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A time-accurate, continuous adjoint formulation is developed, verified, and applied. This
formulation enables the e�cient design of aerodynamic surfaces in unsteady, inviscid flow
within a gradient-based optimization framework. A systematic method for the derivation
of suitable boundary conditions for the adjoint problem is demonstrated, and a new sliding
mesh algorithm for unstructured meshes is also developed and tested. The gradient infor-
mation provided by the time-accurate adjoint formulation is verified for design variables in
two dimensions with and without the use of sliding meshes, and in both situations, gradients
compare very favorably with those obtained via finite di↵erencing. Optimal shape design
results for a pitching airfoil demonstrate the e↵ectiveness of the unsteady adjoint approach.
Furthermore, performing shape design with sliding meshes recovers nearly identical results
as a non-sliding case, suggesting that their use in conjunction with the unsteady adjoint can
provide a stable and accurate design approach. The combination of sliding mesh interfaces
and the time-accurate continuous adjoint produces a powerful design tool for unsteady
problems with surfaces in relative motion.

Nomenclature

V ariable Definition

c Airfoil chord length
~d Force projection vector
j
S

Scalar function defined at each point on S
~n Unit normal vector
p Static pressure
p1 Freestream pressure
t Time variable
t
o

Initial time
t
f

Final time
~u

x

Local velocity at a point in a moving domain (mesh velocity)
~v Flow velocity vector
v1 Freestream velocity
~x Position in cartesian space
~A Inviscid flux Jacobian matrices
A

z

Projected area in the z-direction
C

D

Coe�cient of drag
C

L

Coe�cient of lift
C

SF

Coe�cient of side-force
C

p

Coe�cient of pressure
E Total energy per unit mass
~F Euler convective fluxes
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~F
ale

Euler convective fluxes in ALE form
H Stagnation enthalpy
¯̄I Identity matrix
J Cost function defined as an integral over S
J Lagrangian
M1 Freestream Mach number
R Rotation matrix for rigid grid motion
R(U) System of governing flow equations
S Solid wall flow domain boundary (design surface)
T Time interval, t

f

� t
o

U Vector of conservative variables
W Vector of characteristic variables
↵ Angle of attack
↵

o

Mean pitching angle
↵

m

Pitching amplitude
� Sideslip angle
� Ratio of specific heats, � = 1.4 for air
⇢ Fluid density
⇢1 Freestream density
~� Adjoint velocity vector
! Angular frequency
!

r

Reduced frequency, !c

2v1
� Flow domain boundary
 Vector of adjoint variables
⌦ Flow domain

Mathematical Notation

~b Spatial vector b 2 Rn, where n is the dimension of the physical cartesian space (in general, 2 or 3)
B Column vector or matrix B, unless capitalized symbol clearly defined otherwise
~B ~B = (B

x

, B
y

) in two dimensions or ~B = (B
x

, B
y

, B
z

) in three dimensions
r(·) Gradient operator
r · (·) Divergence operator
@

n

(·) Normal gradient operator at a surface point, ~n
S

·r(·)
· Vector inner product
⇥ Vector cross product
⌦ Vector outer product
BT Transpose operation on column vector or matrix B
�(·) Denotes first variation of a quantity

I. Introduction and Motivation

Many practical flows of aerodynamic interest are unsteady in nature, and between the increasing power
of computational resources and advanced algorithms, accurately predicting and designing for the per-

formance of aerospace systems in an unsteady environment is becoming more tractable. Several examples
of engineering applications that could immediately benefit from a truly time-accurate design approach are
counter-rotating open rotors, rotorcraft, turbomachinery, wind turbines, or flapping flight, to name a few. An
unsteady treatment of these flows will also directly enable multidisciplinary design, analysis, and optimiza-
tion (MDAO) involving other time-dependent physics associated with these systems, such as their structural
or acoustic responses. Active flow control using devices that augment the flow field (jets, actuators, etc.) is
another area that could be investigated with time-dependent inputs and included in a design framework.

Most of the examples above require some type of dynamic mesh capability for simulations with surfaces
moving through a fluid, e.g. a pitching airfoil in a uniform freestream or an isolated helicopter rotor in forward
flight. Grid motion strategies for these cases often include either surface movements followed by volumetric
mesh deformation through a spring analogy or a rigid transformation of the entire mesh with each physical
time step. In the more complicated case where multiple surfaces move relative to one another within a single
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computational domain, such as with counter-rotating rotors, rotor-fuselage interactions for rotorcraft or
fixed-wing vehicles, or rotor-stator interactions within a turbomachine, then a system of sub-grids, or zones,
with independent motion will be needed. Furthermore, communication of solution information between
these zones must be achieved through a sliding mesh interface, an overset mesh approach, a mixing plane
approximation, or another method that appropriately considers the relative grid motion.1–3

In the context of optimal shape design, adjoint formulations as a means of sensitivity analysis have
been the subject of a rich volume of research literature over the past two decades. Many advances and
extensions have been made during this period, and the e↵ectiveness of these formulations for use in aerody-
namic design, especially for steady problems, is well established.4–6 Less common and more challenging are
adjoint formulations for unsteady problems due to potentially prohibitive storage requirements associated
with time-accurate data and the need for reverse time integration when solving the corresponding adjoint
equations. However, recent work demonstrating the viability of unsteady adjoint approaches across a range
of applications7–13 and the aforementioned improvements in computational power and algorithms suggest a
growing interest and capability for design in unsteady flows.

Adjoint formulations are typically classified as either continuous (the governing equations are first lin-
earized then the result is discretized) or discrete (the governing equations are first discretized and the result
is linearized). A large amount of the previous work on unsteady adjoints has been discrete in nature, and
while a discrete adjoint approach can often be more straightforward to implement, especially if automatic
di↵erentiation is available, we pursue advances in the continuous approach with this article. The continuous
formulation can o↵er the advantage of physical insight into the character of the governing flow equations and
their adjoint system, and this insight can aid in composing well-behaved numerical solution methods. How-
ever, consistent boundary conditions that accompany the continuous adjoint equations must also be derived,
and unfortunately, clear strategies for their derivation are less prevalent in the literature. Lastly, while sliding
mesh techniques are often applied to unsteady flow simulations, their suitability for the unsteady continuous
adjoint problem, which requires reverse time integration of the equations with a non-conservative spatial
discretization, is less explored. Robust and accurate boundary conditions and numerical methods for the
adjoint problem will be essential when moving to the design of larger, more complex aerospace applications.

⌦
�1

S
~n

S

~n�1

Figure 1. Notional schematic of the flow do-
main, ⌦, the boundaries, �1 and S, as well
as the definition of the surface normals.

Therefore, the contributions of this article are the follow-
ing: a detailed derivation of a time-accurate, continuous adjoint
formulation including an extended discussion of the adjoint
boundary conditions, the development of a sliding mesh strat-
egy for unstructured grids, and the application of these com-
ponents to a two-dimensional pitching airfoil problem. More
specifically, the adjoint treatment presented is a systematic
methodology centered around finding surface sensitivities with
the use of di↵erential geometry formulas. This type of surface
formulation has no dependence on volume mesh sensitivities
and has been successfully applied to full aircraft configurations
and even extended to the RANS equations.14 It is here ex-
tended for optimal shape design in unsteady flows with the
added flexibility to handle complex, dynamic geometries that
is a↵orded by unstructured meshes with sliding mesh interfaces.

The paper is organized as follows. In Section II, a descrip-
tion of the physical problem in which we are interested is given,
including the governing flow equations with appropriate bound-
ary conditions. Section III contains a complete derivation of a
time-accurate, continuous adjoint formulation for the unsteady Euler equations. An extended discussion of
suitable boundary conditions for the adjoint problem can also be found in this section. Section IV details the
numerical methods employed, development of a sliding mesh interface approach, and the shape optimization
approach. Lastly, Section V presents results for a verification and validation of the methodology as applied
to a pitching NACA 64A010 airfoil and, finally, a redesign of the profile shape for minimum time-averaged
drag. Special emphasis is placed on the comparison of results with and without the use of sliding meshes.
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II. Description of the Physical Problem

Ideal fluids are governed by the Euler equations. In our particular problem, these equations are considered
in a domain, ⌦, bounded by a disconnected boundary which is divided into a far-field component, �1, and
a solid wall boundary, S, as seen in Fig. 1. The surface S will also be referred to as the design surface, and
it is considered continuously di↵erentiable (C1). Normal vectors to the boundary surfaces are directed out
of the domain by convention.

We are interested in the time-accurate fluid behavior around aerodynamic bodies in arbitrary motion
for situations where viscous e↵ects can be considered negligible. The governing partial di↵erential equations
(PDEs) in the limit of vanishing viscosity are the unsteady, compressible Euler equations. These conservation
equations can be expressed in an arbitrary Lagrangian-Eulerian (ALE)15 di↵erential form as

8
><

>:

R(U) = @U

@t

+ r · ~F
ale

= 0, in ⌦, t
o

 t  t
f

(~v � ~u
x

) · ~n
S

= 0, on S, t
o

 t  t
f

(W )+ = W1, on �1, t
o

 t  t
f

(1)

where

U =

8
><

>:

⇢

⇢~v

⇢E

9
>=

>;
, ~F

ale

=

8
><

>:

⇢(~v � ~u
x

)

⇢~v ⌦ (~v � ~u
x

) + ¯̄Ip

⇢E(~v � ~u
x

) + p~v

9
>=

>;
, (2)

⇢ is the fluid density, ~v = {u, v, w}T is the flow velocity in a Cartesian coordinate system, ~u
x

is the local
velocity at a point, ~x, in a moving domain (mesh velocity after discretization), E is the total energy per unit
mass, and p is the static pressure. The second line of Eqn. 1 represents the flow tangency condition at a solid
wall, and the final line represents a characteristic-based boundary condition at the far-field where the fluid
state at the boundary is updated using the state at infinity depending on the sign of the eigenvalues. This
boundary will be treated generally and its implications on the adjoint problem will be discussed in detail
below. The boundary conditions also take into account any velocity due to domain motion. The temporal
conditions will be problem dependent, and for purposes of this article, we will be interested in time-periodic
flows where the initial and terminal conditions do not a↵ect the time-averaged behavior over the time interval
of interest, T = t

f

� t
o

. In order to close the system of equations after assuming a perfect gas, the pressure
is determined from

p = (� � 1)⇢


E � 1

2
(~v · ~v)

�
, (3)

and the stagnation enthalpy is given by

H = E +
p

⇢
. (4)

III. Surface Sensitivities via a Time-Accurate Adjoint Formulation

A typical shape optimization problem seeks the minimization of a certain cost function, J , with respect
to changes in the shape of the boundary, S, with a constraint that the equations governing the system with
suitable temporal and boundary conditions, R(U), be satisfied. We will concentrate on functionals defined
as time-averaged, integrated quantities on the solid surface, so the optimization problem can be expressed
mathematically as

Minimize J = 1
T
R

t

f

t

o

R
S

j
S

ds dt

such that R(U) = 0,
(5)

where j
S

= ~d · p~n
S

is a time-dependent, pressure-based functional defined at each point on the surface, as
we are under an inviscid flow assumption. The vector ~d is the force projection vector, and it is an arbitrary,
constant vector which can be chosen to relate the pressure at the surface to a desired quantity of interest.
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For external aerodynamic applications, likely candidates are

~d =

8
>>>>>><

>>>>>>:

⇣
1

C1

⌘
(cos ↵ cos �, sin ↵ cos �, sin �), C

D

Drag coe�cient
⇣

1
C1

⌘
(� sin ↵, cos ↵, 0), C

L

Lift coe�cient
⇣

1
C1

⌘
(� sin � cos ↵,� sin � sin ↵, cos �), C

SF

Side-force coe�cient
⇣

1
C1C

D

⌘
(� sin↵� C

L

C

D

cos↵ cos�,�C

L

C

D

sin�, cos↵� C

L

C

D

sin↵ cos�), C

L

C

D

L/D

(6)
where ↵ is the angle of attack, � is the side-slip angle, C1 = 1

2v2
1⇢1A

z

, v1 is the freestream velocity,
⇢1 is the freestream density, and A

z

is the reference area. In practice for a three-dimensional surface, all
positive components of the normal surface vectors in the z-direction can be summed in order to calculate the
projection A

z

. A pre-specified reference area can also be used in a similar fashion which is an established
procedure in applied aerodynamics.

A. The Continuous Adjoint Approach

The minimization of Eqn. 5 can be considered a problem of optimal control whereby the behavior of the
governing flow equation system is controlled by the shape of S with deformations of the surface acting as
the control input. Therefore, the goal is to compute the variation of Eqn. 5 caused by arbitrary but small
(and multiple) deformations of S and to use this sensitivity information to drive our geometric changes in
order to find an optimal shape for S. This leads directly to a gradient-based optimization framework.

Following the continuous adjoint approach to optimal design, Eqn. 5 can be transformed into an uncon-
strained optimization problem by adding the inner product of an unsteady adjoint variable vector,  , and
the continuous governing equations integrated over the domain (space and time) to form the Lagrangian:

J =
1

T

Z
t

f

t

o

Z

S

~d · (p~n
S

) ds dt +
1

T

Z
t

f

t

o

Z

⌦
 TR(U) d⌦ dt, (7)

where we have introduced the adjoint variables, which operate as Lagrange multipliers and are defined as

 =

8
>>>>><

>>>>>:

 
⇢

 
⇢u

 
⇢v

 
⇢w

 
⇢E

9
>>>>>=

>>>>>;

=

8
><

>:

 
⇢

~'

 
⇢E

9
>=

>;
. (8)

�S~n
S

S

S0

~x

Figure 2. An infinitesimal shape deformation in
the local surface normal direction.

Note that because the flow equations must be satisfied in
the domain, or R(U) = 0, Eqn. 5 and Eqn. 7 are equiv-
alent. In order to find the sensitivity information needed
to minimize the objective function, we now take the first
variation of Eqn. 7 with respect to infinitesimal shape
deformations applied to S that can be described mathe-
matically by

S0 = {~x + �S(~x)~n
S

(~x), ~x 2 S}, (9)

where S has been deformed to a new surface S0 by apply-
ing an infinitesimal profile deformation, �S, in the local
normal direction, ~n

S

, at a point, ~x, on the surface, as shown in Fig. 2. With respect to these arbitrary
perturbations of the surface shape and after simplification, the variation of the objective function becomes:

�J =
1

T

Z
t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z
t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z
t

f

t

o

Z

⌦
 T�R(U) d⌦ dt. (10)

It is important to note that the first two terms of Eqn. 10 are found by using di↵erential geometry formulas,16

and this is a key feature di↵erentiating the current formulation from other adjoint approaches. The third
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term of Eqn. 10 can be expanded by including the linearized version of the governing equations with respect
to the small perturbations of the design surface (which induce perturbations in U),

�R(U) = �


@U

@t
+ r · ~F �r · (U ⌦ ~u

x

)

�

=
@

@t
(�U) + r ·

 
@ ~F

@U
�U

!
�r ·


@(U ⌦ ~u

x

)

@U
�U

�

=
@

@t
(�U) + r ·

⇣
~A � ¯̄I~u

x

⌘
�U, (11)

along with the linearized form of the boundary condition at the surface,

�~v · ~n
S

= �(~v � ~u
x

) · �~n
S

� @
n

(~v � ~u
x

) · ~n
S

�S, (12)

where ~A is the Jacobian of ~F using conservative variables, @

~

F

@U

. In the first line of Eqn. 11, the terms involving
the domain velocity have been separated from the traditional Euler fluxes. Eqn. 11 can now be introduced
into Eqn. 10 to produce

�J =
1

T

Z
t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z
t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z
t

f

t

o

Z

⌦
 T @

@t
(�U) d⌦ dt

+
1

T

Z
t

f

t

o

Z

⌦
 Tr ·

⇣
~A � ¯̄I~u

x

⌘
�U d⌦ dt. (13)

The key to the adjoint approach is the removal of any dependence on variations of the flow variables
(�U and �p in this case) so that the variation of the objective function for multiple surface deformations can
be found without the need for multiple flow solutions. This results in a computationally e�cient method
for aerodynamic sensitivity analysis within a large design space, because the computational cost no longer
depends on the number of design variables as it does with a direct method like finite di↵erencing. We now
perform manipulations to remove this dependence. After changing the order of integration, integrating the
third term of Eqn. 13 by parts gives

Z

⌦

Z
t

f

t

o

 T @

@t
(�U) dt d⌦ =

Z

⌦

⇥
 T�U

⇤
t

f

t

o

d⌦�
Z

⌦

Z
t

f

t

o

@ T

@t
�U dt d⌦. (14)

A zero-valued initial condition for the adjoint variables can be imposed, and assuming an unsteady flow with
time-periodic behavior, the first term on the right hand side of Eqn. 14 can be eliminated with the following
temporal conditions (the cost function does not depend on t

f

):

 (~x, t
o

) = 0, (15)

 (~x, t
f

) = 0. (16)

Now, integrating the fourth term of Eqn. 13 by parts yields

Z
t

f

t

o

Z

⌦
 Tr ·

⇣
~A � ¯̄I~u

x

⌘
�U d⌦ dt =

Z
t

f

t

o

Z

⌦
r ·
h
 T
⇣
~A � ¯̄I~u

x

⌘
�U
i
d⌦ dt �

Z
t

f

t

o

Z

⌦
r T ·

⇣
~A � ¯̄I~u

x

⌘
�Ud⌦ dt,

(17)

and applying the divergence theorem to the first term on the right hand side of Eqn. 17, assuming a smooth
solution, gives

Z
t

f

t

o

Z

⌦
 Tr ·

⇣
~A � ¯̄I~u

x

⌘
�U d⌦ dt =

Z
t

f

t

o

Z

S

 T
⇣
~A � ¯̄I~u

x

⌘
· ~n

S

�Uds dt +

Z
t

f

t

o

Z

�1

 T
⇣
~A � ¯̄I~u

x

⌘
· ~n1 �Uds dt

�
Z

t

f

t

o

Z

⌦
r T ·

⇣
~A � ¯̄I~u

x

⌘
�Ud⌦ dt. (18)

With the appropriate choice of boundary conditions, the integral over the far-field boundary can be forced
to vanish, and this will be discussed in detail below. Combining and rearranging the results from Eqns. 13,
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14 (after reversing the order of integration again), 15, 16 & 18 yields an intermediate expression for the
variation of the cost function,

�J =
1

T

Z
t

f

t

o

Z

S

(~d ·rp)�S ds dt +
1

T

Z
t

f

t

o

Z

S

(~d · ~n
S

)�p ds dt +
1

T

Z
t

f

t

o

Z

S

 T
⇣
~A � ¯̄I~u

x

⌘
· ~n

S

�Uds dt

� 1

T

Z
t

f

t

o

Z

⌦


@ T

@t
+ r T ·

⇣
~A � ¯̄I~u

x

⌘�
�U d⌦ dt. (19)

The surface integral in the third term on the right hand side of Eqn. 19 can be evaluated by hand given our
knowledge of ~A, ~u

x

, the wall boundary condition, and the linearized wall boundary condition in Eqn. 12.
By leveraging previous derivation by the authors16 with slight modifications (including time integration), it
can be shown that evaluating the surface integral and rearranging the variation of the functional gives

�J =
1

T

Z
t

f

t

o

Z

S

h
~d ·rp + (r · ~v)#+ (~v � ~u

x

) ·r(#)
i
�S ds dt

+
1

T

Z
t

f

t

o

Z

S

h
~d · ~n

S

� ~n
S

· ~'�  
⇢E

(~v · ~n
S

)
i
�p ds dt � 1

T

Z
t

f

t

o

Z

⌦


@ T

@t
+ r T ·

⇣
~A � ¯̄I~u

x

⌘�
�U d⌦ dt,

(20)

where # = ⇢ 
⇢

+ ⇢~v · ~' + ⇢H 
⇢E

, as a shorthand. Finally, by satisfying the system of PDEs commonly
referred to as the adjoint equations along with the admissible adjoint boundary condition that eliminates
the dependence on the fluid flow variation at the surface (�p), both the second and third terms on the right
hand side of Eqn. 20 can be eliminated:

8
<

:
@ 
@t

+
⇣
~A � ¯̄I~u

x

⌘T
·r = 0, in ⌦, t

o

 t  t
f

~n
S

· ~' = ~d · ~n
S

�  
⇢E

(~v · ~n
S

), on S, t
o

 t  t
f

(21)

where a transpose operation has been performed on the adjoint equations. The variation of the objective
function becomes

�J =
1

T

Z
t

f

t

o

Z

S

h
~d ·rp + (r · ~v)#+ (~v � ~u

x

) ·r(#)
i
�S ds dt =

1

T

Z
t

f

t

o

Z

S

@J
@S

�S ds dt, (22)

where @J
@S

= ~d ·rp + (r ·~v)#+ (~v � ~u
x

) ·r(#) is what we call the surface sensitivity. The surface sensitivity
provides a measure of the variation of the objective function with respect to infinitesimal variations of the
surface shape in the direction of the local surface normal. With each physical time step, this value is
computed at every surface node of the numerical grid with negligible computational cost. Apart from the
integral over the specified time interval, note that the final expression for the variation involves only a surface
integral and has no dependence on the volume mesh.

B. Boundary Conditions for the Continuous Adjoint Problem

Let us return to the integral over the far-field boundary in Eqn. 18 which was assumed to vanish with the
appropriate choice of adjoint boundary conditions. This integral will indeed vanish if the scalar integrand is
equal to zero at every point on the boundary with each physical time step:

 T
⇣
~A � ¯̄I~u

x

⌘
· ~n1 �U = 0 (23)

Therefore, we seek the adjoint state,  , at the boundary that eliminates any contribution from this integral
to the variation of the functional through the satisfaction of the preceding expression. A common strategy
for the removal of this integral is the imposition of a homogeneous adjoint boundary condition,  = 0.
While this does force Eqn. 23 to be true, it may be an over-specification and does not take into account the
mathematical character of the equations at the boundary. Compatibility between the governing PDEs and
the boundary conditions should be maintained in order to avoid issues related to solution accuracy or code
convergence. Before further consideration, we will revisit the handling of boundary conditions in the direct
problem and the relationship between the direct and adjoint characteristic behavior.
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In general for the direct problem, characteristic-based boundary conditions are imposed at the outer
boundaries where the fluid states are updated depending on the sign of the characteristic speeds, or eigen-
values, given by the well-known diagonalization of the flux Jacobian matrix, ~A. Incoming characteristics
correspond to the propagation of information into the flow domain, and at these locations, physical boundary
conditions, such as mass flow, stagnation conditions, or back pressure, are prescribed. Outgoing character-
istics correspond to information propagation out of the domain, and numerical boundary conditions are
imposed at these locations that extrapolate the characteristic variable information from within the domain
often using Riemann invariants. The reader is referred to the discussion by Hirsch17 for further detail on the
subject.

It is important to highlight that the sign of the characteristic velocities has been flipped in the adjoint
problem, causing characteristic information to propagate in the reverse direction. This sign reversal occurs
due to the integration by parts procedure during the adjoint derivation. The result is that the required
type of boundary conditions for the direct and adjoint problem are also reversed, i.e. physical conditions in
the direct problem become numerical ones in the adjoint problem and vice-versa, and the reversal implies
the existence of a complementary set of well-posed conditions for the adjoint problem. This relationship is
summarized for inflow and outflow boundaries in Table 1.

Table 1. Number of physical (P) and numerical (N) boundary conditions required for the direct and adjoint
problems in three dimensions (the state vector, U , has five components).

Supersonic Inflow Subsonic Inflow Subsonic Outflow Supersonic Outflow

Direct 5 P, 0 N 4 P, 1 N 1 P, 4 N 0 P, 5 N

Adjoint 0 P, 5 N 1 P, 4 N 4 P, 1 N 5 P, 0 N

Based on this idea, Giles and Pierce18 proposed suitable physical adjoint boundary conditions involving
the characteristic speeds based on a manipulation of Eqn. 23 after introducing the diagonalization of the flux
Jacobian. Recent work by Hayashi et al.19 advances the notion of characteristic-based boundary conditions
for the adjoint equations by connecting the direction of information propagation to the imposition of physical
conditions at the boundaries in the direct problem. More specifically, rather than impose conditions using
the characteristic variables, one should consider the realizable perturbations in the flow solution, �U , allowed
at the boundaries given the particular choice of physical boundary conditions in the direct problem. The
latter derivation approach will now be further detailed and extended in systematic fashion.

Consider the far-field boundary, �1, to be split into a subsonic inflow and subsonic outflow region for the
direct problem in three dimensions. At the inflow, 4 physical conditions can be prescribed, and for clarity in
the derivation, we will choose to specify mass flow (⇢ and ~v) at this boundary. At the outlet boundary, only 1
physical condition can be imposed, and we will choose the typical imposition of back pressure (p). The type
of physical conditions chosen for the direct problem has therefore constrained the allowable perturbations at
the boundaries: we have prescribed �⇢ = �~v = 0 at the inlet and �p = 0 at the outlet. Therefore, to derive
suitable adjoint boundary conditions for this situation, we introduce these primitive variable perturbations
directly into Eqn. 23:

 T
⇣
~A � ¯̄I~u

x

⌘
· ~n1 M�V = 0, (24)

where M = @U

@V

is the transformation matrix from conservative to primitive variables and �V = {�⇢, �~v, �p}T
is the vector of primitive variable perturbations. After taking the transpose of Eqn. 24 and evaluating
( ~A � ¯̄I~u

x

) · ~n1 M in three dimensions, the expanded result can be written as

8
>>>>><

>>>>>:

�⇢

�u

�v

�w
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>>>>>=

>>>>>;
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x
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n
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y
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n
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z
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n

1
��1 [�(~v · ~n) � (~u

x
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3

7777775

8
>>>>><

>>>>>:

 
⇢
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9
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= 0,

(25)
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where v
n

= (~v � ~u
x

) · ~n1 as a shorthand, ~n1 = {n
x

, n
y

, n
z

}T, and ~v 2 = u2 + v2 + w2. In this format,
physical boundary conditions for  are easily recovered by imposing the constraints on the flow perturbations
resulting from the choice of direct boundary conditions and then manipulating the remaining expressions.

For example, at the inlet, the imposition of mass flow forces �⇢ = �~v = 0, and therefore, the terms
associated with the products in the first four rows of Eqn. 25 are all zero. As �p is the only allowable
perturbation in the flow variables remaining, in order to completely remove contributions from the boundary
integral, the following expression must be satisfied,

�p

⇢
~� · ~n1 +

 
⇢E

� � 1
[�(~v · ~n1) � (~u

x

· ~n1)]

�
= 0, (26)

and because �p is arbitrary, we recover the admissible physical boundary condition at the mass flow inlet:

 
⇢E

= � � � 1

�(~v · ~n1) � (~u
x

· ~n1)
~� · ~n1. (27)

Using the same derivation approach, physical boundary conditions for the adjoint variables at the outlet can
be found. At the outlet, only �p = 0, and all other flow variable perturbations are allowable. This eliminates
any contributions from the final row of the expression in Eqn. 25, and leaves a system of four equations with
five unknowns from the first four rows of Eqn. 25 that must be set equal to zero in order to remove any
dependence on the remaining perturbations. Choosing  

⇢E

as the free variable and solving the other four
equations in terms of it gives the following four physical boundary conditions:

 
⇢

=  
⇢E


� e (~v · ~n1)

(~v � ~u
x

) · ~n1
+
~v 2

2

�
, (28)

 
⇢u

= � 
⇢E


� e n

x

(~v � ~u
x

) · ~n1
+ u

�
, (29)

 
⇢v

= � 
⇢E


� e n

y

(~v � ~u
x

) · ~n1
+ v

�
, (30)

 
⇢w

= � 
⇢E


� e n

z

(~v � ~u
x

) · ~n1
+ w

�
, (31)

where e = E � ~v

2

2 is the internal energy per unit mass. These conditions are equivalent to those of Hayashi
et al. at an outlet if they are reduced to two dimensions in the absence of mesh motion (~u

x

= 0). While
they also pursue a characteristic form of the adjoint equations to provide numerical boundary conditions,
we will choose the values for the remaining free variables (~� and  

⇢E

) found at the boundaries that satisfy
the discretized adjoint Euler equations within the domain. With this semi-discrete approach, we will be
maintaining compatibility between the governing PDEs and the boundary conditions.

The above steps can be repeated as a systematic procedure for finding boundary conditions when other
types of physical conditions are imposed in the direct problem (such as prescribing stagnation conditions at
an inlet). One must simply introduce the perturbations of the chosen quantities along with the appropriate
transformation matrix from the conservative variables into Eqn. 23 and solve for the admissible conditions
in the same manner. This procedure could be particularly useful for internal flows that are sensitive to
inlet/outlet boundary conditions (often solved on truncated domains) or for flow control applications, such
as jets, where sensitivities with respect to inlet/outlet quantities might be desired.

Supersonic inlet and outlet boundaries are straightforward in comparison. At a supersonic inlet, all of the
flow variables can be prescribed as physical boundary conditions in the direct problem (all characteristics are
incoming) which means that none of the adjoint variables will have prescribed values in the adjoint problem.
This approach assumes that �U = 0 due to the direct problem boundary conditions, and therefore, Eqn. 23
is automatically satisfied. In the case of a supersonic outlet, no flow variables can be specified in the direct
problem (all characteristics are outgoing), so all of the adjoint variables can be prescribed with  = 0 being
the choice that exactly satisfies Eqn. 23.

IV. Numerical Implementation

The following sections contain numerical implementation strategies for each of the major components
needed for unsteady aerodynamic shape optimization. The optimal shape design loop requires PDE analysis
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with dynamic meshes for computing functional and sensitivity information, the definition of suitable design
variables for parameterizing the geometry, a mesh deformation algorithm for perturbing the numerical grid
after shape changes, and a gradient-based optimizer to drive the design variables toward an optimum for the
chosen optimization problem.

All components were implemented within the SU2 software suite (Stanford University Unstructured).20

This collection of C++ codes is built specifically for PDE analysis and PDE-constrained optimization on
unstructured meshes, and it is particularly well-suited for aerodynamic shape design. Modules for performing
flow and adjoint solutions, acquiring gradient information by projecting surface sensitivities into the design
space, and mesh deformation techniques are included in the suite, amongst others. Scripts written in the
Python programming language are also used to automate execution of the SU2 suite components, especially
for performing shape optimization.

A. Numerical Methods for PDE Analysis

Both the flow and adjoint problems are solved numerically using a Finite Volume Method (FVM) formu-
lation on unstructured meshes with an edge-based structure. The median-dual, vertex-based scheme stores
instances of the solution at the nodes of the primal grid and constructs the dual mesh around these nodes
by connecting the surrounding cell centers and the mid-points of the edges between the primal grid nodes.
The code is fully parallel through use of the Message Passing Interface (MPI) standard and takes advantage
of an agglomeration multigrid approach for convergence acceleration.

The unsteady Euler equations are spatially discretized using a central scheme with JST-type artificial
dissipation,21 and the adjoint equations use a slightly modified, non-conservative JST scheme. Time inte-
gration is handled by a second-order accurate dual-time stepping approach for both the analysis and adjoint
problems.22 Again, note that solving the adjoint equations requires integration in reverse time. This is
accomplished by writing the solution data to disk at each time step during the direct problem and then
retrieving the data in reverse order while time-marching the adjoint equations. While some techniques do
exist that can ease the burden of data storage for the unsteady adjoint, this straightforward approach was
chosen for the relatively small numerical experiments in this article.

B. Treatment of Dynamic Meshes with Sliding Interfaces

In the results that follow, only rigid mesh motion will be considered during the solution of unsteady flow and
adjoint problems, although mesh deformation techniques will be used during the design process to perturb
volume grids after applying surface shape changes. With rigid mesh transformations, there is no relative
motion between individual grid nodes, aside from the case of sliding mesh interfaces where two or more rigid
sub-grids, or zones, are in motion relative to each other.

1. General Description of Rigid Mesh Motion

Rigid rotational and translational motion for a mesh node with each physical time step can be generally
described by

~x n+1 = R ~x n +�~x, (32)

where ~x n = {x, y, z}T is the current node position in Cartesian coordinates, ~x n+1 is the updated node
location at the next physical time instance, �~x is a vector describing the translation of the nodal coordinates
between time steps, and in three dimensions, the rotation matrix, R, is given by

R =

2

64
cos ✓

y

cos ✓
z

sin ✓
x

sin ✓
y

cos ✓
z

� cos ✓
x

sin ✓
z

cos ✓
x

sin ✓
y

cos ✓
z

+ sin ✓
x

sin ✓
z

cos ✓
y

sin ✓
z

sin ✓
x

sin ✓
y

sin ✓
z

+ cos ✓
x

cos ✓
z

cos ✓
x

sin ✓
y

sin ✓
z

� sin ✓
x

cos ✓
z

� sin ✓
y

sin ✓
x

cos ✓
y

cos ✓
x

cos ✓
y

3

75 (33)

with �~✓ = {✓
x

, ✓
y

, ✓
z

}T being equal to the change in angular position of the nodal coordinates about a
specified rotation center between time t n+1 and t n. Note that this matrix is formed by assuming positive,
right-handed rotation first about the x-axis, then the y-axis, and finally the z-axis. The general form of
Eqn. 32 supports multiple types of motion, including constant rotational or translational rates, pitching, or
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plunging. With each physical time step, the values of �~✓ and �~x are computed and Eqn. 32 is applied at
each node of the mesh.

For all types of rigid mesh motion, the local grid velocity at a node, ~u
x

, which is needed for solving the
ALE form of the governing equations, can be computed by storing the node locations at prior time instances
and using a finite di↵erencing approximation that is consistent with the chosen dual time-stepping scheme.
For second-order accuracy in time, the mesh velocities are given by

~u
x

⇡ 3~x n+1 � 4~x n + ~x n�1

2�t
, (34)

where �t is the physical time step. For the adjoint problem, the mesh motion must be performed in reverse,
and in this case, the mesh velocities that were computed during the direct problem are also written to disk
and retrieved with each time step.

For the two-dimensional pitching airfoil results presented below, the angle of attack as a function of time
is given by

↵(t) = ↵
o

+ ↵
m

sin(!t), (35)

where ↵
o

is the mean angle of attack, ↵
m

is the amplitude of the oscillations, and ! is the angular frequency.
The reduced frequency, !

r

, is a non-dimensional parameter often specified for consistency between flows.
From Eqn. 35, �~✓ between successive time steps can be found.

(a) Original 1-to1 grid interface. (b) Overlap region after the creation of
halo layers with a preprocessing code.

(c) Sliding motion of the interior zone
within the static outer zone. Interpola-
tion is now required between the grids.

Figure 3. Schematics detailing the creation and operation of a sliding mesh interface.

2. Sliding Mesh Interface Implementation

A sliding mesh strategy on unstructured grids has been developed and implemented within SU2 for the
simulation of surfaces in relative motion, and it is based on the creation of overlapping halo layers. An
arbitrary number of sub-grids, or zones, and their corresponding sliding interfaces can be specified, and a
pre-processing code orchestrates the construction of the overlapping regions. The halo layers are constructed
by performing nearest neighbor searches for the nodes and elements adjacent to the sliding interface within
the donor zone and by adding copies of these nodes and elements to the original zone (requires reconstruction
of the grid connectivity information). Fig. 3 depicts this process for a pitching airfoil case where two initial
1-to-1 zones (coincident, repeated nodes) are augmented with the halo layers.

Upon completion of the pre-processing, a new mesh with updated connectivity is produced (corresponding
to Fig. 3b). The new mesh file also contains a basic communication structure based on the current MPI
implementation. Without any relative motion of the zones during a simulation, the communication defaults
to a simple send-receive condition (similar to MPI), as the overlapping nodes remain coincident. Note that
only the halo nodes along the outer edges of the overlapping regions participate in the communication.

Once the overlapping regions exist, independent mesh motion can be applied to the zones. However, if
relative motion is specified, the overlapping halo layers are no longer coincident, and search and interpolation
routines are required to complete the communication of solution information across the interface. Fig. 3c
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demonstrates the relative motion of a pitching zone sliding within a fixed outer zone. This situation entails
the identification of the element in the donor zone that “owns” each halo node along the sliding zone boundary
and a suitable interpolation of the solution within the element to the halo node with each physical time step.
In order to maintain scalability for massively-parallel simulations, particular attention should be given to
advanced search and interpolation techniques.23

C. Design Variable Definition, Mesh Deformation, and Optimization

The time-accurate continuous adjoint derivation presents a method for computing the variation of an ob-
jective function with respect to infinitesimal surface shape deformations in the direction of the local surface
normal at points on the design surface. While it is possible to use each surface node in the computational
mesh as a design variable capable of deformation, this approach is not often pursued in practice. A more
practical choice is to compute the surface sensitivities at each mesh node on the design surface and then
to project this information into a design space made up of a smaller set (possibly a complete basis) of de-
sign variables. This procedure for computing the surface sensitivities is used repeatedly in a gradient-based
optimization framework in order to march the design surface shape toward an optimum through gradient
projection and mesh deformation.

In the two-dimensional airfoil calculations that follow, Hicks-Henne bump functions were employed24

which can be added to the original airfoil geometry to modify the shape. The Hicks-Henne function with
maximum at point x

n

is given by

f
n

(x) = sin3(⇡xe

n), e
n

=
log(0.5)

log(x
n

)
, x 2 [0, 1], (36)

so that the total deformation of the surface can be computed as �y =
P

N

n=1 �nf
n

(x), with N being the
number of bump functions and �

n

the design variable step. These functions are applied separately to the
upper and lower surfaces. After applying the bump functions to recover a new surface shape with each design
iteration, a spring analogy method is used to deform the volume mesh around the airfoil.25

The optimization results presented in this work make use of the SciPy library (http://www.scipy.org),
a well-established, open-source software package for mathematics, science, and engineering. The SciPy

library provides many user-friendly and e�cient numerical routines for the solution of non-linear constrained
optimization problems, such as conjugate gradient, Quasi-Newton, or sequential least-squares programming
algorithms. At each design iteration, the SciPy routines require as input only the values and gradients of
the objective functions, computed by means of our continuous adjoint approach, as well as the set of any
chosen constraints.

V. Numerical Results

For the numerical results that follow, the NACA 64A010 airfoil was chosen as the initial geometry. This
airfoil has been widely studied for unsteady problems, and thus allows for meaningful comparison with
existing experimental and numerical results. A baseline unstructured mesh consisting of 20,676 triangular
elements, 10,488 nodes, 200 edges along the airfoil, and 100 edges along the far-field boundary was constructed
around the airfoil. In order to analyze the performance of the new sliding mesh capability, the same baseline
mesh was then divided into two separate zones: a small, circular zone around the airfoil (radius of 1.5c), and
a background zone extending to the far-field. The creation of the overlapping halo layers added a total of
339 new nodes to the mesh. As we will be considering pitching motions for this airfoil, the two meshes are
shown in Fig. 4 in the maximum pitch angle state.

A. Verification and Validation of the Unsteady Flow and Adjoint Equations

For validating our implementation of the unsteady Euler equations in ALE form, a comparison was made
against the well-known CT6 data set of Davis.26 The physical experiment measured the unsteady perfor-
mance for the NACA 64A010 airfoil pitching about the quarter-chord point. The particular experimental
case of interest studied pitching motion with a reduced frequency, w

r

, of 0.202, M1 = 0.796, a mean angle of
attack of 0 degrees, and a maximum pitch angle of 1.01 degrees. All numerical simulations were performed
with 25 times steps per period for a total of 10 periods. Fig. 5 contains a comparison of the pressure contours
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(a) Single zone mesh. (b) Multi-zone sliding mesh. The blue zone is free to pitch
within the fixed outer zone.

Figure 4. Views of the baseline and sliding meshes for the NACA 64A010 at ↵ = 1.01 degrees.

for ↵ = 1.01 degrees both with and without the sliding mesh interface. Fig. 5 also shows a comparison of
the lift coe�cient versus angle of attack between SU2 and experiment during the final period of oscillation.
In physical time, the curve is traversed in a counterclockwise fashion. Note that nonlinear behavior corre-
sponding to moving shock waves results in a hysteresis e↵ect. The baseline and sliding mesh cases produce
essentially identical results, suggesting that for this problem, the sliding mesh approach does not introduce
considerable error. The numerical results agree well with experimentally measured values and also compare
favorably with other inviscid results.

In order to verify the accuracy of the gradient information obtained via the time-accurate adjoint, 38
Hicks-Henne bump functions were chosen as design variables. The bumps were equally spaced (0.05c)
along the upper and lower surfaces of the NACA 64A010. After solving the adjoint equations using the
stored solution data from the numerical experiment performed above, a comparison was made between the
time-averaged drag gradients (with respect to the Hicks-Henne design variables) calculated using both the
continuous adjoint and a finite di↵erencing approach with small step sizes for the bump deformations. This
procedure was performed for both the baseline and sliding mesh cases. As seen in Fig. 5, all gradients
compare very favorably, verifying both the time-accurate continuous adjoint and the sliding mesh algorithm.

Table 2. Initial and final time-averaged drag coe�cient values for the baseline and sliding mesh design cases.

Initial C̄
d

Final C̄
d

C̄
d

Reduction (%)

Baseline 0.002526 0.001022 59.5

Sliding 0.002532 0.001000 60.5

B. Redesign of the NACA 64A010 Airfoil

Lastly, a redesign of the pitching NACA 64A010 airfoil was performed using the gradient information obtained
from the time-accurate adjoint formulation on both the baseline and sliding meshes. The specific shape
optimization problem was for unconstrained, time-averaged drag minimization using the Hicks-Henne design
variables. Upon completion, the time-averaged drag, C̄

d

, was successfully reduced by 59.5 % for the baseline
case and 60.5 % for the sliding case. Table 2 contains drag coe�cient details during the optimization process.
Profile shapes of the initial and final designs are compared in Fig. 6. Again, note that the baseline and sliding
cases result in very similar results. While the optimization results given here are for an unconstrained
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(a) Pressure contours for the baseline mesh at ↵ = 1.01 de-
grees. Note the appearance of transonic shocks.

(b) Pressure contours for the sliding mesh at ↵ = 1.01 de-
grees. There is little di↵erence between the contours with and
without the sliding interface.

(c) Coe�cient of lift versus angle of attack (degrees) for the
baseline and sliding meshes compared against experimental
data. Note that nonlinear e↵ects cause lift hysteresis.

(d) Direct comparison of the time-averaged drag gradients ob-
tained by the continuous adjoint (C-A) and finite di↵erencing
(F-D) on the baseline (Ba.) and sliding (Sl.) meshes.

Figure 5. Verification and validation results for a pitching NACA 64A010.

problem, constraints on the lift or moment, for instance, can be easily added in the optimization framework
by solving an additional adjoint problem for each.

VI. Conclusions

In this article, a time-accurate, continuous adjoint formulation has been presented, verified, and ap-
plied. This formulation allows for the e�cient design of aerodynamic surfaces in unsteady flows using a
gradient-based optimization framework. More specifically, the treatment given in this article is a systematic
methodology for the unsteady Euler equations centered around finding surface sensitivities with the use of
di↵erential geometry formulas which has no dependence on volume mesh sensitivities when computing the
first variation of a functional (only a surface integral remains). A systematic method for deriving suitable
far-field boundary conditions for the adjoint problem was also demonstrated. Finally, a new sliding mesh
algorithm for unstructured meshes was developed and tested. In conjunction with the unsteady adjoint

14 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Ja
nu

ar
y 

18
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
63

2 



(a) Optimization history of a time-averaged drag minimization
for a pitching airfoil. The two cases achieved a final time-
averaged drag within 1 % of each other.

(b) Profile shape comparison for the initial NACA 64A010 and
the minimum time-averaged drag airfoils resulting from the
baseline and sliding mesh cases. The two optimized profiles
are nearly identical.

Figure 6. Optimal shape design results for a pitching airfoil.

formulation, the sliding mesh capability allows for the design of surfaces in relative motion.
The gradient information provided by the time-accurate adjoint has been verified for design variables

in two dimensions with and without the use of sliding meshes. In both situations, the gradients compared
very favorably with those obtained via finite di↵erencing. Optimal shape design results for a pitching airfoil
demonstrated the e↵ectiveness of the unsteady adjoint approach. Furthermore, shape design with sliding
meshes recovered nearly identical results as the baseline case, suggesting that their use in conjunction with
the unsteady adjoint can provide a stable and accurate design approach. The combination of sliding mesh
interfaces and the time-accurate continuous adjoint produces a powerful design tool for unsteady problems
with surfaces in relative motion.

In the future, these capabilities will be further developed within the current framework in order to tackle
larger, more challenging applications where unsteady e↵ects are important and sliding meshes are required,
such as the design of counter-rotating open rotors, advanced rotorcraft design, or turbomachinery component
design.
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