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This article presents the development and application of a new unsteady continuous ad-
joint formulation for optimal shape design. The arbitrary Lagrangian-Eulerian (ALE) form
of the unsteady, compressible Reynolds-averaged Navier-Stokes (RANS) equations with a
generic source term is considered, and from these governing flow equations, an adjoint for-
mulation centered around finding surface sensitivities using shape calculus is derived. This
surface formulation provides the gradient information necessary for performing gradient-
based aerodynamic shape optimization. To verify the methodology, gradients provided by
the continuous adjoint and finite differencing approaches are compared. Optimal shape
design is demonstrated in both two and three dimensions for pitching airfoil and wing test
cases.

Nomenclature

V ariable Definition

c Airfoil chord length
cp Specific heat at constant pressure
~d Force projection vector
~f Force vector on the surface
j Scalar function defined at each point on S
~n Unit normal vector
p Static pressure
t Time variable
to Initial time
tf Final time
~uΩ Velocity of a moving domain (mesh velocity)
~v Flow velocity vector
v∞ Freestream velocity
~Ac Jacobian of the convective flux with respect to U
~Avk Jacobian of the viscous fluxes with respect to U
¯̄Dvk Jacobian of the viscous fluxes with respect to ∇U
Cp Coefficient of pressure
E Total energy per unit mass
~F c Convective flux
~F cale Convective flux in arbitrary Lagrangian-Eulerian (ALE) form
~F vk Viscous fluxes
H Stagnation enthalpy
¯̄I Identity matrix
J Cost function defined as an integral over S
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J Lagrangian
M∞ Freestream Mach number
Prd Dynamic Prandtl number
Prt Turbulent Prandtl number
R Gas constant
R(U) System of governing flow equations
S Solid wall flow domain boundary
T Temperature
T Time interval, tf − to
U Vector of conservative variables
W Vector of characteristic variables
γ Ratio of specific heats, γ = 1.4 for air
ρ Fluid density
~ϕ Adjoint velocity vector
¯̄σ Second order tensor of viscous stresses, ¯̄σ = µ1

tot
¯̄τ = µ1

tot[∇~v +∇~vT − 2
3

¯̄I(∇ · ~v)]
µ1
tot Total viscosity as a sum of dynamic and turbulent components, µ1

tot = µdyn + µtur
µ2
tot Effective thermal conductivity, µ2

tot =
µdyn
Prd

+ µtur
Prt

Γ Flow domain boundary
Ψ Vector of adjoint variables
Ω Flow domain

Mathematical Notation

~b Spatial vector b ∈ Rn, where n is the dimension of the physical cartesian space (in general, 2 or 3)
B Column vector or matrix B, unless capitalized symbol clearly defined otherwise
~B ~B = (Bx, By) in two dimensions or ~B = (Bx, By, Bz) in three dimensions
∇(·) Gradient operator
∇ · (·) Divergence operator
∂n(·) Normal gradient operator at a surface point, ~nS · ∇(·)
∇S(·) Tangential gradient operator at a surface point, ∇(·)− ∂n(·)~nS
· Vector inner product
× Vector cross product
⊗ Vector outer product
BT Transpose operation on column vector or matrix B
δ(·) Denotes first variation of a quantity

I. Introduction

Many practical flows of aerodynamic interest are unsteady in nature, and with the increasing power of
computational resources and advanced algorithms, accurately predicting and designing for the performance
of aerospace systems in an unsteady environment is becoming more tractable and more of a necessity.
Several examples of engineering applications that could immediately benefit from a truly time-accurate
design approach are open rotors, rotorcraft, turbomachinery, wind turbines, maneuvering flight, or flapping
flight, to name a few. An unsteady treatment of these flows will also directly enable multidisciplinary design,
analysis, and optimization involving other time-dependent physics associated with these systems, such as
their structural or acoustic responses. Consequently, these new unsteady methodologies will enable the
design of next-generation aerospace vehicles with reduced fuel burn, emissions, and noise..

Computational cost is paramount for design in unsteady flows. Due to the increased cost of time-accurate
calculations, efficient methods for computing sensitivity information are a must. The adjoint approach to
sensitivity analysis1–3 is an appealing option, as its computational cost is independent of the number of design
variables. However, adjoint formulations for unsteady problems are less common and more challenging due
to the potentially prohibitive storage requirements associated with managing the time-accurate solution data
that is needed for the solution of the corresponding unsteady adjoint equations.

Moreover, the engineering applications mentioned above also involve moving aerodynamic surfaces, and
this motion must be taken into account by the governing flow equations (including the boundary conditions)
and, subsequently, by the adjoint equations. Solving the governing equations in arbitrary Lagrangian-
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Eulerian (ALE) form addresses the issue, but it adds an additional layer of complexity to the problem,
as the motion of the surface and surrounding volume mesh must be treated in time. The derivation of a
continuous adjoint based on the ALE form of the equations requires consideration of the dynamic surfaces
and meshes, and the terms related to the motion of the domain appear explicitly in the adjoint system,
boundary conditions, and expressions for the surface sensitivities.

Despite the challenges, recent work demonstrating the viability of unsteady adjoint approaches across a
range of applications suggests a growing interest in and capability for design in unsteady flows. Nadarajah
and Jameson4 performed shape design for pitching airfoils using the Euler equations with both continuous and
discrete adjoints and compared the unsteady approach to multi-point design. Rumpfkiel and Zingg5 used a
discrete adjoint formulation for the control of unsteady flows in two dimensions, including drag minimization
for flows past bluff bodies and inverse design of a multi-element airfoil for noise. Mavriplis and Mani6,7

formulated an unsteady, discrete adjoint for turbulent flows on dynamically deforming, unstructured meshes
in both two and three dimensions. More recently, Nielsen et al.8,9 have demonstrated an unsteady, discrete
adjoint approach for design in turbulent flows on dynamic, possibly overset, deforming meshes. Economon
et al.10 investigated an unsteady continuous adjoint for inviscid flows around pitching airfoils on meshes
with sliding mesh interfaces.

In certain situations, complementary approaches are available to help reduce the cost or complexity of
the problem. For some rotating applications, the governing flow equations can be recast into a rotating
frame of reference moving with the body. This transformation allows for the steady solution of a problem
that was unsteady in the inertial frame, and consequently, it can considerably reduce the computational
cost of these calculations. However, the rotational speed of the surface and volume mesh must still be
accounted for in this formulation, along with an additional source term in the momentum equations. Several
publications have addressed adjoint-based shape design using this form of the equations. Lee and Kwon11

presented a continuous adjoint formulation for inviscid, hovering rotor flows on unstructured meshes. Discrete
adjoint formulations for the RANS equations in a rotating frame have been shown by Nielsen et al.12 with
the Spalart-Allmaras turbulence model on unstructured meshes and by Dumont et al.13 with the k − ω
turbulence model and the shear stress transport correction on structured meshes. Economon et al.14,15 have
shown both inviscid and viscous continuous adjoint formulations in a rotating frame.

Another complementary approach for unsteady problems with inherent time-periodicity is the time-
spectral method,16 or similarly, non-linear frequency domain methods.17,18 These approaches allow for the
solution of a periodic steady state directly by introducing the periodicity explicitly in the discretization of the
time derivative term of the flow equations. By trading memory cost for calculation time, these spectral meth-
ods greatly reduce the time-to-solution for achieving a periodic steady state. Adjoint approaches for these
periodic methods have been effectively employed for design, including the design of helicopter rotors.19–21

The majority of the previous work related to unsteady adjoints has been discrete in nature, and while
a discrete adjoint approach can often be more straightforward to implement, especially if algorithmic dif-
ferentiation is available, this article presents advances in the continuous approach. Flow unsteadiness, the
motion of solid walls, or the presence of source terms in the governing equations can complicate matters,
but the appeal of obtaining a surface formulation for shape design gradients (without a dependence on vol-
ume mesh sensitivities) and the ability to tailor numerical solution methods for the adjoint equations (to
help mitigate numerical stiffness and other convergence issues while avoiding memory overhead) make the
continuous adjoint approach particularly attractive.

This article presents details on the derivation of the unsteady continuous adjoint equations, their admis-
sible boundary conditions, and the expressions for surface sensitivity. In particular, the goal is to derive and
present a new continuous adjoint surface formulation that is widely applicable by treating the compress-
ible, unsteady RANS equations while allowing for dynamic surfaces and the possibility of source terms. In
this manner, a new set of interesting engineering problems in unsteady flows can be addressed using the
continuous adjoint.

From the general scenario of viscous, unsteady flow, the corresponding adjoint formulations for inviscid,
rotating frame, or even steady problems can be easily recovered from the general framework. Moreover, as
the unsteady continuous adjoint equations are a system of partial differential equations (PDEs), they can
be discretized in time using any approach (just as in space), which offers even more flexibility. For example,
the equations can be immediately discretized with a time-spectral operator to give a time-spectral adjoint
approach.

The key contributions of this article are centered around the detailed derivation, implementation, and
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application of the unsteady continuous adjoint formulation for aerodynamic design on dynamic meshes. More
specifically and to the author’s knowledge, the methodology is the first continuous adjoint surface formula-
tion based on shape calculus for the unsteady, compressible RANS equations in ALE form with a generic
source term. A shape design framework has been implemented within an open-source software suite for the
numerical solution of PDEs and PDE-constrained optimization problems on general, unstructured meshes.
The unsteady continuous adjoint methodology and shape design framework are demonstrated through two
separate test cases in 2D and 3D.

The paper is organized as follows. Section II briefly overviews the unsteady, compressible RANS equa-
tions, including the accompanying boundary conditions and turbulence modeling. Section III contains a
derivation of the unsteady continuous adjoint formulation for computing surface sensitivities. Section IV
details the numerical implementation of the components needed for automatic shape design: numerical
methods for PDE analysis, geometry parameterization (design variable definition), mesh deformation, and
the optimization framework. Section V presents results for two- and three-dimensional optimal shape de-
sign demonstrations using the NACA 64A010 airfoil and ONERA M6 wing as baseline geometries. Lastly,
Section VI summarizes the main conclusions of the article.

II. Physical Problem Description

⌦
�1

S
~nS

~n�1

Figure 1. Notional schematic of the flow do-
main, Ω, the boundaries, Γ∞ and S, as well
as the definition of the surface normals.

Consider an aerodynamic body or surface S immersed in a
fluid represented by a domain Ω as shown in Fig. 1. Through-
out the domain in both space and time, the behavior of the fluid
is physically modeled by a particular set of governing PDEs,
represented by R(U) = 0, where U = U(~x, t) is the state of the
fluid at a point in Ω at a given instance in time. In general,
the positions of S and Ω may vary with time, or S = S(t) and
Ω = Ω(t).

We are concerned with time-accurate, viscous flow around
aerodynamic bodies in arbitrary motion governed by the com-
pressible, unsteady Navier-Stokes equations, which are state-
ments of conservation for mass, momentum, and energy in the
fluid. The equations are expressed in a domain Ω ⊂ R3 with a
disconnected boundary that is divided into a far-field compo-
nent Γ∞ and an adiabatic wall boundary S as seen in Fig. 1.
The surface S represents the outer mold line of an aerodynamic
body, such as a wing or a full aircraft configuration. These con-
servation equations along with a generic source term Q can be
expressed in an arbitrary Lagrangian-Eulerian (ALE)22 differ-
ential form as 

R(U) = ∂U
∂t +∇ · ~F cale −∇ · (µ1

tot
~F v1 + µ2

tot
~F v2)−Q = 0 in Ω t > 0

~v = ~uΩ on S

∂nT = 0 on S

(W )+ = W∞ on Γ∞

(1)

where the conservative variables are given by

U =


ρ

ρ~v

ρE

 , (2)

and the convective fluxes, viscous fluxes, and source term are

~F cale =


ρ(~v − ~uΩ)

ρ~v ⊗ (~v − ~uΩ) + ¯̄Ip

ρE(~v − ~uΩ) + p~v

 , ~F v1 =


·
¯̄τ

¯̄τ · ~v

 , ~F v2 =


·
·

cp∇T

 , Q =


qρ

~qρ~v
qρE

 , (3)
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ρ is the fluid density, ~v = {v1, v2, v3}T ∈ R3 is the flow speed in a Cartesian system of reference, ~uΩ is the
velocity of a moving domain (mesh velocity after discretization), E is the total energy per unit mass, p is
the static pressure, cp is the specific heat at constant pressure, T is the temperature, and the viscous stress
tensor can be written in vector notation as

¯̄τ = ∇~v +∇~vT − 2

3
¯̄I(∇ · ~v). (4)

Assuming a perfect gas with a ratio of specific heats, γ, and gas constant, R, the pressure is determined from

p = (γ − 1)ρ

[
E − 1

2
(~v · ~v)

]
, (5)

the temperature is given by

T =
p

ρR
, (6)

and

cp =
γR

(γ − 1)
. (7)

The second line in equation system (1) represents the no-slip condition at a solid wall, the third line
represents an adiabatic condition at the wall, and the final line represents a characteristic-based bound-
ary condition at the far-field where the fluid state at the boundary is updated using the state at infinity
(free-stream conditions) depending on the sign of the eigenvalues.23 Here, W represents the characteris-
tic variables. For problems on fixed grids (i.e., ~uΩ = 0), the system in (1) reduces to a purely Eulerian
formulation.

For unsteady problems, the temporal conditions will be problem dependent, and in this article, we are
interested in time-periodic flows where the initial and terminal conditions do not affect the time-averaged
behavior over the time interval of interest, such as prescribed pitching, plunging, or rotational motion of
the domain at constant frequencies. Therefore, we use the free-stream fluid state as the initial condition for
the mean flow in conjunction with integration over multiple periods of oscillation, which removes transient
effects by reaching a periodic steady state.

A. Turbulence Modeling

We are also concerned with obtaining solutions of the unsteady Reynolds-averaged Navier-Stokes equations,
which will require the inclusion of a suitable turbulence model. In accord with the standard approach to
turbulence modeling based upon the Boussinesq hypothesis,24 which states that the effect of turbulence
can be represented as an increased viscosity, the total the viscosity is divided into laminar and turbulent
components, or µdyn and µtur, respectively. In order to close the system of equations, the dynamic viscosity
µdyn is assumed to satisfy Sutherland’s law25 as a function of temperature alone, or µdyn = µdyn(T ), and
the turbulent viscosity µtur is computed via a selected turbulence model.

Turbulence and the mean flow become coupled by replacing the dynamic viscosity in the momentum and
energy equations in the Navier-Stokes equations with

µ1
tot = µdyn + µtur, µ2

tot =
µdyn
Prd

+
µtur
Prt

, (8)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively. Here, µ2
tot represents the

effective thermal conductivity, which is written in a nonstandard notation to obtain reduced expressions in
the calculus below.

The turbulent viscosity, µtur, is obtained from a turbulence model dependent on the flow state and a set
of new state variables for turbulence, ν̂, i.e., µtur = µtur(U, ν̂). We assume that ν̂ is a single scalar variable
obtained from a one-equation turbulence model. The Spalart-Allmaras (S-A) model26 is one of the most
common and widely used turbulence models for the analysis and design of engineering applications affected
by turbulent flows, especially applications in external aerodynamics. The S-A model is used for all of the
turbulent calculations in this article.
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III. Surface Sensitivities Via a Time-Accurate Continuous Adjoint

A typical shape optimization problem seeks the minimization of a cost function J(S) as chosen by the
designer, with respect to changes in the shape of the boundary S. Initially, we will concentrate on a generic
functional defined as a time-averaged, integrated quantity on the solid surface which depends on a scalar
j evaluated at each point on S as a function of the force on the surface, surface temperature, or heat flux
through the surface.

�S~nS

S

S0

~x

Figure 2. An infinitesimal shape deformation in
the local surface normal direction.

We note that any changes to the shape of S will re-
sult in perturbations in the fluid state U in the domain,
and that these variations in the state are constrained to
satisfy the system of governing equations, i.e., R(U) = 0
must be satisfied for any candidate shape of S. Therefore,
the optimal shape design problem can be formulated as a
PDE-constrained optimization problem:

min
S
J(S) =

1

T

∫ tf

to

∫
S

j(~f, T, ∂nT, ~n) ds dt

subject to: R(U) = 0 (9)

where T = tf − to is the time interval of interest, ~f =
(f1, f2, f3) is the time-dependent force on the surface, T
is the temperature, and ~n is the outward-pointing unit

vector normal to the surface S. In this work, S is assumed to be continuously differentiable (C1), and the
local shape perturbations applied to S can be described by

S′ = {~x+ δS(~x)~n(~x) : ~x ∈ S}, (10)

where S has been deformed to a new surface shape, S′, by applying an infinitesimal profile deformation δS
in the local normal direction ~n at a point on the surface ~x as shown in Fig. 2.

The minimization of Eqn. 9 can be considered a problem in optimal control theory where the behavior
of the governing flow equation system is controlled by the shape of the boundary S. As we are interested
in gradient-based optimization, the goal is to compute the first variation of J(S) caused by multiple, small
perturbations of the surface and to use this sensitivity information to drive our geometric changes in order
to find an optimal shape for S.

A. Variation of the Functional

The first step is to evaluate the gradient of the functional in infinite-dimensional space with respect to the
infinitesimal boundary perturbations, which gives

δJ =
1

T

∫ tf

to

∫
δS

j(~f, T, ∂nT, ~n) ds dt+
1

T

∫ tf

to

∫
S

δj(~f, T, ∂nT, ~n) ds dt, (11)

where for conciseness in notation, we use
∫
δS

(·) ds =
∫
S′(·) ds −

∫
S

(·) ds as a shorthand. Note that taking
the variation results in two separate terms: the first term depends on the variation of the geometry and the
value of the scalar function in the original state, while the second term depends on the original geometry
and the variation of the scalar function caused by the deformation.

Eqn. 11 can be simplified by using formulas from differential geometry and expressing the first variation
more explicitly in terms of the independent variables of the functional. It can be shown27 that

∫
δS
j ds =∫

S
(∂nj − 2Hmj)δS ds, where Hm is the mean curvature of S computed as (κ1 + κ2)/2, where (κ1, κ2) are

curvatures in two orthogonal directions on the surface. Using this relationship, the first term on the right
hand side of Eqn. 11 becomes:∫

δS

j(~f, T, ∂nT, ~n) ds =

∫
S

(∂nj − 2Hmj) δS ds

=

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
n T − 2Hmj

)
δS ds, (12)
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where from the chain rule and our functional definition,

∂nj = ~n · ∇j(~f, T, ∂nT, ~n) =
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
n T. (13)

The second term on the right hand side of Eqn. 11 can also be further manipulated by focusing on δj:

δj(~f, T, ∂nT, ~n) =
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS) (14)

where we have used δ~n = −∇S(δS), which holds for small deformations.28 Here, ∇S represents the tangential
gradient operator on S. Combining results from Eqns. 12 and 14 and introducing them into Eqn. 11 gives
an intermediate expression for the variation of the functional:

δJ =
1

T

∫ tf

to

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
n T − 2Hmj

)
δS ds dt

+
1

T

∫ tf

to

∫
S

(
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS)

)
ds dt. (15)

While other options are possible, we will focus on a force-based objective function that depends only on
~f in the following way

j(~f) = ~d · ~f, (16)

such that
∂j

∂ ~f
= ~d,

∂j

∂T
= 0,

∂j

∂(∂nT )
= 0,

∂j

∂~n
= ~0, (17)

where ~d = ~d(~x, t) is the force projection vector which can be chosen to relate the force on the surface ~f to
a desired quantity of interest. For unsteady problems, the force projection vector can be a function of both
space and time. The local normal vector ~n could also be chosen for ~d, but additional terms involving ∂j

∂~n
would arise. For many typical aerodynamic applications, the force projection vector is constant, and some
likely candidates are

~d =



(
1
C∞

)
(cos α cos β, sin α cos β, sin β), CD Drag,(

1
C∞

)
(− sin α, cos α, 0), CL Lift,(

1
C∞

)
(− sin β cos α,− sin β sin α, cos β), CSF Side-force,(

1
C∞CD

)
(− sinα− CL

CD
cosα cosβ,−CL

CD
sinβ, cosα− CL

CD
sinα cosβ), CL

CD
L/D,(

1
C∞

)
(0, 0, 1), Cfz Z-Force,(

1
C∞Lref

)
(−(y − yo), (x− xo), 0), Cmz Z-Moment,

(18)

where C∞ = 1
2v

2
∞ρ∞Az, v∞ is the freestream velocity, ρ∞ is the freestream density, Lref is a reference length

for computing moments, Az is the reference area, α is the freestream angle of attack, and β is the side-slip
angle. In practice for a three-dimensional surface, the sum of all positive components in the z-direction of
the normal surface vectors is used for the projection Az. A pre-specified reference area can also be used in
a similar fashion, and this is an established procedure in applied aerodynamics.

After choosing a force-based functional and imposing the relationships in Eqn. 17 above, the variation of
the functional in Eqn. 15 is simplified to

δJ =
1

T

∫ tf

to

∫
S

(
~d · ∂n ~f − 2Hm(~d · ~f )

)
δS ds dt+

1

T

∫ tf

to

∫
S

~d · δ ~f ds dt, (19)

where f will take a different form depending on whether viscous or inviscid flow is governing.
For viscous flows, the force on the surface is composed of a pressure component along with a component

due to viscous stresses. It can be expressed as ~f = (¯̄Ip− ¯̄σ) · ~n, and therefore,

δ ~f = δ
[
( ¯̄Ip− ¯̄σ) · ~n

]
= (¯̄Iδp− δ ¯̄σ) · ~n− ( ¯̄Ip− ¯̄σ) · ∇S(δS), (20)
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where we have again used δ~n = −∇S(δS). By introducing Eqn. 20, Eqn. 19 can be rearranged as

δJ =
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt+
1

T

∫ tf

to

∫
S

[
~d · ∂n ~f − 2Hm(~f · ~d )

]
δS ds dt

− 1

T

∫ tf

to

∫
S

~d · ( ¯̄Ip− ¯̄σ) · ∇S(δS) ds dt. (21)

The final term of Eqn. 21 can be integrated by parts to give

δJ =
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt+
1

T

∫ tf

to

∫
S

[
~d · ∂n ~f − 2Hm(~f · ~d )

]
δS ds dt

− 1

T

∫ tf

to

∫
S

∇S ·
[
~d · ( ¯̄Ip− ¯̄σ)δS

]
ds dt+

1

T

∫ tf

to

∫
S

∇S ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
δS ds dt

=
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt

+
1

T

∫ tf

to

∫
S

{
∇S ·

[
~d · ( ¯̄Ip− ¯̄σ)

]
+ ~d · ∂n ~f − 2Hm(~f · ~d )

}
δS ds dt, (22)

where we have rearranged and used the identity
∫
S
∇S · (·) ds = 0 on a closed surface in going from the first

to second lines. Focusing now on the braced portion of the integrand in the final term in Eqn. 22, further
simplifications can be made:

∇S ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
+ ~d · ∂n ~f − 2Hm(~f · ~d )

= ∇S ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
+ ∂n(~d · ~f )− 2Hm(~d · ~f )− ~f · ∂n~d

= ∇S ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
+ ∂n

[
~d · ( ¯̄Ip− ¯̄σ) · ~n

]
− 2Hm

[
~d · ( ¯̄Ip− ¯̄σ) · ~n

]
− ( ¯̄Ip− ¯̄σ) · ~n · ∂n ~d

= ∇ ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
− ( ¯̄Ip− ¯̄σ) · ~n · ∂n~d (23)

, where we have used the product rule in going from the first to second lines and the divergence expressed
on the surface ∇ · ~q = ∇S · ~q + ∂n(~q · ~n)− 2Hm(~q · ~n) with ~q being an arbitrary vector that, in this case, is

described by ~d · ( ¯̄Ip− ¯̄σ). Substituting the result of Eqn. 23 back into Eqn. 22 gives a near final expression
for the variation of the functional,

δJ =
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt+
1

T

∫ tf

to

∫
S

{
∇ ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
− ( ¯̄Ip− ¯̄σ) · ~n · ∂n ~d

}
δS ds dt. (24)

Lastly, the final term in Eqn. 24 can be simplified for easier calculation (and to remove higher-order deriva-
tives) by using information from the Navier-Stokes equations. Expanding the divergence term gives,

∇ ·
[
~d · ( ¯̄Ip− ¯̄σ)

]
= ∇~d : ( ¯̄Ip− ¯̄σ) + ~d · ∇ · ( ¯̄Ip− ¯̄σ)

= ∇~d : ( ¯̄Ip− ¯̄σ) + ~d · (∇p−∇ · ¯̄σ)

= ∇~d : ( ¯̄Ip− ¯̄σ) + ~d · [~qρ~v − ∂t(ρ~v)] , (25)

where in going from the third to fourth line of Eqn. 25, we have used the momentum equation written on
the surface (including unsteadiness and source term effects). The variation of the functional can then be
written concisely as

δJ =
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt

+
1

T

∫ tf

to

∫
S

{
~d · [~qρ~v − ∂t(ρ~v)] +∇~d : ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n~d

}
δS ds dt. (26)

Note that, for a steady problem without source terms and with a constant force projection vector, the second
integral in Eqn. 26 vanishes.
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B. The Adjoint Approach to Optimal Design

Following the adjoint approach to optimal design, Eqn. 9 can be transformed into an unconstrained opti-
mization problem by including the inner product of an adjoint state vector Ψ = Ψ(~x, t) and the governing
equations integrated over the domain (space and time) in order to form the Lagrangian:

J =
1

T

∫ tf

to

∫
S

j(~f, T, ∂nT, ~n) ds dt− 1

T

∫ tf

to

∫
Ω

ΨTR(U) dΩ dt, (27)

where we have introduced the adjoint variables, which operate as Lagrange multipliers and are defined as

Ψ =



ψρ

ψρv1
ψρv2
ψρv3
ψρE


=


ψρ

~ϕ

ψρE

 . (28)

Note that, because the flow equations must be satisfied in the domain, or R(U) = 0, the original functional
in Eqn. 9 and the Lagrangian in Eqn. 27 are equivalent. Moreover, because it is equal to zero, it is equivalent
to add or subtract the second term in the Lagrangian, and we will choose to subtract for convenience in
signs. To find the gradient information needed to minimize the objective function, we repeat the process of
taking the first variation of Eqn. 27:

δJ = δJ − 1

T

∫ tf

to

∫
Ω

ΨTδR(U) dΩ dt, (29)

where the variation of the original functional, δJ , remains unchanged from expressions derived above and a
new term involving the linearized governing equations, δR(U), has appeared. The goal then is to perform
manipulations involving the analytic sensitivity information provided by the linearized equations (along
with linearized forms of the boundary conditions) that will remove any dependence on variations of the flow
variables. In this manner, the cost of evaluating both J and δJ will become independent of the number of
surface perturbations (design variables), thus offering an efficient method for sensitivity analysis in a large
design space.

C. The Linearized Navier-Stokes Equations

The second term on the right hand side of Eqn. 29 can be expanded by including the version of the governing
equations that has been linearized with respect to the small perturbations of the surface, or δR(U). The
deformation of the surface will induce perturbations in the solution δU as well as the gradient of the solution
δ(∇U). To complete the linearized system of equations, the boundary conditions corresponding to the
original governing system must also be linearized.

In this work, we will assume that the perturbations of the surface do not affect the value of the viscosity,
or δµktot = 0. This is known as the constant, or frozen, viscosity assumption, and it is commonly used with the
adjoint approach to reduce the complexity inherent in including sensitivity information for the viscosity, which
may require the treatment of a turbulence model. The validity of this assumption is problem-dependent,
but in a wide variety of situations, it leads to accurate sensitivity information.

Under the frozen viscosity assumption, the linearized governing equations become,
δR(U) = ∂

∂t (δU) +∇ ·
(
~Ac − ¯̄I~uΩ − µktot ~Avk

)
δU −∇ · µktot ¯̄Dvkδ(∇U)− ∂Q

∂U δU = 0 in Ω t > 0

δ~v = −∂n(~v − ~uΩ)δS on S

∂n(δT ) = ∇T · ∇S(δS)− ∂2
n(T )δS on S

(δW )+ = 0 on Γ∞

(30)

where we have assumed the use of an adiabatic wall condition and introduced the following Jacobian matrices
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that can be found in the appendix,

~Ac =
(
Acx, A

c
y, A

c
z

)
, Aci =

∂ ~F ci
∂U

∣∣∣
U(x,y,z)

~Avk =
(
Avkx , A

vk
y , A

vk
z

)
, Avki =

∂ ~Fvki
∂U

∣∣∣
U(x,y,z)

¯̄Dvk =

 Dvk
xx Dvk

xy Dvk
xz

Dvk
yx Dvk

yy Dvk
yz

Dvk
zx Dvk

zy Dvk
zz

 , Dvk
ij =

∂ ~Fvki
∂(∂jU)

∣∣∣
U(x,y,z)


i, j = 1 . . . 3, k = 1, 2. (31)

D. The Unsteady Continuous Adjoint Equations

After introducing the linearized Navier-Stokes equations, linearized boundary conditions, and δJ from
Eqn. 26 into Eqn. 29 and rearranging for clarity, the variation of the functional takes the following form
after manipulation and evaluation of boundary integrals by hand,

δJ =
1

T

∫ tf

to

∫
S

~d · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt− 1

T

∫ tf

to

∫
S

(~ϕ+ ψρE~v ) · ( ¯̄Iδp− δ ¯̄σ) · ~n ds dt

+
1

T

∫ tf

to

∫
S

{
~d · [~qρ~v − ∂t(ρ~v)] +∇~d : ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n~d

}
δS ds dt

− 1

T

∫
Ω

[
ΨTδU

]tf
to
dΩ +

1

T

∫ tf

to

∫
S

ϑ∂n(~v − ~uΩ)δS · ~n ds dt

+
1

T

∫ tf

to

∫
S

{
−ψρE∂n(~v − ~uΩ)δS · ¯̄σ · ~n+ ψρEµ

2
totcp[∇T · ∇S(δS)− ∂2

n(T )]δS
}
ds dt

− 1

T

∫ tf

to

∫
S

[
−~n ·

(
¯̄Σϕ + ¯̄ΣψρE

)
· ∂n(~v − ~uΩ)δS + µ2

totcp∂n(ψρE)δT
]
ds dt

− 1

T

∫ tf

to

∫
Ω

[
−∂ΨT

∂t
−∇ΨT ·

(
~Ac − ¯̄I~uΩ − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U

]
δU dΩ dt. (32)

The form of the adjoint equations along with the admissible adjoint boundary conditions has become
clear, and many of the terms on the right hand side of Eqn. 32 can be eliminated by satisfying the adjoint
system:

−∂ΨT

∂t −∇ΨT ·
(
~Ac − ¯̄I~uΩ − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U = 0 in Ω t > 0

~ϕ = ~d− ψρE ~v on S

∂n(ψρE) = 0 on S

Ψ = 0 in Ω t = to, tf .

(33)

Note that a sign change has occurred for the terms involving the time derivative and the convective flux due
to the integration by parts procedure. As a result, reverse time integration will be required and the sign of
the characteristic velocities is flipped in the adjoint problem, causing characteristic information to propagate
in the reverse direction.

The remaining terms can be gathered as,

δJ =
1

T

∫ tf

to

∫
S

{
~d · [~qρ~v − ∂t(ρ~v)] +∇~d : ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n~d

}
δS ds dt

+
1

T

∫ tf

to

∫
S

[
ϑ∂n(~v − ~uΩ) · ~n− ψρE∂n(~v − ~uΩ) · ¯̄σ · ~n+ ~n ·

(
¯̄Σϕ + ¯̄ΣψρE

)
· ∂n(~v − ~uΩ)

]
δS ds dt

+
1

T

∫ tf

to

∫
S

ψρEµ
2
totcp

[
∇T · ∇S(δS)− ∂2

n(T )δS
]
ds dt. (34)

One final simplification can be made in order to avoid the need to compute higher order derivatives of the
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temperature. Starting from the final term in Eqn. 34,

ψρEµ
2
totcp

[
∇T · ∇S(δS)− ∂2

n(T )δS
]

= ψρEµ
2
totcp∇T · ∇S(δS)− ψρE

[
∇ · (µ2

totcp∇T )−∇S · (µ2
totcp∇ST )

]
δS

= ψρEµ
2
totcp∇T · ∇S(δS) + ψρEδS∇S · (µ2

totcp∇ST )− ψρE∇ · (µ2
totcp∇T )δS, (35)

and the second term on the right hand side of Eqn. 35 can be integrated by parts as

∇S ·
[
ψρEδSµ

2
totcp∇ST

]
= ∇S(ψρEδS) · (µ2

totcp∇ST ) + ψρEδS∇S ·
(
µ2
totcp∇ST

)∫ tf

to

∫
S

∇S ·
[
ψρEδSµ

2
totcp∇ST

]
ds dt =

∫ tf

to

∫
S

∇S(ψρEδS) · (µ2
totcp∇ST ) ds dt

+

∫ tf

to

∫
S

ψρEδS∇S ·
(
µ2
totcp∇ST

)
ds dt∫ tf

to

∫
S

ψρEδS∇S ·
(
µ2
totcp∇ST

)
ds dt =

∫ tf

to

∫
S

−∇S(ψρEδS) · (µ2
totcp∇ST ) ds dt, (36)

where we have formed the product rule, integrated in space and time in going from the first to second lines,
and changed the order of integration, used the identity

∫
S
∇S · (·) ds = 0 on a closed surface, and rearranged

in going to the third line. Using the result of Eqn. 36 in Eqn. 35 gives,

= ψρEµ
2
totcp∇T · ∇S(δS)−∇S(ψρEδS) · (µ2

totcp∇ST )− ψρE∇ · (µ2
totcp∇T )δS

= µ2
totcp∇ST · [ψρE · ∇S(δS)−∇S(ψρEδS)]− ψρE∇ · (µ2

totcp∇T )δS

= −µ2
totcp∇ST · ∇S(ψρE)δS − ψρE∇ · (µ2

totcp∇T )δS, (37)

and by expressing the energy equation on the surface (i.e., imposing the no-slip and heat flux boundary
conditions) and substituting the result into Eqn. 37, we find that

ψρEµ
2
totcp

[
∇T · ∇S(δS)− ∂2

n(T )δS
]

= −µ2
totcp∇S(ψρE) · ∇S(T )− ψρE [p(∇ · ~v)− ¯̄σ : ∇~v + ∂t(ρE) + (~qρ~v − ∂t(ρ~v)) · ~v − qρE ] . (38)

Therefore, the final expression for the variation of the Lagrangian then becomes

δJ =
1

T

∫ tf

to

∫
S

{~d · [~qρ~v − ∂t(ρ~v)] +∇~d : ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n~d+ ϑ∂n(~v − ~uΩ) · ~n

− ψρE∂n(~v − ~uΩ) · ¯̄σ · ~n+ ~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· ∂n(~v − ~uΩ)− µ2

totcp∇S(ψρE) · ∇S(T )

− ψρE [p(∇ · ~v)− ¯̄σ : ∇~v + ∂t(ρE) + (~qρ~v − ∂t(ρ~v)) · ~v − qρE ]}δS ds dt,

=
1

T

∫ tf

to

∫
S

{
∂J
∂S

}
δS ds dt, (39)

where all of the terms composing ∂J
∂S form the surface sensitivity. Note that the final expression for the

variation involves only a surface integral and has no dependence on the volume mesh. Furthermore, several
new terms appear that directly involve time derivatives, source terms, or the arbitrary motion of the surface.
By studying the terms in the expression for surface sensitivity, deeper physical insight and designer intuition
can be gained.

For a steady problem with a fixed surface (~v = 0 on S) and no source terms, this expression reduces to
that found previously under the frozen viscosity assumption.29 Furthermore, it is important to check the
individual contributions from the terms in Eqn. 39 and to simplfy the expression if possible. When certain
terms are known to evaluate to zero analytically, it is often the case that they are neglected in order to
maintain accuracy in the calculated gradients. The expression in Eqn. 39 is a very general result, and for the
pitching results in this article with a constant force projection vector, the terms involving the source terms
and derivatives of ~d in the surface sensitivity do not appear.
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IV. Numerical Implementation

Optimizer


Sensitivity 
Analysis


Analysis


Mesh 
Deformation


Geometry 
Deformation


Baseline 
Geometry/Mesh 


Converged?
 yes
no


J

rJ

~x

~xo

~x⇤, J⇤

Figure 3. Flow chart for a typical shape optimiza-
tion problem. J is the objective function, and ~x is
the vector of design variables.

The following sections contain numerical implementa-
tion strategies for each of the major components needed
for unsteady aerodynamic shape optimization. The op-
timal shape design loop requires PDE analysis with dy-
namic meshes for computing functional and sensitivity
information, the definition of suitable design variables
for parameterizing the geometry, a mesh deformation al-
gorithm for perturbing the numerical grid after shape
changes, and a gradient-based optimizer to drive the de-
sign variables toward an optimum for the chosen opti-
mization problem. The typical optimal shape design loop
is depicted in Fig. 3.

All components were implemented within the SU2

software suite (Stanford University Unstructured).30,31

This collection of C++ codes is built specifically for PDE
analysis and PDE-constrained optimization on unstruc-
tured meshes, and it is particularly well-suited for aerody-
namic shape design. Modules for performing flow and ad-
joint solutions, acquiring gradient information by project-
ing surface sensitivities into the design space, and mesh
deformation techniques are included in the suite, amongst
others.

A. Numerical Methods for PDE Analysis

Both the governing flow and adjoint PDEs are spatially discretized on unstructured meshes via the Finite
Volume Method (FVM) using a median-dual, vertex-based scheme with a standard edge-based structure.
Instances of the state vector, U or Ψ, are stored at the nodes of the primal mesh, and the dual mesh
is constructed by connecting the primal cell centroids, face centroids, and edge midpoints surrounding a
particular node, as shown in Fig. 4.

1. Spatial Integration

Convective fluxes for the flow and adjoint problems are discretized using either a centered scheme with
Jameson-Schmidt-Turkel (JST)-type scalar artificial dissipation32 or the upwind scheme of Roe.33 The
adjoint convective flux uses a modified version of the JST scheme that treats the discretization in a non-
conservative manner. The convection of the turbulence variable, ν̂, is discretized using an upwind scheme
(typically first-order). Second-order accuracy is easily achieved via reconstruction of variables on the cell in-
terfaces by using a MUSCL approach with limitation of gradients.34 In all cases, viscous fluxes are computed
with the node-gradient-based approach due to Weiss et al.,35 which, apart from reducing the truncation error
of the scheme, avoids the odd-even decoupling of mesh nodes in the computation of residuals, resulting in
second-order spatial accuracy. The Green-Gauss or weighted least-squares methods are available for ap-
proximating the spatial gradients of the flow and the adjoint variables. Source terms are approximated via
piecewise reconstruction in the finite-volume cells.

2. Time Integration

For unsteady flows, accuracy in time is desired, and therefore the time discretization scheme must be treated
more carefully. A dual time-stepping strategy36,37 has been implemented to achieve high-order accuracy in
time. In this method, the unsteady problem is transformed into a series of steady problems at each physical
time step that can then be solved using all of the well-known convergence acceleration techniques for steady
problems. Each physical time step is relaxed in pseudo time using implicit integration. Currently, the fol-
lowing preconditioned Krylov subspace methods are available for solving the resulting linear systems: the
Generalized Minimal Residual (GMRES) method,38 and the Biconjugate Gradient Stabilized (Bi-CGSTAB)
method.39
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i j

Primal
Grid

Dual
Grid

⌦i

@⌦i

~nij ⌦j�Sij

edge ij

@⌦j

Figure 4. Dual mesh control volumes sur-
rounding two nodes, i and j, in the domain
interior.

Due to the reversal of characteristic information in the ad-
joint problem, solving the adjoint equations requires integra-
tion in reverse time. This is accomplished by writing the so-
lution data to disk at each time step during the direct prob-
lem and then retrieving the data in reverse order while time-
marching the adjoint equations. While some techniques do
exist that can ease the burden of data storage for the unsteady
adjoint, this straightforward approach was chosen for the rela-
tively small numerical experiments in this article.

While not discussed in detail here, a variety of convergence
acceleration techniques are also available. An agglomeration
multigrid method is implemented that generates effective con-
vergence at all length scales of a problem by employing a se-
quence of grids of varying resolution.40,41 Furthermore, the
code is fully parallel through use of the Message Passing Inter-
face (MPI) standard which allows for the simulation of large-
scale problems on parallel computers through a typical domain
partitioning approach.

3. Dynamic Meshes

Apart from solving the governing equations in ALE form, the handling of dynamic meshes forms another
major component of calculating unsteady flows with moving surfaces or domains. With each new physical
time step, the nodal coordinates and grid velocities must be updated using suitable methods for moving any
boundaries and interior nodes of the volume mesh and computing the resulting grid velocities. Two typical
strategies involve rigid mesh transformations or dynamically deforming meshes. Rigid mesh transformations
have been used for the results in this article, and more detail on the approach is given below.

If the type of surface motion can be supported by a rigid transformation of the grid (i.e., there is no
relative motion between individual grid nodes), then rigid body rotational and translational motion for a
mesh node i with each physical time step can be generally described by

~xi
n+1 = R(∆~θ )~ri + ∆~h, (40)

where ~x n+1 is the updated node location in Cartesian coordinates, ∆~h is a vector describing the translation
of the nodal coordinates between time steps, ~ri = ~xi

n − ~xo is the position vector pointing from a prescribed
motion center for the body, ~xo, to the point at time level n, and in three dimensions, the rotation matrix,
R(∆~θ), is given by

R(∆~θ) =

 cos θy cos θz sin θx sin θy cos θz − cos θx sin θz cos θx sin θy cos θz + sin θx sin θz

cos θy sin θz sin θx sin θy sin θz + cos θx cos θz cos θx sin θy sin θz − sin θx cos θz

− sin θy sin θx cos θy cos θx cos θy

 (41)

with ∆~θ = {θx, θy, θz}T being equal to the change in angular position of the nodal coordinates about a
specified rotation center between time t n+1 and t n. Note that this matrix is formed by assuming positive,
right-handed rotation first about the x-axis, then the y-axis, and finally the z-axis. The general form of
Eqn. 40 supports multiple types of motion, including constant rotational or translational rates, pitching, or
plunging. With each physical time step, the values of ∆~θ and ∆~h are computed and Eqn. 40 is applied at
each node of the mesh.

For the results presented below that involve pitching surfaces, the angle of attack as a function of time
is prescribed by

α(t) = αo + αm sin(ωt), (42)

where αo is the mean angle of attack, αm is the amplitude of the oscillations, and ω is the angular frequency.
The reduced frequency, ωr = ωc

2v∞
, where c is the chord or characteristic length and v∞ is the free-stream

13 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 3

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
23

00
 



velocity, is a non-dimensional parameter often specified for consistency between flows. From Eqn. 42, ∆~θ
between successive time steps can be found.

For prescribed rigid mesh motion, we can choose the analytic values for the grid velocity (based on the
time derivative of the pitching expression above, for instance). For the adjoint problem, the mesh motion
must be performed in reverse, and in this case, the mesh velocities that were computed during the direct
problem are also written to disk and retrieved with each time step. Note again that the cell volumes will
remain fixed for rigid mesh transformations.

Finally, when computing unsteady flows on dynamic meshes with the ALE form of the equations, a
Geometric Conservation Law (GCL) should be satisfied. First introduced by Thomas and Lombard,42 it has
been shown mathematically and through numerical experiment43–45 that satisfying the GCL can improve the
accuracy and stability of the chosen scheme. A straightforward technique for the numerical implementation
of the GCL46,47 has been included as part of the dual-time stepping approach.

B. Geometry Parameterization

The time-accurate continuous adjoint derivation presents a method for computing the variation of an ob-
jective function with respect to infinitesimal surface shape deformations in the direction of the local surface
normal at points on the design surface. While it is possible to use each surface node in the computational
mesh as a design variable capable of deformation in conjunction with gradient smoothing,48 for instance,
this approach is not pursued here. Instead, we will compute the surface sensitivities ∂J

∂S at each mesh node i
on the surface and project this information into a design space made up of a smaller set of design variables
(possibly a complete basis).

To find the gradient of a chosen objective function J with respect to a set of design variables αj using
the continuous adjoint presented in this work, consider first the final result from the continuous adjoint
derivation for the variation of the functional (we assume a steady problem here for simplicity):

δJ =

∫
S

{
∂J
∂S

}
δS ds. (43)

After introducing a perturbation for a particular design variable, we can approximate the gradient of the
objective function by evaluating the surface integral as

δJ
δαj

=

∫
S

{
∂J
∂S

}
δS

δαj
ds ≈

∑
i∈N (S)

{
∂J
∂S

}
i

~ni ·∆~xi
∆αj

∆Si, (44)

where S is the surface being designed, N (S) represents the set of mesh nodes on the S,
{
∂J
∂S

}
i

is the value
of the surface sensitivity from the continuous adjoint at node i, ~ni is the local unit normal at node i, ∆αj
is a perturbation in the design variable (a bump function, for instance), ∆~xi is the resulting change in the
Cartesian coordinates of node i after applying the design variable perturbation, and ∆Si is the area of the
surface control volume surrounding node i. While

{
∂J
∂S

}
i

is given by the surface sensitivity formulas, the
remaining terms in Eqn. 44 are geometric in nature and are typically evaluated in a finite difference manner
by imposing a small deformation in each design variable in order to find the local change in the nodal
coordinates, ∆~xi. Two choices of design variables were used in this work, and they are briefly described
below.

1. Bump Functions

In the two-dimensional airfoil calculations that follow, Hicks-Henne bump functions were employed,49 which
can be added to the original airfoil geometry to modify the shape. The Hicks-Henne function with maximum
at point xn is given by

fn(x) = sin3(πxen), en =
log(0.5)

log(xn)
, x ∈ [0, 1], (45)

so that the total deformation of the surface can be computed as ∆y =
∑N
n=1 δnfn(x), with N being the

number of bump functions and δn the design variable step. These functions are applied separately to the
upper and lower surfaces.

14 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 3

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
23

00
 



2. Free-Form Deformation

In three dimensions, a Free-Form Deformation (FFD)50 strategy has been adopted. In FFD, an initial box
encapsulating the object (rotor blade, wing, fuselage, etc.) to be redesigned is parameterized as a Bézier
solid. A set of control points are defined on the surface of the box, the number of which depends on the
order of the chosen Bernstein polynomials. The solid box is parameterized by the following expression

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)Bmj (v)Bnk (w), (46)

where u, v, w ∈ [0, 1], and Bi is the Bernstein polynomial of order i. The Cartesian coordinates of the
points on the surface of the object are then transformed into parametric coordinates within the Bézier box.
Control points of the box become design variables, as they control the shape of the solid, and thus the shape
of the surface grid inside. The box enclosing the geometry is then deformed by modifying its control points,
with all the points inside the box inheriting a smooth deformation. Once the deformation has been applied,
the new Cartesian coordinates of the object of interest can be recovered by simply evaluating the mapping
inherent in Eqn. 46.

C. Mesh Deformation

A variety of techniques exist for deforming volumetric grids given the displacements of the boundary nodes
of a particular domain, and these techniques are often used both to deform grids during the simulation of
unsteady flows on dynamic meshes and also between optimal shape design cycles after perturbing the surface
shape. For meshes with high aspect ratio cells that might be suitable for boundary layers in viscous flow, a
grid deformation technique based on the linear elasticity equations51–53 can help preserve grid quality near
solid surfaces where methods based on a spring analogy might fail (resulting in negative cell volumes).

In three dimensions, linear elasticity governs small displacements ~u = (u1, u2, u3)T of an elastic solid

subject to body forces ~f and surface tractions,{
M(~u) = ∇ · ¯̄σ − ~f = 0 in Ω

~u = ~g on Γ
(47)

where ¯̄σ is the stress tensor. The stress ¯̄σ and strain ¯̄ε tensors can be related using the following constitutive
equation

¯̄σ = λTr(¯̄ε) ¯̄I + 2µ¯̄ε, (48)

with the strain-displacement relation written as

¯̄ε =
1

2
(∇~u+∇~uT), (49)

where Tr is the trace, λ and µ are the Lamé constants given by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (50)

ν is Poisson’s ratio, and E is the Young’s modulus. Poisson’s ratio, ν, describes how a material compresses
in the lateral direction as it extends in the axial direction. E is a measure of the stiffness of a material. Each
element of the mesh is treated as an elastic solid and, by allowing for variable E throughout the mesh, can
have its own rigidity. By choosing a value of E that is inversely proportional to the volume of the element
(or the distance to the nearest solid wall), small mesh cells near viscous walls will transform more rigidly
than larger cells, thus helping to preserve mesh quality in these sensitive regions.

The equations are discretized using the Finite Element Method (FEM) with a standard Galerkin ap-
proximation, and the computed boundary displacements due to changes in the design variables are applied
as a Dirichlet boundary condition (~g in the governing equations above). The system of equations is solved
iteratively by a preconditioned GMRES method. For large displacements, it may be required to solve the
system in increments, i.e., the linear elasticity equations are solved multiple times as the domain boundaries
are marched in increments from their original to final locations.
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D. Optimization Framework

Scripts written in the Python programming language are used to automate execution of the SU2 suite
components, especially for performing shape optimization. The optimization results presented in this work
make use of the SciPy librarya, a well-established, open-source software package for mathematics, science,
and engineering. The SciPy library provides many user-friendly and efficient numerical routines for the
solution of non-linear constrained optimization problems, such as conjugate gradient, Quasi-Newton, or
sequential least-squares programming algorithms. At each design iteration, the SciPy routines require as
input only the values and gradients of the objective functions, computed by means of our continuous adjoint
approach, as well as the values and gradients for any chosen constraints.

V. Numerical Results

A. Pitching Airfoil in Turbulent Flow

In order to validate the implementation of the unsteady RANS equations in ALE form, a comparison was
made against the well-known CT6 data set of Davis.54 The physical experiment measured the unsteady per-
formance for the NACA 64A010 airfoil pitching about the quarter-chord point. The particular experimental
case of interest studied pitching motion with a reduced frequency, or wr, of 0.202, M∞ = 0.796, a mean
angle of attack of 0 degrees, and a Reynolds number of 12.5 million.

Figure 5. Close-up view of the hybrid mesh around the airfoil geometry.

A mixed-element, unstructured mesh was constructed around the airfoil that consisted of 22,904 triangular
elements, 12,500 quadrilaterals near the airfoil surface to capture the boundary layer, 24,111 nodes in total,
250 edges along the airfoil surface, and 68 edges along the far-field boundary. The spacing at the wall was
chosen to achieve a y+ value less than 1. A view of the mesh near the airfoil is presented in Fig. 5.

The unsteady RANS equations with the Spalart-Allmaras turbulence model were solved for the flow
around the pitching airfoil. All numerical simulations were performed with 25 time steps per period of
oscillation for a total of 10 periods, which afforded adequate time for transient effects to wash away and well-
resolved, time-averaged behavior in the periodic steady state. The equations were relaxed in pseudo-time
for each physical time step until a reduction of 3 orders of magnitude in the density residual was achieved.

Fig. 6 shows a comparison of the lift coefficient versus angle of attack between numerical results from
SU2 and experimental data during the final period of oscillation. In physical time, the curve is traversed in
a counterclockwise fashion. Note that nonlinear behavior corresponding to moving shock waves results in a
hysteresis effect. The numerical results agree well with experimentally measured values.

50 bump functions were chosen as design variables and used to compute gradients, and the bumps were
equally spaced along the upper and lower surfaces of the NACA 64A010 (25 bumps each on the upper and
lower surfaces). In order to verify the accuracy of the gradient information obtained via the time-accurate

ahttp://www.scipy.org
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(a) Coefficient of lift versus angle of attack (degrees) compared
against experimental data. Note that nonlinear effects cause
lift hysteresis.

(b) Direct comparison of the time-averaged drag gradients
with respect to 50 Hicks-Henne bumps as obtained by the con-
tinuous adjoint and finite differencing.

Figure 6. Numerical results for a pitching NACA 64A010 in transonic flow.

adjoint, a comparison was made between the time-averaged drag gradients with respect to the design variables
as calculated using both the continuous adjoint (after solving the adjoint equations in reverse time using
the stored solution data from the numerical experiment performed above) and a finite differencing approach
with small step sizes for the bump deformations (1E − 6c). The resulting gradients are compared in Fig. 6
and exhibit good agreement.

Finally, a redesign of the pitching NACA 64A010 airfoil was performed using the gradient information
obtained from the time-accurate viscous adjoint formulation. The specific shape optimization problem was
for time-averaged drag minimization using the same 50 bump design variables used above with a constraint
that the internal area of the airfoil remain constant. After 12 CFD evaluations, the time-averaged drag,
C̄d, was successfully reduced by 10.6 %. A time history of the lift and drag is shown in Fig. 7, along with
the optimization history. Profile shapes of the initial and final designs are also compared in Fig. 7. The
transonic shocks have been removed from the design by a thinning of the profile shape near the mid-chord
while maintaining a constant airfoil area.

B. Pitching Wing in Turbulent Flow

To provide a more realistic test of the time-accurate adjoint capabilities in three dimensions, the ONERA M6
wing was used as a baseline geometry. This unsteady test case was performed at a transonic Mach number
with the wing pitching about an axis that passes through its quarter chord location and is perpendicular to
the root airfoil section. The specific flow conditions were as follows: wr = 0.1682, M∞ = 0.8395, a mean
angle of attack of 3.06 degrees, a pitching amplitude of 2.5 degrees, and a Reynolds number of 11.72 million.

The initial unstructured mesh around the ONERA M6 consisted of 545,438 tetrahedral elements and a
total of 96,252 nodes. The mesh spacing near the wall was set to achieve a y+ ≈ 1 over the entire wing
surface. A no-slip condition is satisfied on the wing surface, a symmetry plane is used to reflect the flow about
the plane of the root airfoil section to mimic the effect of the full wing planform, and characteristic-based
boundary conditions are applied at a typical far-field boundary. The surface meshes for the wing geometry
and symmetry plane are shown in Fig. 8. All numerical simulations of the pitching wing were performed
with 25 times steps per period for a total of 7 periods until reaching a periodic steady state.

The pitching ONERA M6 wing was redesigned using gradients obtained via the viscous, time-accurate
adjoint. Note again that, for the unsteady adjoint, the solution at each time step from the direct problem
(including mesh node coordinates and grid velocities) was written to file and then loaded in reverse fashion
while integrating the adjoint equations backward in physical time. Three-dimensional design variables were
defined using a FFD parameterization. Movement in the vertical direction (z-direction) was allowed for 50
control points in total on the upper and lower surfaces of the FFD box. Fig. 8 contains a view of the FFD
box around the wing geometry.
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(a) Comparison of lift coefficient versus angle of attack in de-
grees between SU2 and experiment using URANS.

(b) CD history for the initial and final pitching airfoil designs.
The average values are also shown as horizontal lines. The
average drag is greatly reduced for the final design.

(c) Comparison of the initial and final airfoil profiles. (d) Average drag and area for each CFD evaluation during the
optimization process.

Figure 7. Force coefficient histories, shape comparison, and optimization history for the pitching airfoil design.

The specific shape optimization problem was for the minimization of the time-averaged drag with lift
and geometric constraints. An aggressive constraint was imposed on the time-averaged coefficient of lift, as
it was required to be greater than a value of 0.268 (a 4 % increase over the C̄L for the initial geometry). The
maximum thickness at five spanwise sections of the wing was also constrained to be larger than specified
values. After 11 evaluations, the time-averaged drag, C̄D, was successfully reduced by 20.3 %, and the
geometric constraints were met. The optimizer was also successfully able to increase the time-averaged lift
to a value of 0.266, although this was slightly less that the prescribed constraint value.

Fig. 9 presents the lift and drag histories over the 7 periods of oscillation for the initial and final geometries.
The CL history reflects slightly increased time-averaged lift, while the large peaks in the CD history have
been reduced in the optimized design due to a reduction in the shock strengths when the wing is at large
incidence angles. Fig. 10 shows a comparison of the pressure contours on the upper wing surface at the
incidence of maximum drag. The strong shock in the outboard region is greatly reduced. The section profile
shapes of the initial and final designs are compared in Fig. 9. The optimized geometry features increased
camber, especially near the tip, and a slight thinning of the sections.

18 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 3

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
23

00
 



(a) Surface mesh topology showing the wing surface and sym-
metry plane.

(b) Wing surface with the surrounding FFD box.

Figure 8. Surface mesh and FFD box details for the pitching ONERA M6 numerical experiment.

VI. Conclusions

A viscous continuous adjoint formulation for optimal shape design in unsteady flows has been developed
and applied. The arbitrary Lagrangian-Eulerian version of the unsteady, compressible RANS equations with
a generic source term is considered, and from these governing flow equations, a new continuous adjoint formu-
lation was developed complete with accompanying boundary conditions and surface sensitivity expressions.
The new formulation allows for the design of surfaces in arbitrary motion.

The effectiveness of the new methodology is demonstrated by studying two shape design examples. First, a
gradient verification study was performed using a pitching NACA 64A010 as a test case. Good agreement was
found between the gradients provided by the unsteady continuous adjoint approach and finite differencing.
The pitching NACA 64A010 was redesigned for minimum time-averaged drag with a geometric constraint
on the internal area of the airfoil. The time-averaged drag of the optimal design was 10.6 % lower than the
baseline geometry. A larger, more realistic design case was also performed using a pitching ONERA M6 wing
as a baseline. Similarly, a time-averaged drag reduction of 20.3 % was achieved while meeting geometric
constraints on wing section thicknesses and maintaining the original time-averaged lift.

It is important to note that the methodology presented in this article is efficient both computationally
and in terms of memory performance. The formulation was derived with generality in mind by treating a
general set of governing equations that allow for unsteadiness and surfaces in motion, and the implementation
can be used for complex geometries on unstructured meshes. Lastly, while not discussed in this article, the
unsteady continuous adjoint formulation presented here can also directly enable multidisciplinary design,
analysis, and optimization involving other time-dependent physics associated with these systems, such as
their structural or acoustic responses.
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A. Jacobian Matrices

Using index notation and defining for convenience a0 = (γ − 1), φ = (γ − 1) |~v|
2

2 , the Jacobian matrices
are defined as:

Aci =


· δi1 δi2 δi3 ·

−viv1 + δi1φ vi − (a0 − 1)viδi1 v1δi2 − a0v2δi1 v1δi3 − a0v3δi1 a0δi1

−viv2 + δi2φ v2δi1 − a0v1δi2 vi − (a0 − 1)viδi2 v2δi3 − a0v3δi2 a0δi2

−viv3 + δi3φ v3δi1 − a0v1δi3 v3δi2 − a0v2δi3 vi − (a0 − 1)viδi3 a0δi3

vi (φ−H) −a0viv1 +Hδi1 −a0viv2 +Hδi2 −a0viv3 +Hδi3 γvi


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Av1
i =



· · · · ·
−ηi1 ∂i

(
1
ρ

)
+ 1

3∂1

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi1 ∂1

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi1 ·

−ηi2 ∂2

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi2 ∂i

(
1
ρ

)
+ 1

3∂2

(
1
ρ

)
δi2 ∂2

(
1
ρ

)
δi3 − 2

3∂3

(
1
ρ

)
δi2 ·

−ηi3 ∂3

(
1
ρ

)
δi1 − 2

3∂1

(
1
ρ

)
δi3 ∂3

(
1
ρ

)
δi2 − 2

3∂2

(
1
ρ

)
δi3 ∂i

(
1
ρ

)
+ 1

3∂3

(
1
ρ

)
δi3 ·

vjπij vj∂j

(
1
ρ

)
δi1 + ζi1 + 1

ρτi1 vj∂j

(
1
ρ

)
δi2 + ζi2 + 1

ρτi2 vj∂j

(
1
ρ

)
δi3 + ζi3 + 1

ρτi3 ·



Av2
i = γ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0
∂i

(
φ
ρ −

p
ρ2

)
−∂i

(
v1
ρ

)
−∂i

(
v2
ρ

)
−∂i

(
v3
ρ

)
∂i

(
1
ρ

)



Dv1
ii =

1

ρ


· · · · ·

−
(
1 + 1

3δi1
)
v1

(
1 + 1

3δi1
)

· · ·
−
(
1 + 1

3δi2
)
v2 ·

(
1 + 1

3δi2
)

· ·
−
(
1 + 1

3δi3
)
v3 · ·

(
1 + 1

3δi3
)

·
−|~v|2 − 1

3v
2
i

(
1 + 1

3δi1
)
v1

(
1 + 1

3δi2
)
v2

(
1 + 1

3δi3
)
v3 ·



Dv1
ij =

1

ρ


· · · · ·

−viδj1 + 2
3vjδi1 δj1δi1 − 2

3δi1δj1 δj1δi2 − 2
3δi1δj2 δj1δi3 − 2

3δi1δj3 ·
−viδj2 + 2

3vjδi2 δj2δi1 − 2
3δi2δj1 δj2δi2 − 2

3δi2δj2 δj2δi3 − 2
3δi2δj3 ·

−viδj3 + 2
3vjδi3 δj3δi1 − 2

3δi3δj1 δj3δi2 − 2
3δi3δj2 δj3δi3 − 2

3δi3δj3 ·
− 1

3vivj vjδi1 − 2
3viδj1 vjδi2 − 2

3viδj2 vjδi3 − 2
3viδj3 ·

 (i 6= j)

Dv2
ii =

γ

ρ


· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0

(
φ− p

ρ

)
−v1 −v2 −v3 1


Dv2
ij = 05×5 (i 6= j)

where tensors η̄, π̄ and ζ̄ in the definition of Av1
i are given by

ηij = ∂i

(
vj
ρ

)
+ ∂j

(
vi
ρ

)
− 2

3
δij∇ ·

(
~v

ρ

)
πij = vj∂i

(
1

ρ

)
+ vi∂j

(
1

ρ

)
− 2

3
δij ~v · ∇

(
1

ρ

)
= ηij −

1

ρ
τij

ζij = vj∂i

(
1

ρ

)
− vi∂j

(
1

ρ

)
+

1

3
vi∂j

(
1

ρ

)
.
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