform sensitivity analysis of linear
structural finite element models. The first application to fluid
dynamics is due to Pironneau [1]. The method was then extended by
Jameson to perform airfoil shape optimization [2], and since then it
has been used to design laminar flow airfoils [3], and to optimize
airfoils suitable for multipoint operation [4].

The adjoint method has been extended to three-dimensional
problems, leading to applications such as the aerodynamic shape
optimization of complete aircraft configurations [5,6], and shape
optimization considering both aerodynamics and structures [7,8].
The adjoint method has since been generalized for multidisciplinary
systems [9].

The usefulness of the adjoint method lies in the fact that it is an
extremely efficient approach to compute the derivative of one
function of interest with respect to many parameters. When using
gradient-based optimization algorithms, the efficiency and accuracy
of the derivative computations has a significant effect on the overall
performance of the optimization. Therefore, efficient and accurate
sensitivity analysis is of paramount importance.

Given the power of adjoint methods, it seems peculiar that their
use in aerodynamic shape optimization has not become more
widespread in the last two decades. Although adjoint methods have
already found their way into commercial structural analysis

packages, they have yet to proceed beyond research computational
fluid dynamics (CFD) solvers. One of the main obstacles is the
complexity involved in the development and implementation of
adjoint methods for nonlinear PDEs.

The panacea for addressing this problem might just be automatic
differentiation [10]. This approach relies on a tool that, given the
original solver, creates code capable of computing sensitivities.
There are two different modes of operation for automatic
differentiation: the forward and the reverse modes.

The forward mode propagates the required sensitivity at the same
time as the solution is being computed. This is analogous to the finite
difference method, but without step-size sensitivity problems.

To use the reverse mode, the solver has to be run to convergence
first, with intermediate variable values stored for every iteration.
These intermediate variables are then used by a reverse version of the
code to find the sensitivities. The reverse mode is analogous to the
adjointmethod and is also efficientwhen computing the sensitivity of
a function with respect to many parameters. However, the memory
requirements of the reverse mode can be prohibitive in the case of
iterative solvers, such as those used in CFD, because they require a
large number of iterations to achieve convergence, and intermediate
resultsmay need to be stored.Although there has been some progress
toward minimizing the memory requirements of iterative solvers
[11], the fact remains that given typical parallel computing resources,
it is still very difficult to apply the reverse mode to large-scale
problems. The reverse mode of automatic differentiation has been
applied to iterative PDE solvers by a few researchers with some
success [12–14]. Themain problem in each of these applications was
the prohibitive memory requirement for three-dimensional domains.

Our main objective is to make the development of discrete adjoint
solvers a routine and quick task that only requires the use of
preexisting code to compute the equation residuals (including
boundary conditions) and the cost functions [15,16]. To achieve this,
we propose the automatic differentiation adjoint (ADjoint) approach,
in which we use automatic differentiation to compute only certain
terms of the discrete adjoint equations. These terms can then be used,
together with standard techniques for the iterative solution of large
linear systems—such as the preconditioned generalized minimum
residual method (GMRES)—to perform sensitivity analysis. The
major advantages of this method are as follows:

Presented as Paper 7121 at the 11th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Portsmouth, Virginia, 6–8
September 2006; received 4 December 2006; accepted for publication 18
October 2007. Copyright © 2007 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/08
$10.00 in correspondence with the CCC.

∗Ph.D. Candidate. Student Member AIAA.
†Assistant Professor. Senior Member AIAA.
‡Associate Professor. AIAA Member
§Engineering Research Associate. Member AIAA.

AIAA JOURNAL
Vol. 46, No. 4, April 2008

863

http://dx.doi.org/10.2514/1.29123

1) Largely automatic: Given the solver source code, it creates the
necessary code to compute all the terms in the discrete adjoint
formulation.

2) Exactly consistent: Because the process of automatic differ-
entiation allows us to treat arbitrarily complex expressions for the
computation of the residuals, boundary conditions, and cost
functions exactly, we are able to compute derivatives that are
perfectly consistent with those that would be obtained with an exact
numerical differentiation of the original solver. In other words,
typical approximations made in the development of adjoint solvers
(such as neglecting contributions from the variations resulting from
turbulence models, spectral radii, artificial dissipation and upwind
formulations) are not made here. The various effects of these
approximations are well documented [17–19].

3) Generic: It can be quickly applied to new formulations of the
governing equations or even to completely new governing
equations (such as the governing equations for magnetohydrody-
namics [20]).

Although the ADjoint approach does not constitute a fully
automatic way of obtaining sensitivities, as is the case for pure
automatic differentiation, it is much faster in terms of execution time
and drastically reduces the memory requirements when compared to
pure reverse-mode automatic differentiation. Further, when
compared to an analytic adjoint method, the proposed approach
requires a much shorter implementation time and can be used to
develop the discrete adjoint of an arbitrary solver with a much
reduced probability of programming errors. An approach similar to
the ADjoint has been proposed by Nielsen and Kleb [21]. In this
approach, the complex-step derivative approximation [22] is used to
compute the partial derivatives instead of automatic differentiation.

In the next section we review the background theory that is
relevant to this work, namely, semi-analytic sensitivity analysis
methods and automatic differentiation. We then discuss how the
ADjoint approachwas implemented in this application. In the results,
we establish the precision of the desired derivatives and analyze the
performance of the ADjoint method.

Background

Semi-Analytic Sensitivity Analysis

One of the most popular sensitivity analysis methods is finite
differencing. The widespread use of this method is due to its
straightforward implementation. The disadvantages are that its
computational cost is high, and its accuracy is low and hard to
predict. For gradient-based optimization, both of these character-
istics have a negative impact on the performance of the optimization.

Semi-analytic methods remedy both of these issues: They are
capable of yielding derivatives with the same precision as the
quantity that is being differentiated, and in the case of the adjoint
method, they are able to achieve a computational cost that is
essentially independent of the number of design variables.

Our intent is to compute the sensitivity of a function (or vector of
functions) with respect to a large number of design variables. Such
functions depend not only on the design variables, but also on the
state of the system that results from the solution of a governing
equation, which may be a PDE. Thus we can write the vector-valued
function to be differentiated as

I � I�x;w� (1)

where x represents the vector of design variables and w is the state
variable vector.

For a given vector x, the solution of the governing equations of the
system yields a vector w, thus establishing the dependence of the
state of the system on the design variables. We denote these
governing equations by

R �x;w�x�� � 0 (2)

As a first step toward obtaining the derivatives that we ultimately
want to compute, we use the chain rule to write the total derivative of
the vector-valued function I as

dI

dx
� @I
@x
� @I

@w

dw

dx
, dI

dx
�D�GB (3)

where the sizes of the sensitivity matrices are

D� @I
@x

�NI � Nx� (4)

G� @I

@w
�NI � Nw� (5)

B� dw

dx
�Nw � Nx� (6)

It is important to distinguish the total and partial derivatives in
these equations. The partial derivatives can be directly evaluated by
varying the denominator and reevaluating the function in the
numerator with everything else remaining constant. The total
derivatives, however, require the solution of the governing
equations. Thus, all the terms in the total sensitivity equation (3) can
be computed with relatively little effort except for dw=dx.

Because the governing equations must always be satisfied, the
total derivative of the residuals (2)with respect to any design variable
must also be zero, that is,

dR
dx
� @R
@x
� @R
@w

dw

dx
� 0 (7)

This expression provides the means for computing the total
derivative of the state variables with respect to the design variables.
To this end, we rewrite this equation as

@R
@w

dw

dx
�� @R

@x
, AB� C (8)

where we have defined the following sensitivity matrices:

A� @R
@w

�Nw � Nw� (9)

C�� @R
@x

�Nw � Nx� (10)

Thus the sensitivity analysis problemgiven by Eqs. (3) and (8) can be
written as

dI

dx
�D�GB; such that AB� C (11)

The final derivative can also be obtained by solving the dual of this
problem [23], which is derived as follows. If we substitute the
solution of the linear system AB� C into the total sensitivity
equation (3) we obtain

dI

dx
�D�GA�1C (12)

DefiningH � �GA�1�T , which is of size (Nw � NI), we can write the
problem as

dI

dx
�D�HTC; such that ATH�GT (13)

Themost computationally intensive step in both of these problems
is the solution of the respective linear systems. In the case of
problem (11)—the direct method—we have to solve a linear system
of Nw equations Nx times. For the dual problem (13)—the adjoint
method—we solve a linear system of the same size NI times. Thus,
the choice of which of these methods to use depends largely on how
the number of design variables Nx compares to the number of
functions of interest NI .

864 MADER ET AL.

When it comes to implementation, there are twoways of obtaining
the discrete adjoint equations (13) for a given system of PDEs. The
continuous adjoint approach forms a continuous adjoint problem
from the governing PDEs and then discretizes this problem to solve it
numerically. The discrete adjoint approach forms an adjoint from
the discretized PDEs. Each of these approaches results in a different
system of linear equations, but in theory they converge to the same
result as the mesh is refined [23–26].

The discrete approach has the advantage that the sensitivities are
consistent with those produced by the discretized solver.
Furthermore, it is easier to obtain the appropriate boundary
conditions for the adjoint solver in a discrete fashion. It has also been
shown that the discrete adjoint formulation has the same asymptotic
convergence rate as the original code [27]. In this work, we adopt the
discrete approach. Although this approach usually requires more
memory than the continuous adjoint, it is our opinion that the
advantages we just mentioned outweigh this disadvantage.

CFD Adjoint Equations

We now derive the adjoint equations for the particular case of the
flow solver used in this work. The governing PDEs for the three-
dimensional Euler equations are

@w

@t
� @fi
@xi
� 0 (14)

where xi are the coordinates in the ith direction, and the state and the
fluxes for each cell are

w�

�
�u1
�u2
�u3
�E

2
66664

3
77775; fi �

�ui
�uiu1 � p�i1
�uiu2 � p�i2
�uiu3 � p�i3

�uiH

2
66664

3
77775 (15)

The derivation presented here is for the Euler equations. The
ADjoint approach assumes the existence of code that computes the
residual of the governing equations, but does not make any
assumptions about the content of that code. Therefore, the procedure
described herein can be extended to the full Reynolds-averaged
Navier–Stokes equations without modification. Note that the code
for the residual computation must include the application of the
required boundary conditions (however complex they may be) and
any artificial dissipation terms that may need to be added for
numerical stability.

A coordinate transformation to computational coordinates
��1; �2; �3� is used. This transformation is defined by the following
metrics:

Kij �
�
@Xi
@�j

�
; J� det�K� (16)

K�1ij �
�
@�i
@Xj

�
; S� JK�1 (17)

where S represents the areas of the face of each cell, projected on to
each of the physical coordinate directions. The Euler equations in
computational coordinates can then be written as

@Jw

@t
� @Fi
@�i
� 0 (18)

where the fluxes in the computational cell faces are given by
Fi � Sijfj. In semidiscrete form the Euler equations are

dwijk
dt
�Rijk�w� � 0 (19)

where R is the residual described earlier with all of its components
(fluxes, boundary conditions, artificial dissipation, etc.).

In this specific case, the adjoint equations (13) can be rewritten as�
@R
@w

�
T

 �� @I
@w

(20)

where is the adjoint vector. The total derivative (3) in this case is

dI

dx
� @I
@x
� T @R

@x
(21)

We propose to compute the partial derivative matrices @R=@w,
@I=@w, @I=@x, and @R=@x using automatic differentiation instead of
manual differentiation or finite differences. Where appropriate, we
use the reverse mode of automatic differentiation.

Automatic Differentiation

Automatic differentiation, also known as computational differ-
entiation or algorithmic differentiation, is a well-known method
based on the systematic application of the chain rule of
differentiation to computer programs. The method relies on tools
that automatically produce a program that computes user specified
derivatives based on the original program [10].

We denote the independent variables as t1; t2; . . . ; tn, which for
our purposes are the same as the design variables, x. We also need to
consider the dependent variables, which we write as
tn�1; tn�2; . . . ; tm. These are all the intermediate variables in the
algorithm, including the outputs I, in which we are interested. We
can then write the sequence of operations in any algorithm as

ti � fi�t1; t2; . . . ; ti�1�; i� n� 1; n� 2; . . . ; m (22)

The chain rule can be applied to each of these operations and is
written as

@ti
@tj
�
Xi�1
k�1

@fi
@tk

@tk
@tj
; for any i > j (23)

Using the forward mode, we choose one j and keep it fixed. We
then work our way forward in the index i until we get the desired
derivative. The reverse mode, on the other hand, works by fixing i,
the desired quantity we want to differentiate, and working our way
backward in the index j all the way down to the independent
variables.

The forward and reverse modes are analogous to the direct and
adjoint methods, respectively. The counterparts of the state variables
in semi-analytic methods are the intermediate variables, and the
counterparts of the residual computations are the lines of code that
compute the respective quantities.

There are two main ways of implementing automatic differ-
entiation: source code transformation and operator overloading.
Tools that use source code transformation add new state-
ments to the original source code that compute the derivatives of
the original statements. The operator overloading approach consists
of defining a new user-defined type that is used instead of real
numbers. This new type includes not only the value of the original
variable, but its derivative as well. All the intrinsic operations and
functions have to be redefined (overloaded) in order for the
derivative to be computed together with the original computations.
The operator overloading approach results in fewer changes to the
original code, but is usually less efficient [10,28].

There are automatic differentiation tools available for a variety of
programming languages including FORTRAN, C=C��, and
MATLAB. ADIFOR [29], TAF [30], TAMC [31], and Tapenade
[32,33] are some of the tools available for FORTRAN.Of these, only
TAF and Tapenade currently support FORTRAN 90, which was a
requirement in our case.

We chose to use Tapenade as it is the only noncommercial tool
with support for FORTRAN 90. Tapenade is the successor of
Odyssée [34], and was developed at the Institut National de
Recherche en Informatique et en Automatique (INRIA). It uses
source transformation and can perform differentiation in either
forward or reverse mode.

MADER ET AL. 865

To verify the results given by the ADjoint approach we decided to
use the complex-step derivative approximation [22,35] as the
benchmark. Unlike finite differences, this method is not subject to
subtractive cancellation and enables us to make much more
conclusive comparisons when it comes to accuracy. The complex-
step formula is given by

dI

dx
� Im�I�x� ih��

h
(24)

where the design variable is perturbed by a small pure complex step,
which is typically less thanO�10�20�. A point worth noting is that the
complex-stepmethod is equivalent to the forwardmode of automatic
differentiation implemented with operator overloading [36].

Implementation

To compute the desired sensitivities, we need to form the discrete
adjoint equation (20), solve it, and then use the total sensitivity
equation (21).We use automatic differentiation to generate code that
computes the matrices of partial sensitivities present in these
equations. In this paper, we compute the sensitivity of the drag
coefficient with respect to the freestream Mach number, that is,
I � CD and x�M1.

Computation of @R=@w

The flux Jacobian, @R=@w, is independent of the choice of
function or design variable: It is simply a function of the governing
equations, their discretization, and the problem boundary conditions.
To compute it we need to consider the routines in theflow solver that,
for each iteration, compute the residuals based on the flow variables
w. In the following discussionwe note that the residual computations
are carried out by the SUmb flow solver [37] that was developed at
Stanford University under the sponsorship of the Department of
Energy. SUmb is a finite volume, cell-centered, multiblock solver for
the Reynolds-averaged Navier–Stokes equations (steady, unsteady,
and time spectral) and it provides options for a variety of turbulence
models with one, two, or four equations [37]. The computation of the
residual in SUmb can be summarized as follows:

1) Compute inviscid fluxes: For the inviscid flux discretization we
use, the only flow variables w that influence the residual at a cell are
the flow variables in that cell and in the six cells that are adjacent to
the faces of the cell.

2) Compute dissipation fluxes: For each of the cells in the domain,
compute the contributions of the flow variables on the residual in that
cell. For this portion of the residual, the flow variables in the current
cell and in the 12 adjacent cells in each of the three directions need to
be considered.

3) Compute viscous fluxes: This has a similar stencil to the above
computation because only the cells adjacent to the current cell need to
be considered.

4) Apply boundary conditions.
Note that to compute the residuals over the domain, three nested

loops (one for each of the three directions) are used and that the
correct value of the residual for any given cell is only obtained at the
end of all three loops, when all contributions have been added.

To better illustrate the choicesmade in themode of differentiation,
as well as the effect of these choices in the general case, we define the
following numbers:
Nc: The number of cells in the domain. For three-dimensional

domains, where the Navier–Stokes equations are solved, this can be
O�106�.
Ns: The number of cells in the stencil whose variables affect the

residual of a given cell. In our case, we consider inviscid and
dissipation fluxes, so the stencil is as shown in Fig. 1 and Ns � 13.
Nw: The number of flow variables (and also residuals) for each

cell. In our case Nw � 5.
Consider the simple subroutine shown in Fig. 2,which resembles a

CFD residual calculation. This subroutine loops through a two-
dimensional domain and computes r (the “residual”) in the interior
of that domain. The residual at any cell depends only on the ws (the

“flow variables”) at that cell and at the cells immediately adjacent to
it; thus the stencil of dependence forms a cross with five cells.

The residual computation in our three-dimensional CFD solver is
obviously much more complicated: It involves multiple subroutines,
a larger stencil, the computation of the different fluxes, and applies
many different types of boundary conditions. However, this simple
example is sufficient to demonstrate the computational inefficiencies
of a purely automatic approach.

Forward-mode automatic differentiation was applied to this
simple subroutine to produce the subroutine shown in Fig. 3. Two
new variables are introduced: wd, which is the seed vector, and rd,
which is the gradient of all rs in the direction specified by the seed
vector. For example, if we wanted the derivative with respect to
w�1;1�, we would set wd�1;1� � 1 and all other wds to zero. One
can only choose one direction at a time, although Tapenade can be
run in vectorial mode to get the whole vector of sensitivities. In
vectorial mode, another loop is inserted within the nested loop and
additional storage is required.

The corresponding subroutine produced by reverse-mode
differentiation is shown in Fig. 4. The code shows the additional
storage requirements that are typical of reverse-mode automatic
differentiation. Because the ws are overwritten, the old values must
be stored for later use in the reversed loop. This overwriting of the
flow variables in the nested loops of the original subroutine is
characteristic of iterative solvers. Whenever overwriting is present,
the reverse mode needs to store the time history of the intermediate
variables. Tapenade provides the functions PUSHREAL and
POPREAL to do this. In this case, we can see that the ws are stored
before they are modified in the forward sweep, and then retrieved in
the reverse sweep.

In principle, because @R=@w is a square matrix, neither mode
should have an advantage over the other in terms of computational
time. For the simple routine shown above this is true: Both the
forward and reverse modes would require Nc � Nw calls to the
residual computation. The reverse mode is slower in practice, due to
the additional operations involved. However, using an automatic

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

k

−3 −2 −1 0 1 2 3

i

−2
−1 0

1
2

j

Fig. 1 Stencil for the residual computation.

Fig. 2 Simplified subroutine for residual calculation.

866 MADER ET AL.

differentiation tool on the entire residual routine results in
unnecessary computations. For CFD solvers, the residual is only
dependent on a stencil of cells adjacent to it, and thus the flux
Jacobian is very sparse. Automatic differentiation of the entire
routine does not take this sparsity into account, and much effort
would bewasted in the computation of zeros.When using the reverse
mode, therewould also be the addedwaste of storing the intermediate
variables that are required for these superfluous computations.
Therefore, to avoid the automatic differentiation of nested loops over
the whole computational domain, and to take advantage of the
sparsity in the Jacobian, we created a routine that computes the
residuals for a single cell at a time. The routine, which is actually a set
of routines due to the complexity of the computation, mimics the
original computation of residuals exactly, but without the nested
loops over the domain.

We do not consider the viscous fluxes in the present work, only the
inviscid fluxes, dissipation fluxes, and the boundary conditions. The

stencil that affects a given cell when considering these fluxes is
shown in Fig. 1. Note that the code to compute the residual in a given
cell in the domain is easily constructed from the original residual
evaluation routines in the flow solver by removing the loops over all
the cells in the domain and making necessary adjustments so that the
appropriate boundary conditions are called for every cell in the
stencil.

We now have a routine that computesNw residuals in a given cell.
These residuals get contributions from all (Nw � Ns) flow variables
in the stencil. Thus there are Nw � �Nw � Ns� sensitivities to be
computed for each cell, corresponding to Nw rows in the @R=@w
matrix. Each of these rows contains nomore than (Nw � Ns) nonzero
entries. In the reverse mode, this routine is called once and computes
all Nw � �Nw � Ns� terms in the stencil of this cell.

The analog in the forward mode would be to consider all of the
residuals affected by the states in a single cell. Theoretically, one
could compute the derivatives of theNw � Ns residuals affected by a
single state, thus for a single cell, one would again obtain Nw �
�Nw � Ns� derivatives. However, due to the one-way dependence of
the residual on the states, this does not prove to be the case. In the
reverse mode, all of the derivatives in the stencil can be calculated
from one residual calculation. All of the information for that
calculation is contained in a single stencil. For the forwardmode, one
would need to calculate all of the Nw � Ns residuals in the inverse
stencil. This requires the addition of all of the states in those stencils
as well. Thus, rather than having a single calculation with Nw � Ns
states involved to get Nw � �Nw � Ns� derivative values, one
requiresNs residual calculations andmany additional states to get the
same number of derivative components.

Given these differences, the reverse mode is the more efficient
approach to differentiating the single cell residual routine. The call
graphs for the original and the differentiated routines are shown in
Figs. 5 and 6, respectively.

We should also note that, with advanced automatic differentiation
tools, it is also possible to get similar improvements in efficiency for
forward-mode computations [21]. These tools use seed variable
coloring schemes and other techniques to reduce the computational
cost of computing sparse Jacobians.

Fig. 3 Subroutine differentiated using the forward mode.

Fig. 4 Subroutine differentiated using the reverse mode.

Fig. 5 Call graph for the original residual calculation.

Fig. 6 Call graph for the differentiated residual calculation. Shaded

boxes indicate differentiated routines.

MADER ET AL. 867

Computation of @CD=@w

The right-hand side vector of the adjoint equation (20)—ormatrix,
in the case of multiple functions of interest—represents the direct
effect of the flow variables on the function of interest. Normally, to
generate this vector using theADjointmethod, wewould identify the
code that computesCD as a function of the state variables.We would
then differentiate this code using the reverse mode. However,
becausewe know the details of the computation ofCD, we havemade
a more specific implementation, which is discussed next.

Because there may be several functions of interest that need to be
considered, the derivatives have been generated in a modular
fashion. This allows different portions of the formulation to be
interchanged as needed for various functions of interest. In the cases
shown here, the functions of interest are CD and CL, so the
derivatives we need are @CD=@w and @CL=@w. As with the residual
equations, modified versions of the original functions were used to
compute the derivatives. However, rather than differentiating the
entire path from w to CD and CL at once, the terms were split up to
allow for the modular approach previously mentioned. In this
example, because we have inviscid flow, CD and CL are just
integrations of the pressure over the solid surfaces of themesh. Thus,
we know a priori that the only changes in CD and CL come through
changes in the pressure. As a result, @CD=@w can be separated via the
chain rule into three terms to simplify the automatic differentiation
and increase the flexibility of the code. To this end, the right-hand
side of the adjoint was expressed as

@CD
@w
� @CD
@Cf

@Cf
@p

@p

@w
(25)

where Cf represents the x, y, and z components of the forces on the
body. Using this approach, changing from @CD=@w to @CL=@w only
requires recomputing the first term.

Thefirst two terms in this expression are easily calculated. Thefirst
one is simply a function of the drag direction relative to the
coordinate axes of the forces, while the second can be computed by
reintegrating the pressures over the surface of the solid. In our case,
each of these terms was expressed as a single function and
differentiated in forward mode. It is worthwhile to note that for these
two functions in particular, the reverse mode would be more
advantageous than the forward mode. Both functions have fewer
output variables than input variables: For @CD=@Cf the ratio is 1:3,
whereas for @Cf=@p the ratio is approximately 3:Nc. However,
because both functions are relatively simple, we did not make it a
priority to use the reverse mode of differentiation. Note that because
of the way the pressure is calculated in our flow solver, the halo cells
need to be included in these pressure derivatives.

The computation of the final term, @p=@w, is slightly more
involved than the previous two. The functions used in this
computation were again differentiated in forward mode. In this case,
because we need the derivative of the pressure in the halo cells with
respect to the internal states, the forward mode is actually better
suited than the reversemode, because there aremore output variables
than input variables.

As discussed previously, the residual computations are done on a
stencil-by-stencil basis. However, unlike the residual, there is a one-
to-one cell relationship between the flow states and the pressure.
Thus, for each state, all of the derivatives in the stencil can be
computed at once, even in forward mode. Furthermore, because of
the definition of the stencil, any cells outside the stencil have a
derivative of zero with respect to that state. Thus, for a single stencil
computation an entire row of the @p=@w matrix can be generated.
Nevertheless, a set of four nested loops is required to generate the
derivatives with respect to all of the states. With this in mind, the
required process to compute the derivative @p=@w is as follows:

1) Seed the desired state: For each of the Nw � Nc states in the
problem, the seed vector must be set to unity. For each of these cases
an entire vector of pressure derivatives is generated.

2) Recalculate pressures: For each cell in the stencil around w,
recompute the pressure. Pressures outside this stencil are not affected
by this state.

3)Apply boundary conditions: These are applied to each cell in the
stencil and they modify both the states and the pressures in the halo
cells, which are required to compute the correct derivative.

At the end of this process, the complete @p=@wmatrix is available
from the differentiated code.With these three terms, we can compute
@CD=@w, and proceed with the solution of the adjoint equations.

Adjoint Solver

The adjoint equation (20) can be rewritten for this specific case as�
@R
@w

�
T

 �� @CD
@w

(26)

As we have pointed out, both the flux Jacobian and the right-hand
side in this system of equations are very sparse. To solve this system
efficiently, and having inmind that wewant to have a parallel adjoint
solver, we decided to use PETSc (portable, extensible toolkit for
scientific computation) [38–40]. PETSc is a suite of data structures
and routines for the scalable, parallel solution of scientific
applications modeled by PDEs. It employs the message passing
interface (MPI) standard for all interprocessor communication.
Using PETSc’s data structures, @R=@w and �@CD=@w were stored
as sparse entities. Once the sparse matrices are filled, one of PETSc’s
Krylov solvers is used to compute the adjoint solution.

Total Derivative Equation

The total derivative (21) for this case is

dCD
dM1

� @CD
@M1

� T @R
@M1

(27)

where we have chosen the freestream Mach number,M1, to be the
independent variable. There are only two remaining terms required to
form the total derivative equation: @CD=@M1 and @R=@M1. The
former term represents a very simple dependence. The only direct
impact of M1 on CD is through the nondimensionalization of the
term, and thus it is possible to compute it analytically. However, in
the spirit of the ADjoint method, the functions used for @CD=@w
earlier were again differentiated automatically, this time with respect
to M1, thus providing @CD=@M1. The differentiation of this term
was done in forward mode as there is only one input.

The final term, @R=@M1, shares many components with the flux
Jacobian, @R=@w, which we discussed previously. Thus, much of
the same logic regarding the use of a single cell residual calculation
applies here. In this case, however, the result is a vector as opposed to
a matrix, so the residual routines were differentiated in forward
mode. Aswith the right-hand side of the adjoint equations, amodular
approach was used to compute this term, which we write as

@R
@M1

� @R
@w1

@w1
@M1

(28)

To compute the first term, @R=@w1, the routines for @R=@wwere
reused. However, in this case, because there are only five
components in w1, the forward mode of differentiation is far more
efficient. Thus, the routines were again automatically differentiated,
this time in forward mode with respect to w1 instead of w.

The last term, @w1=@M1, is very straightforward and can be
verified analytically. Of the five states, only four depend directly on
M1. The second to fourth states are velocities and vary linearly with
M1, while the last state is related to total energy and is proportional
toM2

1. To compute these derivatives, a new function that combined
all of these dependencies was created and then differentiated in
forward mode. Again, this is because the number of output variables
far exceeds the number of input variables (by 5:1).

The implementation we describe is only for @CD=@M1. The real
benefits of this method arise when there are large numbers of design
variables, as is usually the case for aerodynamic shape optimization.
In such problems, the sensitivity ofCD with respect to all of the shape
variables can be found from a single ADjoint solution. The basic
implementation for such a case would not change significantly,

868 MADER ET AL.

because the adjoint equations remain exactly the same. The
modifications to accommodate shape variables would come from
two terms in the total sensitivity equation, @R=@x and @CD=@x.
These two partial derivatives would have to be modified to include
the geometry related procedures: shape parameterization, mesh
movement, and the spatial metrics in the CFD calculation.

Results

Description of Test Cases

Two test cases have been used to demonstrate the ADjoint
approach: a channel flow over a bump, and a subsonic wing. For the
bump case, the front and back walls of the channel have symmetry
boundary conditions imposed on them, while the top wall is flat and
the bottom wall was deformed with a sinusoidal bump to create a
reasonable variation in the flow. The inflow and outflow faces of the
domain have nonreflecting boundary conditions imposed on them
and the upper and lower walls use a linear pressure extrapolation
boundary condition. The freestreamMach number is 2. Themesh for
this test case is shown in Fig. 7 and its size is 48 � 24 � 24. Figure 8
shows the surface density distribution.

The second case is the Lockheed–Air Force–NASA–NLR
(LANN) wing [41], which is a supercritical transonic transport wing.
A symmetry boundary condition is used at the root and a linear
pressure extrapolation boundary condition is used on the wing
surface. The freestreamMach number is 0.621. Themesh for this test
case is shown in Fig. 9 and its size is 64 � 16 � 12. Figure 10 shows
the surface density distribution.

Flux Jacobian

As mentioned in the Implementation section, to reduce the cost of
the automatic differentiation procedure,wewrote a set of subroutines
that compute the residual of a single cell at a time. This set of
subroutines closely resembles the original code used to compute the
residuals over the whole domain, except that it does not loop over
the domain.

The residual of the chosen cell depends on the flow variables in the
stencil of dependence of that cell. Although this new code is
essentially produced by duplicating the original code, it was still
necessary to verify that the residuals were the same as the original
code for debugging purposes. To this end, the l2 norm of the
difference between the new and original residuals was computed and
found to beO�10�17� (i.e.,machine zero), thus proving the validity of
the new calculations.

As previously discussed, we differentiated the single cell residual
calculation routines using the reverse mode of automatic
differentiation. The resulting code computes the sensitivity of one
residual of the chosen cell with respect to all the flow variables in the
stencil of that cell, that is, all the nonzero terms in the corresponding
row of @R=@w. To obtain the full flux Jacobian, a loop over each of
the residual and cell indices in each of the three coordinate directions
was necessary.

To verify the flux Jacobian obtained with the differentiated code,
the relative error between the automatic differentiation and the finite
difference results is shown in Fig. 11. The quantity considered in this
figure is the sum of the derivative for each residual with respect to all
of the states that affect it. Figure 11 shows the error in this cumulative
quantity. The errors are within an acceptable range, varying between
O�10�10� and O�10�6�. In this case, however, it is evident that the
finite difference results incur the larger error, because we later show
that the automatic differentiation adjoint yields anO�10�14� error in
the final sensitivities.

Comparing the time for the computation of the residuals of one cell
with the time for running the reverse mode of the same computation,
we found that the reverse mode was equivalent to 4.5 residual
computations. A factor of this order is typical of reverse-mode codes.
In spite of this penalty, our automatic differentiation approach is
much more efficient in computing the flux Jacobian, as shown in
Table 1. Here we compare the times needed for computing the full
flux Jacobian.We can see that the automatic differentiation approach
was 29 times faster than finite differencing, confirming what we

Fig. 7 Computational mesh for the bump case.

Fig. 8 Surface density distribution for the bump case.

Fig. 9 Computational mesh for the wing case.

MADER ET AL. 869

speculated in the previous section. The reason is that the reverse-
mode calculation does not need to be called as many times as the
finite difference residual evaluations.

Other Partial Derivative Terms

In the process of developing the ADjoint solver, we visualized the
various partial derivative terms that appear in the adjoint and total
derivative equations. Figure 12 shows the derivative of drag
coefficient with respect to the density at each cell. The only nonzero
terms are located in the two layers of cells adjacent to the wing
surface, which is what we expected.

The adjoint variables corresponding to the continuity equation are
shown in Fig. 13. The adjoint variables in this case represent the

sensitivity of CD with respect to the residual of the continuity
equation at a given cell.

The term @R=@M1, which is needed for the total sensitivity
equation (27), is shown in Fig. 14. The figure only shows the
sensitivity corresponding to the residual of the continuity equation.
Because theflow is subsonic,M1 affects the cells near the inflowand
outflowplanes. Because of the shape of themesh and the nature of the
flow, the entire outer surface is affected by the freestream conditions.

Lift and Drag Coefficient Sensitivities

The benchmark sensitivity results were obtained using the
complex-step derivative approximation (24), which is numerically
exact, that is, the precision of the sensitivity is of the same order as the
precision of the solution. The derivative in this case is given by

dCD
dM1

� Im�CD�M1 � ih��
h

(29)

where h represents the magnitude of the complex step, for which a
value of h� 10�20 was used. The sensitivities given by the complex

Fig. 10 Surface density distribution for the wing case.

Fig. 11 Relative errors in the sum of each row of @R=@w.

Table 1 Times and error for flux Jacobian computation

Finite differences 425.4 s
Automatic differentiation 14.6 s
Speed increase 29�
l2 norm of error 4:25 � 10�7

Fig. 12 Partial sensitivity of CD with respect to density.

Fig. 13 Adjoint of the continuity equation.

870 MADER ET AL.

step were spot checked against finite differences by doing a step-size
study.

In Table 2we show the derivatives of both drag and lift coefficients
with respect to freestreamMach number for different cases. Thewing
mesh and the fine mesh cases are the two test cases described earlier
(Figs. 7 and 9). The coarse case is a very small mesh (12 � 4 � 4)
with the same geometry as the fine bump case.

We can see that the adjoint sensitivities for these cases are
extremely accurate, yielding an agreement of 12–14 digits when
compared to the complex-step results. This is consistent with the
convergence tolerance that was specified in PETSc for the adjoint
solution.

To analyze the performance of the ADjoint solver, several timings
were performed. They are shown in Table 3 for the two larger cases
mentioned above. The fine grid has 203,840 flow variables and the
wing grid has 108,800 flow variables.

The total cost of the adjoint solver, including the computation of
all the partial derivatives and the solution of the adjoint system, is
24% of the cost for a flow solution for the fine bump case, and 11%
for the wing case.

We found that most of the time was spent in the solution of the
adjoint equations, thus indicating that the automatic differentiation
sections are very efficient. The costliest of the automatic
differentiation routines was the computation of the flux Jacobian.
When one takes into consideration the number of terms in thismatrix,
spending only 5% of the flow solution time in this computation is
very reasonable.

However, the computation of the right-hand side (@CD=@w) is not
much cheaper than computing the flux Jacobian. The poor
performance in the computation of this term is primarily due to the
use of the forward mode. The use of reverse-mode differentiation
would allow the cost of this term to be independent of the grid size.

Also, although we did not perform a rigorous measurement of the
memory requirements of this code, our observations indicate that the
memory required for theADjoint code is approximately 10 times that
required for the original flow solver. Given the pattern of usage on
current parallel CFD computations, this is acceptable in many cases.

Discussion

In the Results section of this paper, we presented accuracy and
timing results for the ADjoint approach. These results conclusively
show that theADjoint approach can produce accurate derivatives in a
computationally efficient manner. However, there are a few points
about this approach that deserve discussion.

In this implementation, the elements of the flux Jacobian are
computed once, using the reverse mode of automatic differentiation,
and stored in memory for the remainder of the adjoint solution. This
allows for the use of powerful preconditioned linear solvers such as
those provided by PETSc. It is this storage of theflux Jacobianmatrix
that causes the bulk of the memory increase described in the results.
Similar memory increases would be observed if the flux Jacobian
matrix were computed using analytic methods instead of reverse-
mode automatic differentiation. The actual memory increase caused
by the reverse mode is minimal compared to the other memory use in
the code because of the small stencil.

A similar solution scheme could be implemented using analytic
derivatives, where the only difference in performancewould come in
the time required to compute the partial derivatives. Because those
partial derivatives are only computed once in the solution method
described, the potential computational savings available from
analytic derivatives would not be very significant.

An alternative to this approach would be to use a matrix free
solution algorithm. Although this would lower the memory usage, it
would also result in higher computational costs. This is because the
partial derivatives would need to be recomputed multiple times. In
such an approach, the cost savings resulting from an analytic
implementation would be much more significant.

Themost significant advantages of theADjoint approach are that it
is easily applicable to a broad range of governing equations, and that
it significantly reduces the implementation time required relative to
an analytic adjoint method. Given the fact that many CFD runs
performed on modern parallel computers tend to underutilize the
available memory, the authors feel that the benefits achieved in terms
of reduced implementation time outweigh this memory penalty.

Conclusions

We have presented an approach for developing discrete adjoint
solvers for arbitrary governing equations using automatic
differentiation. The implementation of the ADjoint approach was
largely automatic, because no hand differentiation or calculation of
adjoint boundary conditions was necessary. Thanks to the use of
automatic differentiation, the implementation time was greatly
reduced and the resulting derivatives were numerically exact. The
agreement between the total derivatives computed with the ADjoint
method and the benchmark results ranged from 12 to 14 digits.

The stencil-based approach, in conjunction with the reverse mode
of automatic differentiation resulted in a very efficient flux Jacobian

Fig. 14 Partial sensitivity of the continuity residual with respect toM1.

Table 2 Derivatives of drag and lift coefficients with respect toM1

Mesh Coefficient Inflow direction ADjoint Complex step

Coarse CD (1,0,0) �0:289896632731764 �0:289896632731759
CL �0:26770445536666714 �0:267704455366683

Fine CD (1,0,0) �0:0279501183024705 �0:0279501183024709
CL 0:58128604734707 0:58128604734708

Coarse CD (1,0.05,0) �0:278907645833786 �0:278907645833792
CL �0:262086315233911 �0:262086315233875

Fine CD (1,0.05,0) �0:0615598631060438 �0:0615598631060444
CL �0:364796754652787 �0:364796754652797

Wing CD (1, 0.0102,0) 0:00942875710535217 0:00942875710535312
CL 0:26788212595474 0:26788212595468

MADER ET AL. 871

computation. In the case presented herein, the finite difference
approach to computing the flux Jacobian was shown to be 29 times
longer than our approach.

The overall computational cost of the ADjoint method exceeded
our own expectations, with the complete adjoint computation
ranging between one-eighth and one-fourth of the flow solution.

Although there is a significantmemory penalty associatedwith the
ADjoint approach, we believe that in most cases this is outweighed
by the substantial benefits over current methodologies used to
develop adjoint solvers.

Currently, only highly specialized research groups have been able
to develop adjoint codes for aerodynamic shape optimization. The
ADjoint approach is likely to facilitate the development of adjoint
codes, both in academia and industry, and thus contribute to a more
widespread use of this powerful sensitivity analysis approach.

Acknowledgments

C. A. Mader and J. R. R. A. Martins are grateful for the funding
provided by the Canada Research Chairs program and the Natural
Sciences and Engineering Research Council. All of the authors
would like to thank Valerie Pascual and Laurent Hascoët of the
Tapenade development team for being so responsive to our questions
and suggestions. The authors would also like to thank André Marta
and Ki Hwan Lee for their assistance with the flow solver.

References

[1] Pironneau, O., “On Optimum Design in Fluid Mechanics,” Journal of
Fluid Mechanics, Vol. 64, No. 1, June 1974, pp. 97–110.
doi:10.1017/S0022112074002023

[2] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of

Scientific Computing, Vol. 3, No. 3, Sept. 1988, pp. 233–260.
doi:10.1007/BF01061285

[3] Driver, J., and Zingg, D. W., “Numerical Aerodynamic Optimization
Incorporating Laminar-Turbulent Transition Prediction,” AIAA

Journal, Vol. 45, No. 8, 2007, pp. 1810–1818.
doi:10.2514/1.23569

[4] Nemec, M., Zingg, D. W, and Pulliam, T. H., “Multipoint and Multi-
Objective Aerodynamic Shape Optimization,” AIAA Journal, Vol. 42,
No. 6, June 2004, pp. 1057–1065.

[5] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and
Saunders, D., “Constrained Multipoint Aerodynamic Shape Opti-
mization Using an Adjoint Formulation and Parallel Computers,
Part 1,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 51–60.

[6] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and
Saunders, D., “Constrained Multipoint Aerodynamic Shape Opti-
mization Using an Adjoint Formulation and Parallel Computers,
Part 2,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 61–74.

[7] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “High-Fidelity
Aerostructural Design Optimization of a Supersonic Business Jet,”
Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 523–530.

[8] Maute, K., Nikbay, M., and Farhat, C., “Coupled Analytical Sensitivity
Analysis and Optimization of Three-Dimensional Nonlinear
Aeroelastic Systems,” AIAA Journal, Vol. 39, No. 11, 2001,
pp. 2051–2061.

[9] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “A Coupled-
Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural
Design,” Optimization and Engineering, Vol. 6, No. 1, March 2005,
pp. 33–62.
doi:10.1023/B:OPTE.0000048536.47956.62

[10] Griewank, A., Evaluating Derivatives, SIAM, Philadelphia, 2000.
[11] Fagan, M., and Carle, A., “Reducing Reverse-Mode Memory

Requirements by Using Prole-Driven Checkpointing,” Future

Generation Computer Systems, Vol. 21, No. 8, 2005, pp. 1380–1390.
doi:10.1016/j.future.2004.11.005

[12] Cusdin, P., and Müller, J.-D., “On the Performance of Discrete Adjoint
CFDCodesUsingAutomaticDifferentiation,” International Journal of
Numerical Methods in Fluids, Vol. 47, Nos. 8–9, 2005, pp. 939–945.

[13] Giering, R., Kaminski, T., and Slawig, T., “Generating Efficient
Derivative Code with TAF: Adjoint and Tangent Linear Euler Flow
Around an Airfoil.” Future Generation Computer Systems, Vol. 21,
No. 8, 2005, pp. 1345–1355.
doi:10.1016/j.future.2004.11.003

[14] Heimbach, P., Hill, C., and Giering, R., “An Efficient Exact Adjoint of
the Parallel MIT General Circulation Model, Generated via Automatic
Differentiation,”Future Generation Computer Systems, Vol. 21, No. 8,
2005, pp. 1356–1371.
doi:10.1016/j.future.2004.11.010

[15] Martins, J. R. R. A., Alonso, J. J., and van der Weide, E., “An
AutomatedApproach for DevelopingDiscrete Adjoint Solvers,”AIAA
Paper 2006-1608, 2006.

[16] Martins, J. R. R. A., Mader, C. A., and Alonso, J. J., “ADjoint: An
Approach for Rapid Development of Discrete Adjoint Solvers,”AIAA
Paper 2006-7121, 2006.

[17] Dwight, R. P., and Brezillion, J., “Effect of Approximations of the
Discrete Adjoint on Gradient-Based Optimization,” AIAA Journal,
Vol. 44, No. 12, 2006, pp. 3022–3031.
doi:10.2514/1.21744

[18] Kim, C. S., Kim, C., and Rho, O. H., “Sensitivity Analysis for the N-S
Equations with Two-Equation Turbulence Models,” AIAA Journal,
Vol. 39, No. 5, 2001, pp. 838–845.

[19] Nielsen, E. J., and Anderson, W. K., “Aerodynamic Design
Optimization on Unstructured Meshes Using the Navier-Stokes
Equations,” AIAA Journal, Vol. 37, No. 11, 1999, pp. 1411–1419.

[20] Marta, A. C., and Alonso, J. J., “High-SpeedMHDFlowControl Using
Adjoint-Based Sensitivities,” AIAA Paper 2006-8009, 2006.

[21] Nielsen, E. J., and Kleb, W. L., “Efficient Construction of Discrete
Adjoint Operators on Unstructured Grids Using Complex Variables,”
AIAA Journal, Vol. 44, No. 4, 2006, pp. 827–836.

[22] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step
Derivative Approximation,” ACM Transactions on Mathematical

Software, Vol. 29, No. 3, 2003, pp. 245–262.
doi:10.1145/838250.838251

[23] Giles, M. B., and Pierce, N. A., “An Introduction to the Adjoint
Approach to Design,” Flow, Turbulence and Combustion, Vol. 65,
Nos. 3–4, Dec. 2000, pp. 393–415.
doi:10.1023/A:1011430410075

[24] Newman, J. C., III, Taylor, A. C., III, Barnwell, R. W., Newman, P. A.,
and Hou, G. J.-W., “Overview of Sensitivity Analysis and Shape
Optimization for Complex Aerodynamic Congurations,” Journal of

Aircraft, Vol. 36, No. 1, 1999, pp. 87–96.
[25] Anderson, W. K., and Venkatakrishnan, V., “Aerodynamic Design

Optimization on Unstructured Grids with a Continuous Adjoint
Formulation,”Computers andFluids, Vol. 28,No. 4, 1999, pp. 443–480.
doi:10.1016/S0045-7930(98)00041-3

[26] Nadarajah, S., and Jameson, A., “AComparison of the Continuous and
Discrete Adjoint Approach to Automatic Aerodynamic Optimization,”
AIAA Paper 2000-0667, 2000.

[27] Giles, M. B., Duta, M. C., Müller, J.-D., and Pierce, N. A., “Algorithm
Developments for Discrete Adjoint Methods,” AIAA Journal, Vol. 41,
No. 2, Feb. 2003, pp. 198–205.

[28] Pryce, J. D., and Reid, J. K., “AD01, A Fortran 90 Code for Automatic
Dierentiation,” Rutherford Appleton Laboratory, Oxfordshire, U.K.,
Rept. RAL-TR-1998-057, 1998.

[29] Carle, A., and Fagan, M., “ADIFOR 3.0 Overview,” Rice University,
TR CAAM-TR-00-02, 2000.

[30] Giering, R., Kaminski, T., and Slawig, T., “Generating Efficient
Derivative Code with TAF: Adjoint and Tangent Linear Euler Flow
Around an Airfoil,” Future Generation Computer Systems, Vol. 21,
No. 8, 2005, pp. 1345–1355.
doi:10.1016/j.future.2004.11.003

[31] Gockenbach, M. S., “Understanding Code Generated by TAMC,”
IAAA Paper TR00-29, Department of Computational and Applied
Mathematics, Rice University, TX, 2000.

[32] Hascoët, L., and Pascual, V., “TAPENADE 2.1 User’s Guide,” INRIA,
TR 300, 2004.

[33] Pascual, V., and Hascoët, L., “Extension of TAPENADE Towards
Fortran 95,” Auto-Matic Differentiation: Applications, Theory, and

Tools, edited by H. M. Bücker, G. Corliss, P. Hovland, U. Naumann,

Table 3 ADjoint computational cost breakdown

(times in seconds)

Fine Wing

Flow solution 219.215 182.653
ADjoint 51.959 20.843
Breakdown:
Setup PETSc variables 0.011 0.004
Compute flux Jacobian 11.695 5.870
Compute RHS 8.487 2.232
Solve the adjoint equations 28.756 11.213
Compute the total sensitivity 3.010 1.523

872 MADER ET AL.

http://dx.doi.org/10.1017/S0022112074002023
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.2514/1.23569
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.1016/j.future.2004.11.005
http://dx.doi.org/10.1016/j.future.2004.11.003
http://dx.doi.org/10.1016/j.future.2004.11.010
http://dx.doi.org/10.2514/1.21744
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1023/A:1011430410075
http://dx.doi.org/10.1016/S0045-7930(98)00041-3
http://dx.doi.org/10.1016/j.future.2004.11.003

and B. Norris, Lecture Notes in Computational Science and
Engineering, Springer, New York, 2005.

[34] Faure, C., and Papegay, Y.,Odyssée Ver. 1.6: The Language Reference
Manual, INRIA, Rapport Technique 211, 1997.

[35] Squire, W., and Trapp, G., “Using Complex Variables to Estimate
Derivatives of Real Functions,” SIAM Review, Vol. 40, No. 1, 1998,
pp. 110–112.
doi:10.1137/S003614459631241X

[36] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Connection
Between the Complex-Step Derivative Approximation and Algorith-
mic Differentiation,” AIAA, 2001-0921, Jan. 2001.

[37] van der Weide, E., Kalitzin, G., Schluter, J., and Alonso, J. J.,
“Unsteady Turbomachinery Computations Using Massively Parallel
Platforms,” AIAA, 2006-0421, 2006.

[38] Balay, S., Buschelman, K., Gropp,W.D., Kaushik, D., Knepley,M.G.,
McInnes, L. C., Smith, B. F., and Zhang, H., “PETScWeb page,” 2001,
http://www.mcs.anl.gov/petsc.

[39] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D.,
Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H., “PETSc
Users Manual,” Argonne National Laboratory, TR ANL-95/11-
Revision 2.1.5, 2004.

[40] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., “Efficient
Management of Parallelism in Object Oriented Numerical Software
Libraries,”Modern Software Tools in Scientic Computing, edited by E.
Arge, A. M. Bruaset, and H. P. Langtangen, Birkhäuser Press, Boston,
MA, 1997, pp. 163–202.

[41] Ruo, S. Y., Malone, J. B., Horsten, J. J., and Houwink, R., “The LANN
Program—An Experimental and Theoretical Study of Steady and
Unsteady Transonic Airloads on a Supercritical Wing,” AIAA
Paper 1983-1686, July 1983.

N. Alexandrov
Associate Editor

MADER ET AL. 873

http://dx.doi.org/10.1137/S003614459631241X

