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This paper discusses the use of the continuous adjoint methodology for the design of
transonic aircraft configurations. The objective of the present study is to illustrate that,
despite the fact that continuous adjoint does not provide the numerically exact gradient
of a discrete objective function, it is an excellent choice for large-scale optimization with
complex geometries due to the accuracy of the computed gradients, the robustness of the
method, and its efficiency in terms of memory and compute time. This is demonstrated
through a series of detailed design studies on the NASA Common Research Model, which
provides a challenging problem due to its geometric complexity and the large, unstructured
meshes employed. All design work is completed with the SU2 software suite: an open-
source, integrated analysis and design tool for solving complex, multi-disciplinary problems
on unstructured computational grids.

I. Introduction

The solution of the Reynolds-averaged Navier-Stokes (RANS) equations around complete aircraft con-
figurations on computational meshes containing millions of elements is now an everyday occurrence in
the aerospace industry.1 Efficient algorithms for Computational Fluid Dynamics (CFD) have allowed the
aerospace industry to perform large numbers of simulations for rapidly evaluating candidate designs. Other
developments, such as unstructured mesh technology, have enabled the analysis of increasingly complex ge-
ometries. Given the shorter turnaround times afforded by advances in CFD, applying optimal shape design
techniques to large-scale problems of industrial interest with complex geometry is increasingly tractable.

It is now well established that, due to the high cost of solving the nonlinear flow equations and the large
design spaces that typically accompany aerodynamic shape design problems, gradient-based optimization
methods coupled with adjoint techniques for sensitivity analysis offer the most efficient process for shape
design. In the academic sense, these tools, and adjoint methods in particular, have become relatively mature
over the last quarter-century for problems in aeronautics. However, their adoption for realistic problems in
industrial settings has lagged due to difficulties related to robustness, accuracy, or an inability to handle the
large, complex meshes required for representing detailed aircraft configurations due to memory or compute
overheads.

In our opinion, this situation merits a renewed focus on techniques that offer the additional flexibility
to overcome these roadblocks, while also providing sufficient accuracy and computational performance. In
particular, the methods should contain customizable numerical methods in order to alleviate convergence
issues and must be able to leverage modern high-performance computing resources to maintain turnaround
times that fit well within the industrial design cycle.

For problems in aeronautics, Jameson first introduced the adjoint approach for shape design in transonic
flows to reduce shock-induced drag.2,3 Further pioneering work by Jameson et al.4,5 treated the Euler and
Navier-Stokes equations in three dimensions, thus enabling the design of complete aircraft configurations.6

Adjoint formulations as a means of sensitivity analysis have since become the subject of a rich volume of
research literature, but again, their practical application to large-scale problems with complex geometries
appears to have stalled.7
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Fortunately, a number of recent advances are ushering in a new era for the continuous adjoint methodology
and broadening its range of applicability. While initial results for the continuous adjoint were calculated on
structured meshes, numerical methods for the continuous adjoint equations were extended to unstructured
meshes for complex geometries. Anderson and Venkatakrishnan8 demonstrated one of the first surface
formulations (i.e., an analytic expression for the variation of the cost function as a surface integral) for
the Navier-Stokes equations on unstructured meshes, but they noted that higher-order derivative terms
appearing in the adjoint equations caused issues related to implementation and accuracy. Jameson and
Kim9 arrived at a similar surface formulation for the Euler equations by eliminating volume integral terms
from the gradient formula in the continuous limit.

Castro et al.10 derived continuous adjoints for inviscid and laminar flows on unstructured grids with
a special emphasis on simplifications and the reduction of higher-order derivative terms with the aid of
differential geometry formulas (shape calculus).11,12 The resulting surface formulation alleviated many of the
issues related to implementation and accuracy for unstructured meshes, and it has been successfully applied
on three-dimensional meshes for a range of applications.13,14 Bueno-Orovio et al.15 later extended the
formulation to turbulent flows by including the Spalart-Allmaras (S-A) turbulence model, which represented
the first such formulation for compressible flows.

This type of continuous adjoint methodology embodies a number of the qualities that we desire when
attempting large-scale shape design. In particular, obtaining a surface formulation for shape design gradi-
ents, the ability to tailor numerical solution methods for the adjoint equations (to help mitigate numerical
stiffness), and low overhead in terms of compute and memory (since much of the same code infrastructure
and numerical methods can be reused from the primal problem) make the continuous adjoint approach
particularly attractive. To summarize, the main contributions of this article are the demonstration of the
continuous adjoint and the discussion of the procedure when redesigning the NASA CRM for improved
aerodynamic performance (drag reduction) in a number of scenarios that include realistic constraints on the
geometry, lift, and moments.

The paper is organized as follows. Section II contains an overview of the theory behind each major
component of the shape design framework: the governing flow equations, the continuous adjoint methodology,
the optimization framework, and the design variable definition. Section III contains a description of the
NASA CRM along with a brief verification and validation study before detailing a series of redesign studies
for the CRM that illustrate the effectiveness of the continuous adjoint methodology in this setting. Lastly,
Section IV summarizes the main conclusions of the article.

II. Description of the shape optimization technique

A. Governing system of equations

The Navier-Stokes equations16,17 describe the conservation of mass, momentum and energy in a viscous
fluid. Aeronautical applications assume that the air is governed by these equations on a domain Ω ⊂ R3,
delimited by disconnected boundaries divided into a “far field”, Γ∞, and solid (adiabatic in this paper) walls
that we denote by S. Their steady-state formulation can be written in the following form15

RU (U) = ∇ · ~F c −∇ ·
(
µ1
tot
~F v1 + µ2

tot
~F v2
)

= 0 in Ω,

~v = 0 on S,

∂nT = 0 on S,

(W )+ = W∞ on Γ∞,

(1)

where U = (ρ, ρv1, ρv2, ρv3, ρE)T stands for the vector of conservative variables, ρ is the density, E is the
energy, ~v = (v1, v2, v3) ∈ R3 is the flow speed in a Cartesian system of reference, and T is the temperature.
The last equation in (1) represents classical “far field” boundary conditions simulating the fluid behavior at

infinity. The vectors ~F c(U) = (~F c1 ,
~F c2 , ...,

~F c5 )T are the convective fluxes and ~F vk(U) = (~F vk1 , ~F vk2 , ..., ~F vk5 )T,
k = 1, 2, are the viscous fluxes, in where we have considered separately the contribution of the viscous forces
and the heat flux transfer. Here, (·)T denotes transposition.

As usual in turbulence modeling based upon the Boussinesq hypothesis,18 which states that the effect of
turbulence can be represented as an increased viscosity, the viscosity is divided into a laminar µdyn and a
turbulent µtur component. The laminar or dynamic viscosity is usually taken to be only dependent on the
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temperature, µdyn = µdyn(T ), whereas µtur is obtained from a suitable turbulence model involving the flow
and a set of new variables. Turbulence and main stream flow become then coupled by replacing the dynamic
viscosity in the momentum and energy equations in the Navier-Stokes equations with

µ1
tot = µdyn + µtur, µ2

tot =
µdyn
Prd

+
µtur
Prt

(2)

where Prd and Prt are respectively the dynamic and turbulent Prandtl numbers. Here µ2
tot represents the

effective thermal conductivity that we write in this nonstandard notation to obtain reduced expressions in
the calculus below.

The systems (1) with a suitable equation of state to describe the fluid thermodynamics, constitute a
complete system of equations and boundary conditions for the flow variables.18,19

B. Definition of the objective function

A key element for the definition of an optimal shape design problem is the objective function. In this case,
we introduce an objective function which is assumed to be only dependent on the values of the flow variables
at the boundary S. As it was shown in,20 for the Navier-Stokes system only objective functions depending
on ~f and the temperature T are allowed for continuous adjoint optimization, with ~f given by

~f = (f1, f2, f3) = P~n− σ̄ · ~n, σ̄ = µ1
totτ̄ (3)

where ~n denotes the exterior normal to the surface S, P is the pressure of the fluid, and σ̄ the second
order tensor of viscous stresses, τ̄ given in Appendix A. Note that this includes, in particular, functionals
depending only on the pressure P since it can be written as a function of ~f , using the fact that ~n · σ̄ · ~n = 0
on the boundary.20 More precisely,

P = ~n · (P~n− σ̄ · ~n) = ~f · ~n on S. (4)

For the purposes of the present study, we will consider the following general choice of force based objective
function

J(S) =

∫
S

j(~f, T, ~n) ds. (5)

C. Variation of the objective function: the adjoint approach

As usual in the adjoint approach,4,8, 15,20,21 flow equations are incorporated to the cost functional as con-
straints by means of a Lagrange multiplier for each equation, ΨT

U = (ψ1, ψ2, ψ3, ψ4, ψ5). In this way, the
Lagrangian reads

J (S) =

∫
S

j(~f, T, ~n) ds+

∫
Ω

ΨT
URU (U) dΩ. (6)

Let us consider an arbitrary (but small) perturbation of the boundary S which, without loss of generality,
can be parameterized by an infinitesimal deformation of size δS along the normal direction to the surface S.
The new surface obtained after the deformation is then given by

S′ = {~x+ δS ~n, ~x ∈ S} (7)

where, for small deformations, the following holds22{
δ~n = −∇S(δS)

δ(ds) = −2HmδS ds
(8)

where Hm is the mean curvature of S computed as (κ1 +κ2)/2, and (κ1, κ2) are curvatures in two orthogonal
directions on the surface. Here ∇S represents the tangential gradient operator on S. Note that ∇S(δS) is a
tangent vector to S that we write as a vector in R3 with null component normal to S.

Assuming a regular flow solution U and a smooth boundary S, the variation of the functional J due to
the deformation can be evaluated as

δJ =

∫
S

δj(~f, T, ~n) ds+

∫
δS

j(~f, T, ~n) ds+

∫
Ω

ΨT
UδRU (U)dΩ (9)
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where δRU represents the variations of RU , respectively. Using the convention of summation of repeated
indexes, i = 1, 2, 3, the two first terms in the previous equation read∫

S

δj(~f, T, ~n) ds =

∫
S

∂j

∂ ~f
· (δP~n− δσ̄ · ~n) +

∂j

∂T
δT −

(
∂j

∂~n
+
∂j

∂ ~f
P − ∂j

∂ ~f
· σ̄
)
· ∇S(δS) ds (10)

∫
δS

j(~f, T, ~n) ds =

∫
S

(
∂j

∂fi
∂nfi +

∂j

∂T
∂nT − 2Hmj

)
δS ds. (11)

Note that in (10) we have written the variation δ ~f in terms of δP and δσ̄, and we have used formula (8)
for δ~n. The variations δP~n− δσ̄ · ~n and δT appearing in (10) can be computed from the following linearized
system 

δRU (U) =
∂RU
∂U

δU = 0 in Ω,

δ~v = −∂n~v δS on S,

∂n (δT ) = (∇T ) · ∇S(δS)− ∂2
nTδS on S,

(δW )+ = 0 on Γ∞,

(12)

where (δW )+ represents the incoming characteristics on the “far field” boundary. Linearization of the
Navier-Stokes is respectively given in Appendix B.

Domain integrals in (9) are eliminated using integration by parts and introducing the associated adjoint
operators. This integration by parts also provides some boundary terms, which are combined with the
boundary terms in (9) depending on δP~n− δσ · ~n and δT , yielding the boundary conditions for the adjoint
operators. We describe this process below.

From (12), the last term in (9) reads∫
Ω

ΨT
U

(
∂RU
∂U

δU

)
=

∫
Ω

(AUΨU )
T
δU +

∫
S

BS ds (13)

where AU =
(
∂RU

∂U

)T
is the adjoint operators and BS stands for the boundary terms coming from the

integration by parts∫
S

BS ds = −
∫
S

~ϕ · (δP~n− δσ̄ · ~n) ds−
∫
S

(~g1 · ~ϕ+ g2∂nψ5)δT ds−
∫
S

ĝδS ds (14)

where ~ϕ = (ψ2, ψ3, ψ4) and ~g1, g2 and ĝ are some functions that do not depend on the adjoint variables ΨU .
The analytical expression of these terms and the adjoint operators above are given in in Appendix C.

In order to eliminate domain integrals in (9) when replacing the last three terms by using (13), we assume
that the adjoint variables satisfy

AUΨU = 0 (15)

Analogously, all boundary terms in (13) without explicit dependence on δS can be eliminated by considering
the following choice of boundary conditions for the adjoint variables{

ϕi = ∂j
∂fi

on S,

∂nψ5 = 1
g2

(
∂j
∂T + ~g1 · ~ϕ

)
on S,

(16)

Combining (9)-(11), (13)-(14), the adjoint equation (15) and the boundary conditions in (16), we finally
obtain

δJ =

∫
S

(
∂j

∂fi
∂nfi +

∂j

∂T
∂nT

)
δS ds

−
∫
S

(
∂j

∂~n
+
∂j

∂ ~f
P − ∂j

∂ ~f
· σ̄
)
· ∇S(δS) ds−

∫
S

(ĝ + 2Hmj)δS ds. (17)

In this expression, the adjoint variables are obtained by solving the closed system of PDEs and boundary
conditions given by (15). Some particular but still interesting situations provide a more simplified formula
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for the variation of J , as described in20 for the Navier-Stokes equations. Assume that the objective function
depends only on ~f in the following way

j(~f) = ~f · ~d (18)

where ~d is a constant vector (the choice ~d = ~n is also possible with some modifications, but for simplicity we

focus on constant ~d). Note that this is the case in drag or lift optimization problems. The adjoint boundary
conditions in this situation simply become{

~ϕ = ~d on S,

∂nψ5 = ~g1 · ~d/g2 on S,
(19)

and the variation of J is given by

δJ =

∫
S

~d · ∂nfiδS ds−
∫
S

(
P ~d− ~d · σ̄

)
· ∇S(δS) ds−

∫
S

(ĝ + 2Hmj)δS ds. (20)

Integrating now by parts, and assuming that either S is smooth or δS = 0 at its singular points, yields

δJ =

∫
S

∂n(P ~d · ~n− ~d · σ̄ · ~n)δS ds+

∫
S

∇S ·
(
P ~d− ~d · σ̄

)
δS ds−

∫
S

(ĝ + 2Hmj)δS ds

=

∫
S

∇ · (P ~d− ~d · σ̄)δS ds−
∫
S

ĝδS ds = −
∫
S

ĝδS ds. (21)

Here we have used the fact that the divergence operator, on local coordinates of S, is given by

∇ · ~q = ∂n(~q · ~n) +∇S · ~q − 2Hm~q · ~n (22)

for a general vector field ~q, and the identity

∇ · (P ~d− ~d · σ̄) = (∇P −∇ · σ̄) · ~d = 0 on S, (23)

which is obtained assuming that the momentum equations in the Navier-Stokes system are satisfied on the
boundary, i.e. ∇P = ∇ · σ̄ on S.

The final expression for the total variation of the functional can be simplified as follows

δJ =

∫
S

(~n · Σ̄ϕ · ∂n~v − µ2
totCp∇Sψ5 · ∇ST ) δS ds (24)

with Σ̄ϕ depending on the gradient of the adjoint variables ~ϕ. Note that we are supposing a smooth flow
solution; a complete Euler adjoint formulation with shock waves can be found in Ref.23

D. Optimization Framework

The iterative Modification methods are based in a powerful idea: modify the shape of the body during
the optimization process until it is not possible to improve the value of an objective function satisfying
some constraints. In other words, these methods are based on an iterative modification of the shape of the
body until the convergence of a particular figure of merit is observed. Depending of the method itself the
designer should provide value of the objective function and/or gradients and Hessians. Iterative Modification
Methods require the detailed definition of the design variables, the objective function and a set of constraints
functions:

• The vector of design variables x̄ ∈ Rn with n > 0 represents the geometrical changes in the surface. x̄ is
related with the method that the designer have chosen to discretize the aircraft surface. The selection
of x̄ is critical for the optimization success, several options are available: engineering like optimization
variables like sweep, span, etc. or mathematical based design variables like the location of a particular
control point.

• The objective function f(x̄) : Rn → R is the function that the designer wants to maximize or minimize.
It is the element that will drive the optimization problem and should be chosen very carefully, typical
options are: Minimize the drag of the aircraft or maximize its range.
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• The constraints gi(x̄) : Rn → R, here we specify some equalities or inequalities that the design vari-
ables should satisfy. It is is important to distinguish between geometrical constraints (e.g. maximum
thickness) and flow constraints (e.g. pitching moment, etc.).

The gradient based optimization in this work uses the SciPy library,24 a well-established open-source
software for mathematics, science and engineering. The SciPy library provides many user-friendly and effi-
cient numerical routines for the solution of non-linear constrained optimization problems, such as conjugate
gradient, Quasi-Newton or sequential least-squares programming algorithms. In particular, in this work we
have used the Sequential Least SQuares Programming technique.

E. Design variable definition

Using the continuous adjoint methodology, SU2 can compute the variation of an objective function with
respect to infinitesimal surface shape deformations in the direction of the local surface normal at points on
the design surface. While it is possible to use each surface node in the computational mesh as a design
variable capable of deformation, this approach is not often pursued in practice.

A more practical choice is to compute the surface sensitivities at each mesh node on the design surface and
then to project this information into a design space made up of a smaller set (possibly a complete basis) of
design variables. This procedure for computing the surface sensitivities is used repeatedly in a gradient-based
optimization framework in order to march the design surface shape toward an optimum through gradient
projection and mesh deformation.

In SU2 a Free-Form Deformation (FFD) strategy25,26 has been adopted. Here an initial box encapsulating
the object (rotor blade, wing, fuselage, etc.) to be redesigned is parameterized as a Bézier solid. A set of
control points are defined on the surface of the box, the number of which depends on the order of the chosen
Bernstein polynomials. The solid box is parameterized by the following expression

X(u, v, w) =

l∑
i=0

m∑
j=0

n∑
k=0

Pi,j,kB
l
i(u)Bmj (v)Bnk (w), (25)

where l, m, n are the degrees of the FFD function, u, v, w ∈ [0, 1] are the parametric coordinates, Pi,j,k are
the coordinates of the control point (i, j, k), and Bli(u), Bmj (v) and Bnk (w) are the Bernstein polynomials.
The Cartesian coordinates of the points on the surface of the object are then transformed into parametric
coordinates within the Bézier box. Control points of the box become design variables, as they control the
shape of the solid, and thus the shape of the surface grid inside. The box enclosing the geometry is then
deformed by modifying its control points, with all the points inside the box inheriting a smooth deformation.
With FFD, arbitrary changes to the thickness, sweep, twist, etc. are possible for the design of any aerospace
system. Once the deformation has been applied, the new Cartesian coordinates of the object of interest can
be recovered by simply evaluating the mapping inherent in Eq. 25.

III. Redesign of the NASA Common Research Model

The NASA Common Research Model (CRM) configuration was developed to be used in CFD validation
exercises as part of the fourth AIAA CFD Drag Prediction Workshop.27 This is a truly open high-speed
configuration with available geometry. The CRM is a low-wing, standard, tube-and-wing configuration with
a flight design Mach number of 0.85. The Boeing company created the primary aerodynamic design and
NASA FA (Fundamental Aerodynamics) / SFW (Subsonic Fixed Wing) held the responsibility for model
design, fabrication, and testing.

The on-design condition are Mach 0.85 and a nominal lift of CL = 0.5 at Reynolds number of Re =
40 million per reference chord. The reference quantities for the CRM are located in Tab. 1 where λ is the
taper ratio and the X, Y, Z reference locations are for the main wing, not the entire vehicle. This final
configuration stemmed from a 5-point optimization of the Mach number and CL for a wing-body model
with constraints on the wing thickness and spanload distribution using OVERFLOW. After the initial
optimization, a nacelle/pylon component was installed to make a more realistic geometry. A horizontal tail
was also designed for stability and control considerations to be robust at dive Mach number conditions with
characteristics shown in Tab. 2.
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Sref 594,720.0 in2

Cref 275.8 in

Span 2,313,5 in

Xref 1,325.9 in

Yref 468.75 in

Zref 177.95 in

λ 0.275

ΛC/4 35o

AR 9.0

Table 1. Reference quantities for the CRM main
wing.27

Sref 144,000.0 in2

Cref 184.7 in

Span 840 in

λ 0.35

ΛC/4 37o

Table 2. Reference quantities for the CRM hori-
zontal tail plane.27

A. Validation of the Common Research Model

When redesigning a vehicle,7,28,29 validation of the baseline configuration is an important component. This
critical step aims to show that the available models and numerical methods that drive the optimization
match the real world performance. As outlined above, the on-design condition for the CRM is Mach 0.85
and CL = 0.5. However, for the wind tunnel tests, the Reynolds number is reduced to 5 million from 40
million both per reference chord for the on-design condition. To match these conditions, the angle of attack
was changed by hand to an error tolerance of 0.001 as specified in Illi et al.30 SU2 reports CD = 301.3 counts
for CL = 0.5 at an angle of attack of 2.37 degrees (15M cells grid) and CD = 287.8 counts for CL = 0.5 at
an angle of attack of 2.27 degrees (35M cells grid). Scalfani et al.31 report CD = 270.6 counts at angle of
attack of 2.364 degrees using a different mesh.

(a) η = 0.283 (b) η = 0.727

Figure 1. Comparison of SU2 (15M cells grid) at two wing stations with OVERFLOW results31 and wind
tunnel data.32

Beyond looking at the CL for the configuration, pressure profiles are compared around the wing. The
SU2 pressure contours at two wing stations, η = 0.283 and η = 0.727, are shown in Fig. 1 along with the
results of Rivers and Dittberger32 and OVERFLOW results from Sclafani et al.31 While neither of the CFD
profiles match the wind tunnel results, the SU2 profile closely matches the OVERFLOW data except at the
exact shock location on the out-board wing station. In Illi et al.,30 they reference the pressure discrepancy
between wind tunnel data and CFD results stems from to stronger twist in the wind tunnel experiments.
Overall, there is reasonably good agreement between the available CRM data and SU2.
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B. Redesign of the Common Research Model

The present discussion summarizes a set of numerical experiments oriented toward the further optimization
of a complex, previously optimized, wing-body configuration like the CRM (including the horizontal tail
plane).

The design of a wing-body configuration is much more challenging than an isolated wing. In fact, a
complete aircraft aerodynamic optimization requires multiple intermediate steps, the selection of the design
variables has a greater impact (due to the interaction of the different aircraft components), and the problem
is more likely to have multiple local minima (due to numerous constraints). In other words, in a complete
aircraft redesign for aerodynamic performance, gradient-based design techniques are useful tools, but the
role of the designer is still critical in driving the design to the best local optimum possible.

To present a systematic introduction to the shape redesign of the CRM configuration using gradient-based
methods, we will introduce the constraints in a sequential way:

1. First, a drag minimization problem is used to check the accuracy of the gradients. At this point, it is
important to note that the current methodology does not introduce the effect of the eddy viscosity in
the gradient evaluation.

2. Second, a drag optimization with a CL constraint at different angles of attack will be presented. This
study provides an understanding of the bounds for the expected improvement in CL and a qualitative
estimation of the optimization effect in the geometry and pitching moment.

3. After that, and based on the previous results, the pitching moment is introduced as a constraint. In
this particular optimization problem, the objective is to halve the value of the pitching moment while
maintaining lift and reducing drag. It is important to note that in this exercise, we are using the X,
Y, Z reference locations for the main wing.

4. Finally, a more aggressive pitching moment constraint is imposed (trimming the entire aircraft), and
extra geometrical constraints (maximum thickness at different stations) are also introduced.

Size AoA (deg) CL CD CMy

15M cells 2.37 0.50 0.0301 -0.0442

35M cells 2.27 0.50 0.0287 -0.0475

Table 3. Main characteristics of the numerical grids.

Table 4. CD breakdown per components.

Throughout the redesign studies, we have used two different grids: a coarse mesh composed of 15 millions
grid cells and a finer grid composed of 35 millions grid cells. The main characteristics of the numerical grids
are summarized in Tab. 3 and Fig. 4. On the other hand, the location of the different wing stations that are
referenced in this paper are plotted in Fig. 2 and Fig. 3.

After checking that the coarse mesh is able to reproduce the most important physical phenomena of the
problem, we have used that coarse mesh as a baseline, and we will use the fine mesh to run some very specific
optimization problems. At this point, it is critical to note that the continuous adjoint methodology does not
require extra memory compared to the direct problem. Therefore, the motivation for selecting of the coarser
numerical grid in a number of situations is purely to save computational resources and to provide a more
complete paper.

As a reference, the flow solution and the adjoint sensitivities for the baseline configuration are presented
in Figs. 4–7. These color maps are crucial for gaining insight into the problem and aid the designer in
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Figure 2. Location of the sections used to impose ge-
ometrical constraints.

Figure 3. Location of the sections used to visualize
the Cp.

Figure 4. Cp contours at the upper and lower surface
of the CRM configuration.

Figure 5. CD sensitivity contours at the upper and
lower surface of the CRM configuration.

Figure 6. CL sensitivity contours at the upper and
lower surface of the CRM configuration.

Figure 7. CMy sensitivity contours at the upper and
lower surface of the CRM configuration.
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determining the most sensitive zones of the aircraft for each functional. Additionally, this information
can guide design variable selection, or in some cases, provide enough information to impose manual design
changes.

C. Selection of the design variables

During this optimization study, the kind and number of design variables have been chosen based on previous
experience. In particular, 2 Free Form Deformation (FFD) boxes have been used: the first one around the
main wing (see Fig. 8) features 208 control points, and the second one in the horizontal tail plane (see Fig. 9)
contains 70 control points.

Figure 8. FFD box at the main wing (208 control
points).

Figure 9. FFD box at the horizontal tail plane (70
control points).

The design variables have been defined as the movement of the FFD control points in the Z-direction
and, as a geometrical constraint, we have restrict the movement of several planes of control points in order to
guarantee the continuity of the first surface derivative at the root of the wing and tail. Furthermore, based
on previous experience, we would like to avoid an excessive movement of the trailing edge that eventually can
create unrealistic geometries. To accomplish this, an extra plane of control points have been fixed at that
location. Finally, some of the optimization presented in this paper also contains specific maximum thickness
constraints at different sections of the main wing (i.e., the maximum thickness of the section can not drop
below 95% of the original value).

D. Evaluation of the effect of the sharp edges sensitivities

Sharp edges (trailing edges in particular) are very challenging from the design point of view. It is well-known
that these regions have a large impact on the overall lift and drag characteristics of the airplane. Moreover,
they are important in a shape design setting because they represent a sensitive area that can introduce
gradients that are an order of magnitude greater than the those appearing across the rest of the aircraft
geometry. On the other hand, from the mathematical point of view, the evaluation of the sensitivity in these
non-smooth regions requires extra terms that are difficult to evaluate for complex geometries.

For that reason, SU2 features a methodology for detecting sharp edges (where a high surface sensitivity
is expected) and removing that sensitivity from the gradient calculus. Obviously, the gradient without
the sensitivity induced by the sharp edges remains a descent direction that is useful in any optimization
algorithm.

In order to quantify the effect of the sharp edges, in Fig. 10 the drag sensitivity for each design variable
is presented when the sharp edge sensitivity is used. In contrast, if we remove that sensitivity, the resulting
gradient is presented in Fig. 11

We will start the evaluation of the bounded gradient with an unconstrained drag minimization. Despite
the fact that this is not an interesting problem from the point of view of the overall aircraft design, it is a
useful exercise to check the quality of the gradients and evaluate the effect of removing the sensitivity of the
objective function at the trailing edge. In Fig. 12, the region that has been removed from the sensitivity
calculus is highlighted, and in Fig. 13, the drag sensitivity is visualized (after removing the sharp edges
sensitivity).

As we previously highlighted, the CRM baseline case (CL=0.5) has a drag of 301 counts. In order to
evaluate the accuracy of the gradient, we will focus only on the first optimizer iteration or step (value of the
gradient multiplied by a fixed coefficient, 50 in this particular problem). As a conclusion, if the sensitivity
at the sharp edges is removed, the obtained drag is 291 counts at a CL of 0.48. However, retaining the
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Figure 10. Drag and lift gradients including the sen-
sitivity at the sharp edges.

Figure 11. Drag and lift gradients after removing the
sensitivity at the sharp edges.

Figure 12. Region affected by the sharp edges detec-
tor, the sensitivity in the blue zone will be removed
from the final calculus.

Figure 13. Drag surface sensitivity after removing the
sensitivity at the sharp edges.
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sensitivity at the sharp edges will reduce the drag to 263 at a CL of 0.40. Based on these results, the sharp
edge contribution seems important for obtaining the steepest descent in the gradient direction.

However, in a more practical scenario, it is important to check the combined effect of drag minimization
while maintaining a baseline lift. In this optimization, if the sharp edges are active, we will obtain a drag of
297 counts with a CL of 0.50 while, if the sensitivity at the sharp edges is removed, then we obtain 298 drag
counts with a CL of 0.5.

It is also useful to compare both designed geometries (Fig. 14 and Fig. 15) to check that, despite the clear
differences in the gradient value, the final results are very similar. This leads us to conclude that the large
gradient effect at the trailing edges is balanced out with a meaningful constrained optimization problem
where the objective function and constraints compete. For that reason, we have decided to focus on the case
without trailing edge sensitivity.

Figure 14. Pressure contours in the upper surface of
the main wing.

Figure 15. Pressure contours in the lower surface of
the main wing.

E. Drag minimization, maintaining lift at different angle of attacks

We already know that the angle of attack is a critical design variable that it is not included in the set of
original design variables. However, the strong effect of angle of attack can cover up the effectiveness of the
shape design variables. For that reason, different optimization will be performed at different, but fixed,
angles of attack.

Figure 16. Pressure contours at
station A y = 8m (baseline vs. de-
sign, AoA = 2.37, and CL = 0.50).

Figure 17. Pressure contours at
station B y = 16m (baseline vs. de-
sign, AoA = 2.37, and CL = 0.50).

Figure 18. Pressure contours at
station C y = 24m (baseline vs. de-
sign, AoA = 2.37, and CL = 0.50).
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As an initial test, a free optimization problem with only a lift constraint is proposed. In particular, this
experiment is repeated at three different angles of attack: 2.37deg (baseline value with CL = 0.5), 2.133deg
(10% lower than the baseline case), and 2.607deg (10% higher than the baseline case).

We will start the discussion with the baseline case (AoA = 2.37deg). As we noticed before, the baseline
drag is 301 counts. After the optimization, it was possible to reduce the drag to 297 counts (a reduction of
4 drag counts). Despite the fact that his represents a small reduction of the total drag, the CP sections at
three different stations (see Fig. 16 to Fig. 18) depict an important change in the pressure distribution that
leads to an essentially shock-free configuration. The result of this optimization problem is summarized in
Tab. 5 and Tab. 6.

If the starting point is at a higher angle of attack (AoA = 2.607deg), the final design has a drag value that
is higher than the original one 306 (5 drag counts increase). However, a closer view to the Cp distribution
shows that the upper surface of the wing and horizontal tail plane have clearly been optimized, and the
origin of the higher drag is not on the upper wing surface but rather on the rest of the aircraft. In fact, just
the increase of the angle of attack implies 23 extra drag counts, and while 18 are from the wing, the rest are
mainly the increase in drag due to the fuselage.

The most interesting design is obtained if the starting point is at a lower angle of attack (AoA = 2.133deg).
At this angle of attack, the optimizer is able to recover the baseline lift at a lower drag number of 294 counts
(a reduction of 7 counts). The CP distributions for this result are shown in Figs. 19–21. The result of this
optimization problem is summarized in Tab. 5 and Tab. 6.

Figure 19. Pressure contours at
station A y = 8m (baseline vs. de-
sign, AoA = 2.133, and CL = 0.5).

Figure 20. Pressure contours at
station B y = 16m (baseline vs. de-
sign, AoA = 2.133, and CL = 0.5).

Figure 21. Pressure contours at
station C y = 24m (baseline vs. de-
sign, AoA = 2.133, and CL = 0.5).

Once the potential CD reductions with a CL constraint have been evaluated, the next step is the intro-
duction of another flow constraint: the pitching moment CMy. It is important to emphasize that the most
satisfactory design from our initial studies (drag minimization, constant lift starting with a lower angle of
attack) also reduces the absolute value of the pitching moment such that aids in trimming the aircraft. Un-
fortunately, we also discover that the shape modifications in the main wing to minimize drag and maximize
lift also increase the absolute value of the pitching moment. The horizontal tail plane, as we expect, will
play a critical role in trimming the aircraft.

F. Drag minimization, maintaining lift and decreasing pitching moment

In particular, the new objective is to halve the value of the original pitching moment, and two different
starting points will be evaluated: the original angle of attack 2.37deg that produces a CL of 0.5 and a lower
angle of attack of 2.2515deg (5% of the original angle of attack), which is a compromise between the baseline
lift and a reduced pitching moment to start the shape design process.

Starting with the original case (baseline AoA = 2.37) and after a very good initial iteration, we find that
the optimizer was not been able to further reduce the drag. It stalls after the second iteration. None of the
test points produce a lower drag value, and the pitching moment constraint is violated. In this case, the best
result corresponds with the first optimizer iteration with a CD of 298 counts, a CL of 0.5, and a pitching
moment of -0.0346, which is a 78% of the original value -0.0441.

Starting with a slightly lower angle of attack (2.2515deg), we see that the optimization proceeds much
better, and it is possible to recover the original lift of 0.5, a drag of 297 counts, and a pitching moment of
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-0.0221 (50% of the original value). In this case, we have obtained a relevant reduction of 4 counts in drag
with the same lift and half the pitching moment. Note that the original pitching moment at this new angle
of attack was -0.0381 (86% of the original one), and the lift was 5% less than the original value. The result
of this optimization problem is summarized in Tab. 5 and Tab. 6.

Figure 22. Pressure contours at
station A y = 8m (baseline vs. de-
sign, AoA = 2.2515, CL = 0.5, and
CMy = −0.0221).

Figure 23. Pressure contours at
station B y = 16m (baseline vs. de-
sign, AoA = 2.2515, CL = 0.5, and
C)My = −0.0221).

Figure 24. Pressure contours at
station C y = 24m (baseline vs. de-
sign, AoA = 2.2515, CL = 0.5, and
CMy = −0.0221).

The Cp distribution at different stations are summarized in Figs. 22–24. As in previous cases, it is
important to note that the new configuration is shock-free, except in the most outboard sections.

As a final test, we have set a design problems that aims to trim the aircraft maintaining lift and reducing
drag at a lower angle of attack (AoA = 2.133). The history of the optimization is presented in Figs. 25–27.
In these figures we also evaluate the effect of scaling the objective function and constraints in the overall
optimization process. As we will describe in the next subsection, a small change in the scaling factor will
produce a different final geometry.

Figure 25. CD optimization history,
using different gradient and objec-
tive function scaling factors.

Figure 26. CL optimization history,
using different gradient and objec-
tive function scaling factors.

Figure 27. CMy optimization his-
tory, using different gradient and
objective function scaling factors.

In short, these results demonstrate that, with the current set of design variables, it is possible to trim the
aircraft maintaining lift and drag (without including geometrical constraints apart from the design variable
bounds). In particular, using a scaling factor of 10 the final results provides a reduction of 3 drag counts
with respect to the original configuration at a pitching moment of -0.008 (18% of the original value) and
maintaining lift. The result of this optimization problem is summarized in Tab. 5 and Tab. 6.

G. Trimming the aircraft, drag minimization, and maintaining lift with maximum thickness
constraints

Once we have demonstrated that it is possible to reduce the pitching moment without affecting the lift and
drag of the aircraft, the next step is to completely trim the vehicle while maintaining lift and, if possible,
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reduce the drag. In this particular example, the starting point is an angle of attack that is 90% of the
baseline value.

Figure 28. CD optimization history,
using different gradient and objec-
tive function scaling factors.

Figure 29. CL optimization history,
using different gradient and objec-
tive function scaling factors.

Figure 30. CMy optimization his-
tory, using different gradient and
objective function scaling factors.

Figure 31. Maximum thickness at
section II, using different gradient
and objective function scaling fac-
tors.

Figure 32. Maximum thickness at
section III, using different gradient
and objective function scaling fac-
tors.

Figure 33. Maximum thickness at
section V, using different gradient
and objective function scaling fac-
tors.

The objective of this optimization is to emphasize the significance of the selection of the gradient scaling
factor in the optimization process. In particular, from Figs. 28–33, it is possible to estimate the evolution of
the lift, drag, pitching moment, and maximum thickness for the 3 different scalings of the functionals and
gradients (10, 50 and 100). The optimizer behaves differently under the influence of different scaling factors.

Analyzing the results presented in Figs. 28–33, we find that there is not a solution that satisfies all
of the constraints, but a scaling factor of 100 provides an acceptable point for further investigation. In
particular, the obtained lift is 0.49 with 300 drag counts and a pitching moment of 0.0054, which is 12% of
the original value with a 2% reduction in lift and the same drag. Note that at 2.133deg angle of attack, the
pitching moment at the beginning was -0.0322, so the majority of the reduction of the pitching moment has
been obtained by reshaping the wing (original pitching moment at baseline is -0.0441). The result of this
optimization problem is summarized in Tab. 5 and Tab. 6.

The pressure distributions for this optimization are presented in Figs. 34–36, and the original and designed
shapes are compared in Figs. 37–38. In this particular problem, geometrical constraints (maintaining 95%
of the baseline maximum thickness) at different section have been satisfied.

In conclusion, it is important to highlight that in this final optimization, we have really just scratched the
surface of problem. Gradient-based techniques are very important, powerful tools for treating the present
type of shape design problem in aeronautics, and yet, the choices related to the right combination/scaling of
the design variables (wing, tail, and angle of attack) and constraints are fundamental in order to obtain fully
satisfactory solutions. Given the current optimizer technology, the intuition, experience, and decision-making
ability of the designer remain critical in this type of complex, industrial design process.
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Figure 34. Pressure contours at
station A y = 8m (baseline vs. de-
sign, AoA = 2.133, CL = 0.5, and
CMy = 0.0054).

Figure 35. Pressure contours at
station B y = 16m (baseline vs. de-
sign, AoA = 2.133, CL = 0.5, and
CMy = 0.0054).

Figure 36. Pressure contours at
station C y = 24m (baseline vs. de-
sign, AoA = 2.133, CL = 0.5, and
CMy = 0.0054).

Figure 37. Shape comparison baseline vs. design at
the main wing.

Figure 38. Shape comparison baseline vs. design at
the horizontal tail plane.

CL CD

Design problem Total Fuselage Fairing Wing Tail Total Fuselage Fairing Wing Tail

Baseline at AoA=2.37 0.50 0.07 -0.01 0.46 -0.02 301.3 92.9 18.8 178.5 11.0

Min CD, CL = 0.5 at AoA=2.37 0.50 0.07 -0.01 0.46 -0.02 297.7 92.8 18.7 175.8 10.4

Min CD, CL = 0.5 at AoA=2.133 0.50 0.07 -0.01 0.46 -0.02 294.1 89.8 18.6 174.6 11.0

Min CD, CL = 0.5, CM > −0.022

at AoA=2.2515 0.50 0.07 -0.01 0.47 -0.03 297.6 91.4 18.7 178.4 9.0

Min CD, CL = 0.5, CM > 0.0,

at AoA=2.133 0.50 0.07 -0.01 0.47 -0.03 298.9 90.2 18.7 181.6 8.3

Min CD, CL = 0.5, CM > 0.0,

MaxThickness > 95% at AoA=2.133 0.49 0.07 -0.01 0.47 -0.03 300.6 90.2 18.8 183.6 8.1

Table 5. Summary of the different optimizations (CL and CD).
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CMy

Design Total Fuselage Fairing Wing Tail

Baseline at AoA=2.37 -0.044 0.046 0.002 -0.158 0.066

Min CD, CL = 0.5 at AoA=2.37 -0.045 0.047 0.002 -0.170 0.076

Min CD, CL = 0.5 at AoA=2.133 -0.059 0.043 0.001 -0.174 0.071

Min CD, CL = 0.5, CM > −0.022

at AoA=2.2515 -0.022 0.046 0.002 -0.174 0.104

Min CD, CL = 0.5, CM > 0.0,

at AoA=2.133 -0.008 0.044 0.001 -0.177 0.123

Min CD, CL = 0.5, CM > 0.0,

MaxThickness > 95% at AoA=2.133 0.005 0.046 0.002 -0.171 0.129

Table 6. Summary of the different optimizations (CMy).

IV. Conclusions

This article has successfully demonstrated the use of the continuous adjoint methodology in the SU2
suite for large-scale aerodynamic shape design with a realistic aircraft configuration, the NASA CRM, and
unstructured meshes. The continuous adjoint methodology was detailed and then applied to a wide range
of optimization problems aimed at reducing the drag of the aircraft while imposing various constraints
on geometry (wing thicknesses), lift, and moments. In each scenario, the redesign produced meaningful
improvements in performance while satisfying constraints.

This type of continuous adjoint methodology exhibits a number of the qualities that we desire when
attempting large-scale shape design. In particular, obtaining a surface formulation for shape design gradi-
ents, the ability to tailor numerical solution methods for the adjoint equations (to help mitigate numerical
stiffness), and low overhead in terms of compute and memory (since much of the same code infrastructure
and numerical methods can be reused from the primal problem) make the continuous adjoint approach par-
ticularly attractive. The successful demonstration of the methodology at large-scale coupled with the above
qualities reinforce the tremendous potential for the application of continuous adjoints to realistic problems
of industrial interest.
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Appendix

In this appendix we give the main formulas required to compute the sensitivities discussed above.

A. Navier-Stokes equations

As usual in the Navier-Stokes equations, system (1) considers separately the convective terms, denoted by
~F c, and the viscous ones, denoted here by ~F v1 and ~F v2. They are given by

~F ci =


ρvi

ρviv1 + Pδi1

ρviv2 + Pδi2

ρviv3 + Pδi3

ρviH

 , ~F v1
i =


·
τi1

τi2

τi3

vjτij

 , ~F v2
i =


·
·
·
·

Cp∂iT

 , i = 1, . . . , 3 (26)

where vi are the Cartesian velocity components, H is the fluid enthalpy, δij is the Kronecker delta function,
and τij = ∂jvi+∂ivj− 2

3δij∇·~v. Recall that latin indexes i, j denote 3D Cartesian coordinates, with repeated
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indexes implying summation. In these formulas, Cp is the specific heat at constant pressure, T = P
Rρ is the

temperature, and R is the gas constant, so that for an ideal gas
Cp

R = γ
(γ−1) , with γ constant. In order to

close the system, the dynamic viscosity is assumed to satisfy the Sutherland’s law, µdyn = µ1T
3/2

T+µ2
, where µ1

and µ2 are also specified constants.

B. Linearized Navier-Stokes equations

In this section we compute ∂RU

∂U δU in (12).

∂RU
∂U

δU = ∇( ~AcδU)−∇ ·
(
~F vk

∂µktot
∂U

δU + µktot ~A
vkδU + µktotD

vk∇δU
)

(27)

where

∂µ1
tot

∂U
=
∂µdyn
∂U

+
∂µtur
∂U

,
∂µ2

tot

∂U
=

1

Prd

∂µdyn
∂U

+
1

Prt

∂µtur
∂U

and

∂µdyn
∂U

=
∂µdyn
∂T

∂T

∂U
,

∂µdyn
∂T

= µdyn
T + 3µ2

2T (T + µ2)
(28)

(29)

with ∂T
∂U = (γ−1)

Rρ

(
|~v|2 − E,−v1,−v2,−v3, 1

)
and ∂ρ

∂U = (1, 0, 0, 0, 0).

In (27) we have

~Ac =
(
Acx, A

c
y, A

c
z

)
, Aci =

∂ ~F c
i

∂U

∣∣∣
U(x,y,z)

~Avk =
(
Avkx , A

vk
y , A

vk
z

)
, Avki =

∂ ~Fvk
i

∂U

∣∣∣
U(x,y,z)

Dvk =

 Dvk
xx Dvk

xy Dvk
xz

Dvk
yx Dvk

yy Dvk
yz

Dvk
zx Dvk

zy Dvk
zz

 , Dvk
ij =

∂ ~Fvk
i

∂(∂jU)

∣∣∣
U(x,y,z)


i, j = 1 . . . 3, k = 1, 2 (29)

Defining for convenience a0 = (γ − 1), φ = (γ − 1) |~v|
2

2 , then we have

Aci =


· δi1 δi2 δi3 ·

−viv1 + δi1φ vi − (a0 − 1)viδi1 v1δi2 − a0v2δi1 v1δi3 − a0v3δi1 a0δi1

−viv2 + δi2φ v2δi1 − a0v1δi2 vi − (a0 − 1)viδi2 v2δi3 − a0v3δi2 a0δi2

−viv3 + δi3φ v3δi1 − a0v1δi3 v3δi2 − a0v2δi3 vi − (a0 − 1)viδi3 a0δi3

vi (φ−H) −a0viv1 +Hδi1 −a0viv2 +Hδi2 −a0viv3 +Hδi3 γvi



Av1
i =



· · · · ·
−ηi1 ∂i

(
1
ρ

)
+ 1

3∂1

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi1 ·

−ηi2 ∂2

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi2 ∂i

(
1
ρ

)
+ 1

3∂2

(
1
ρ

)
δi2 ∂2

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi2 ·

−ηi3 ∂3

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi3 ∂3

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi3 ∂i

(
1
ρ

)
+ 1

3∂3

(
1
ρ

)
δi3 ·

vjπij vj∂j

(
1
ρ

)
δi1 + ζi1 + 1

ρτi1 vj∂j

(
1
ρ

)
δi2 + ζi2 + 1

ρτi2 vj∂j

(
1
ρ

)
δi3 + ζi3 + 1

ρτi3 ·



Av2
i = γ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0
∂i

(
φ
ρ −

P
ρ2

)
−∂i

(
v1
ρ

)
−∂i

(
v2
ρ

)
−∂i

(
v3
ρ

)
∂i

(
1
ρ

)


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Dv1
ii =

1

ρ


· · · · ·

−
(
1 + 1

3δi1
)
v1

(
1 + 1

3δi1
)

· · ·
−
(
1 + 1

3δi2
)
v2 ·

(
1 + 1

3δi2
)

· ·
−
(
1 + 1

3δi3
)
v3 · ·

(
1 + 1

3δi3
)

·
−|~v|2 − 1

3v
2
i

(
1 + 1

3δi1
)
v1

(
1 + 1

3δi2
)
v2

(
1 + 1

3δi3
)
v3 ·



Dv1
ij =

1

ρ


· · · · ·

−viδj1 + 2
3vjδi1 δj1δi1 − 2

3δi1δj1 δj1δi2 − 2
3δi1δj2 δj1δi3 − 2

3δi1δj3 ·
−viδj2 + 2

3vjδi2 δj2δi1 − 2
3δi2δj1 δj2δi2 − 2

3δi2δj2 δj2δi3 − 2
3δi2δj3 ·

−viδj3 + 2
3vjδi3 δj3δi1 − 2

3δi3δj1 δj3δi2 − 2
3δi3δj2 δj3δi3 − 2

3δi3δj3 ·
− 1

3vivj vjδi1 − 2
3viδj1 vjδi2 − 2

3viδj2 vjδi3 − 2
3viδj3 ·

 (i 6= j)

Dv2
ii =

γ

ρ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0

(
φ− P

ρ

)
−v1 −v2 −v3 1


Dv2
ij = 05×5 (i 6= j)

where tensors η̄, π̄ and ζ̄ in the definition of Av1
i are given by

ηij = ∂i

(
vj
ρ

)
+ ∂j

(
vi
ρ

)
− 2

3
δij∇ ·

(
~v

ρ

)
πij = vj∂i

(
1

ρ

)
+ vi∂j

(
1

ρ

)
− 2

3
δij ~v · ∇

(
1

ρ

)
= ηij −

1

ρ
τij

ζij = vj∂i

(
1

ρ

)
− vi∂j

(
1

ρ

)
+

1

3
vi∂j

(
1

ρ

)
.

C. Adjoint formulas

In this section we give explicit formulas for the adjoint operators and boundary conditions. These are
obtained from the identity (13), which is deduced from the following integration by parts∫

Ω

ΨT
U

(
∂RU
∂U

δU

)
=

∫
Ω

(AUΨU )TδU −
∫
S

~ϕ · (δP ~n− δσ̄ · ~n)−
∫
S

(~g1 · ~ϕ+ g2∂nψ5)δT −
∫
S

ĝδS (26)

where we have used ∂ndS = −1. Here, domain integrals on the right hand side contain the adjoint operators,
given by

AUΨU = −∇ΨT
U · ~Ac −∇ ·

(
∇ΨT

U · µktotDvk
)

+∇ΨT
U · µktot ~Avk +∇ΨT

U · ~F vk
∂µktot
∂U

. (27)

The terms ~g1, g2 and ĝ appearing in the boundary integrals in (C) are given by

~g1 =
∂µdyn
∂T

~n · τ̄ , g2 = Cpµ
2
tot (28)

ĝ = −(ρψ1 + ρHψ5)(∂n~v · ~n) + ψ5~n · σ̄ · ∂n~v − ~n · Σ̄ϕ · ∂n~v
−ψ5σ̄ : ∇~v + µ2

totCp∇Sψ5 · ∇ST (28)

where σ̄ : ∇~v = σij∂ivj , with

Σ̄ϕ = µ1
tot

(
∇~ϕ+∇~ϕT − Id

2

3
∇ · ~ϕ

)
.

Some of the terms in ĝ above can be simplified. In particular, taking into account that ~v = 0 and ∇S~v = 0
on the obstacle surface, we have ∇~v = ∂jvi = ∂nvinj . Therefore

σ̄ : ∇~v = σij∂nvinj = ~n · σ̄ · ∂n~v on S,
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and the second and fourth terms in (28) cancel. On the other hand, the continuity equation yields ∇ ·~v = 0
on S. Hence

0 = ∇ · ~v = ∂ivi = ∂nvini = ∂n~v · ~n on S,

and the first term in (28) also cancels. Thus, the term ĝ reads

ĝ = −~n · Σ̄ϕ · ∂n~v + µ2
totCp∇Sψ5 · ∇ST. (28)
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