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The CPU power offered by the latest generation of supercomputers is such that the
unsteady simulation of the full wheel of a compressor or turbine is now within reach. This
CPU power is mainly obtained by increasing the number of processors beyond several
thousands, e.g. the BlueGene/L computer of Lawrence Livermore National Laboratory
has approximately 130,000 processors. Consequently extreme care must be taken when
the simulation codes are ported to these platforms.

This paper discusses the computer scientific aspects of simulating unsteady turboma-
chinery flows on massively parallel systems when multi-block structured grids are used.
Load balance, parallel IO and search algorithms are addressed, especially for the case
where the number of processors is larger than the number of blocks, i.e. when blocks must
be split during runtime. Preliminary results for cases with more than 200 million nodes
running on 1,800 processors are presented.

I. Introduction

The compressor and turbine of a modern turbofan engine typically have two counter-rotating concentric
shafts to allow for different rotational speeds of their components as well as a reduction of net torque. The
outer, low pressure parts rotate at a lower rate than the inner, high pressure components. Typical rotation
rates are 5,000 to 7,000 RPM for the former and 15,000 to 20,000 RPM for the latter. The compressor and
turbine themselves consist of a series of rotors and stators for which the blade counts are normally chosen
such that no sector periodicity occurs. Combined with the inherently unsteady nature of turbomachinery
flows, due to the motion of the rotors, this means that for the numerical simulation of the true problem the
full wheel must be computed time accurately.

The computational requirements for such a simulation are severe. Only consider the high pressure
components of a typical aircraft jet engine. The high pressure compressor, HPC, typically consists of 5
stages (rotor/stator combinations) and 100 to 200 blade passages per stage. Since approximately a million
nodes are required per blade passage to obtain a grid-converged Reynold-Averaged Navier-Stokes (RANS)
solution, the computational mesh for a full wheel HPC simulation should contain 500 million to 1 billion
nodes. Due to the favorable pressure gradient in the turbine, the blades can be loaded more heavily thus
reducing the number of stages. However a full wheel high pressure turbine, HPT, simulation still requires
150 to 300 million nodes.

The spatial mesh is to be integrated in time for 2,000 to 10,000 time steps, based on the estimate that 50
to 100 time steps are needed to resolve a blade passing, to remove the transient effects. As the corresponding
physical time step leads to a CFL number of O(10,000) for the smallest cells in the grid, an implicit time
integration scheme is most efficient. In this work the second order backward difference formula,

3Un − 4Un−1 + Un−2

2∆t
= Res(Un), (1)
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where Res(Un) is the residual of the spatial discretization, is used. The resulting nonlinear system for the
state Un is solved using the dual time-stepping approach.1 Using this technique it is expected that for a full
wheel unsteady HPC simulation 1 to 10 million CPU hours are needed on today’s fastest computers. For an
HPT simulation this number scales according to the ratio mentioned above. If the low pressure components
are added these numbers roughly quadruple, because both the computational mesh and the number of time
steps double. These requirements are far beyond what is currently affordable for practical applications and
therefore approximations are used to reduce the computational costs.

The most widely-used industrial practice for solving turbomachinery problems is the mixing plane as-
sumption.2 A circumferential averaging of the flow variables is applied at the interface between rotor and
stator. These average quantities are then imposed as upstream and downstream values for the following
and preceding blade rows respectively and a steady-state computation can be performed for both the rotor
and the stator. Due to this averaging and the periodicity assumption only one blade passage needs to be
simulated per blade row, independently of the blade counts. For the above HPC example the mixing plane
assumption reduces the problem to a steady-state computation on a 10 million node mesh.

Although this assumption models the mean effect of the rotor/stator interaction, all the unsteady infor-
mation is lost due to the averaging. Especially for the high pressure components the unsteady effects can be
important. Hence it is desirable to obtain an estimate of these effects. The current approach to accomplish
this is to perform an unsteady simulation of one stage, usually combined with rescaling. The upstream and
downstream boundary conditions are obtained from the mixing plane solution. Rescaling means that the
blade counts are changed such that a periodic sector is obtained, which then can be simulated instead of
the full wheel. To maintain solidity also the shape of the airfoils must be altered, which means an addi-
tional geometry modification. Because of these changes it is clear that only approximate information can be
obtained from unsteady sector simulations. Alternative approaches include the use of phase-lagged bound-
ary conditions,3,4 which account for first order unsteady effects, and the deterministic stress approach.5

Both techniques use simplifying assumptions and again only an approximate solution of the true problem is
obtained.

Therefore it is realized that, although too long for practical design at present, a wealth of information
can be extracted from full wheel unsteady analyses. They will lead to better understanding of the detailed
interactions between blade rows and therefore to improved stand-alone component analyses. Figure 1 shows

Figure 1. Entropy distributions for simulations of the first two stages of a modern turbine. Steady solution
with the mixing plane approximation (left), unsteady solution for a 20o sector with scaled geometry (middle)
and unsteady solution for the full wheel (right). For the unsteady solutions an instantaneous distribution is
shown.
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a comparison between the mixing plane assumption, the unsteady simulation of a scaled geometry (the
scaling is such that periodicity is obtained for a 20o sector) and the unsteady simulation of the full wheel
of the first two stages of a turbine. The quantity displayed is entropy on a surface located half-way the hub
and the case. For the unsteady simulations an instantaneous distribution is shown. The difference between
the steady computation using the mixing plane assumption and the unsteady simulations is evident. The
unsteady nature of the flowfield combined with the different blade counts leads to a strong interaction (both
downstream and upstream) between the rotor and stator. This information is lost due to the circumferential
averaging and results in a completely different picture of the flow field. The difference between both unsteady
simulations is not as clear, but subtle differences can be distinguished. Due to the rescaling of the blade
counts in the 20o sector simulation the wake patterns of the preceding blade rows differ from the true
geometry and hence the interaction between the blade rows shows different frequencies.

The objective of the Stanford ASC project6 is to develop a framework able to perform multi-disciplinary
simulations on massively parallel platforms. This framework can be used to compute the flowpath through
an entire jet engine (see figure 2). A major milestone for such an integrated computation is the unsteady sim-
ulation of the individual components, the compressor, the combustor and the turbine. This paper focuses on
the turbomachinery components of the engine and presents the the computer scientific aspects of performing
unsteady simulations of entire compressors and turbines on massively parallel platforms (MPP’s) as well as
some preliminary results. Details of the computational framework needed for an integrated simulation of the
full engine can be found in.7,8

II. Parallel algorithms

Despite the progress made in unstructured grid technology during the last 10 years, the quality of solutions
obtained on structured grids is still superior compared to their unstructured counterparts. This is especially
true for high Reynolds number RANS simulations where high aspect ratio cells must be used to capture
the anisotropic flow phenomena. In combination with the fact that it is relatively straightforward to create
multi-block structured grids for the geometries used in the turbomachinery components of a jet engine,
all the compressor and turbine simulations carried out within the Stanford ASC program use multi-block
structured grids.

The flow solver performing these simulations is SUmb, which has been developed under the sponsorship of
the Department of Energy Advanced Strategic Computing (ASC) Initiative. SUmb solves the compressible
Euler, laminar Navier-Stokes and RANS equations on multi-block structured meshes. Although the primary
objective of this code within the Stanford ASC program is to compute the flows in the rotating components

Figure 2. Schematics of an aircraft jet engine.
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of jet engines, SUmb has been developed as a generic solver and it is therefore applicable to a variety of
other types of problems, including external aerodynamic flows. A Python interface is available when used
in a multi-disciplinary environment.9

SUmb can be used to solve steady-state problems, unsteady problems (with moving geometries) and time
periodic problems, for which a Fourier representation is used for the time derivative leading to a coupled
space-time problem.10,11 A number of turbulence models is available, including k-ω,12 Spalart-Allmaras13

and v2-f .14 To reduce the grid resolution requirements in the near wall region it is possible to use adaptive
wall functions.15,16

For the discretization of the inviscid fluxes either a central difference scheme augmented with artificial
dissipation17 or an upwind scheme in combination with Roe’s approximate Riemann solver18 is used. The
viscous fluxes are computed using a central discretization. All the results presented in this paper are obtained
with a second order cell-centered discretization. The second order implicit time integration scheme, equa-
tion (1), is used for all unsteady computations. The convergence is accelerated via a standard geometrical
multi-grid algorithm in combination with an explicit multi-stage Runge-Kutta scheme.

SUmb is a parallel code, suited for running on massively parallel platforms. In the following sections the
load balancing, parallel IO and parallel search algorithms will be discussed in more detail.

A. Load balance

A critical issue to obtain good scalability on machines with thousands of processors is the load balance.
The grid must be distributed such that every processor performs the same amount of work while the cost
of communication is minimized. This is a typical graph partitioning problem. The complication that arises
for multi-block structured meshes is that the number of blocks in the grid can be similar or even smaller
than the number of processors used. Consequently it is necessary to allow the automatic splitting of blocks
during runtime such that an equal load can be obtained. At the moment a segregated approach is used,
which is shown in figure 3. The first step is to apply the graph partitioner on the original mesh for which
a certain load imbalance is obtained. If this imbalance exceeds the user specified tolerance, normally 5 to
10 percent, the largest blocks in the mesh are split and the graph partitioner is applied again. This process
is repeated until either an acceptable load imbalance is obtained or the prescribed number of iterations is
exceeded. Due to the segregated nature of this algorithm and the rather heuristic way the blocks are split,
only suboptimal results can be expected. However, the algorithm is fairly robust if the modifications to the
graph partitioner mentioned below are considered.

The graph partitioner used in this work is Metis.19 Metis is intended for the distribution of unstructured
grids for which the number of entities to be partitioned is orders of magnitude larger than the number of
processors. Consequently it performs well if the number of blocks is significantly larger than the number of

Figure 3. Iterative load balance algorithm for multi-block grids.
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processors.
However when the number of blocks is just marginally larger than the number of processors, a case that

usually occurs when running a multi-block solver on a massively parallel machine, the assumptions used in
the algorithms in Metis are violated and problems can be expected. Indeed, experience has shown that for
more than 50 processors empty partitions can occur and for O(1,000) processors approximately 10 percent
of the partitions are empty, which is clearly undesirable. However, it was found that Metis can still be used
for these cases if the cost of communication is neglected, i.e. the number of neighbors is set to zero for every
vertex of the graph. This is not the best solution possible, but for the cases shown in section III it works
reasonably well and better than other solutions attempted, such as Greedy algorithms.

Figure 4 shows the speed up relative to 200 processors for a full wheel turbine simulation for both single-
grid and multi-grid (using a three level W-cycle) computations. The grid consists of 496 blocks and 88
million cells and is considered coarse as the average number of cells per blade passage is only 250,000. This
case was run on 200, 400, 600, 800, 1,200 and 1,800 processors on the ALC Linux cluster at the Lawrence
Livermore National Laboratory. The speed up is perfect as long as an acceptable load balance could be
obtained. The deviations from the linear curve in figure 4 are solely caused by load imbalance. It was found
that on systems like ALC a linear speed up was obtained as long as at least 20,000 cells are stored per
processor. For BlueGene/L, which has relatively slow processors compared to its communication network,
this number could be reduced to 5,000.

B. Parallel IO

The SUmb flow solver has IO filters for both CGNS20,21 and PLOT3D.22 Due to the large amount of data
that must be read and written for unsteady simulations of entire compressors and turbines, parallel IO is
an absolute necessity. Despite the recent efforts to create a parallel IO option for CGNS,23,24 this is not
applicable yet to the problems considered in this work and therefore the discussion in this section will be
limited to the PLOT3D format.

One possibility for parallel IO is that every processors reads/writes the information it is responsible for.
The advantage of this approach is that the method is local, i.e. no explicit communication is required, and
therefore easy to implement. If blocks are not split during runtime this indeed is the most efficient solution,
because the PLOT3D format stores the information contiguously on a block by block basis22 and the size of
a block is usually big enough to guarantee good performance of the MPI IO routines.

Figure 4. Speed up relative to 200 processors for a full wheel turbine simulation for both a single-grid and a
3W multi-grid cycle. The grid consists of 496 blocks and 88 million cells. The computation was performed on
the LLNL ALC Linux cluster.
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Storage in a PLOT3D file on disk

j

i

Physical space

Figure 5. Splitting of a computational block into 4 subblocks. Left the physical situation, right the storage in
a PLOT3D file on disk.

However the splitting of blocks needed to obtain a good load balance (see section A) complicates the
situation significantly. Consider a block that is split into four subblocks (see figure 5). The data to be
read/written for a subblock is not stored contiguously anymore and consequently the algorithm described
above leads to very many, small IO-requests. This is known to result in very poor performance.25 In three
space dimensions the situation is even more pronounced because of the additional dimension.

One possible solution to this problem is to use MPI derived data types, which can be considered as a
non-contiguous data layout for the many requests, in combination with collective IO. Using this approach
the MPI IO implementation is able to optimize the reading and writing significantly.26 This derived data
type IO paradigm was implemented in SUmb and tested on the LLNL ALC Linux cluster. This machine
is equipped with the Lustre parallel file system with a theoretical performance of 6.1 to 8.0 GBytes/s. For
a relatively small number of processors, 100 or less, good performance was obtained. However for a large
number of processors the situation changes drastically. Figure 6 shows the IO performance of the same test
case used for the scalability test, see figure 4. For this case the file size for reading was 2.1 GBytes and the
file size for writing was 10 Gbytes. Similar results as shown in figure 6 were obtained for different file sizes.
It is clear that beyond 400 processors no significant speed up in IO is obtained anymore. Also the actual
numbers, 300 MBytes/s for reading and 150 MBytes/s for writing, are somewhat disappointing.

Two additional complications occur when using derived data types for IO. Firstly, when a block is split
a processor can store at most one subblock, because the MPI IO implementation assumes that derived data
types, i.e. the subblocks, stored on the same processor cannot physically overlap in the file. This puts an

Figure 6. IO performance on the LLNL ALC Linux cluster using derived data types for a full wheel high
pressure turbine simulation. (a) Reading performance, (b) Writing performance.
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Entire file
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Figure 7. Splitting of the file in equally sized chunks for the currently used parallel IO implementation.

additional constraint on the load balancing algorithm (see section A) which usually cannot be met. The
second complication arises for file sizes larger than 2 GBytes. During the construction of the derived data
type for collective IO the MPI function MPI Type struct must be used. The offset argument of this function
is a 4 byte integer and consequently files larger than 2 Gbytes cannot be handled without modification.

This modification consists of splitting the IO in chunks of at most 2 GBytes, which also solves the problem
of multiple subblocks per processor. However this leads to a very complicated piece of code, which does not
perform very well for a large number of processors, see figure 6. Therefore it was decided to abandon the
approach using derived data types, also because of robustness issues.

Instead a much simpler algorithm is currently used, see figure 7. The entire file is treated as one big
chunk of data, which is equally chopped up in a number of chunks. This number of chunks equals the number
of processors used in the simulation. Every processor is responsible for the reading/writing of one chunk
and data is communicated to/from other processors, if needed. This approach avoids all the problems with
derived data types at the expense of increased communication costs. However it can be expected that these
costs are minor compared to the costs of the actual IO.

The implementation of this paradigm was only finished recently and detailed performance tests have not
been carried out yet. However initial results indeed show better performance than results obtained with the
derived data type approach.

C. Parallel ADT search algorithm

Geometric searches are an important part of the unsteady simulation of turbomachinery flows. Wall distances
may be needed for the RANS turbulence model and interpolation coefficients must be determined for the
sliding mesh interfaces between rotor and stator. Furthermore geometric searches are also needed for the
domain interfaces used for an integrated simulation.7,8 Moreover, due to the relative motion of the different
parts, these interpolations must be repeated every time step, at least for the sliding mesh interfaces. Hence
an efficient search algorithm, whose local memory usage is limited, is a prerequisite. The reason for the
memory requirement is that the total amount of memory available on modern MPP’s is very large, but that
is caused by the large number of processors (O(10, 000)); per processor only 256 MBytes may be available
(as in BlueGene/L).

Therefore a parallel version of the Alternating Digital Tree, ADT, algorithm27 is used. First the bounding
boxes of the elements of the local grid are created. These bounding boxes are characterized by the lower left
and the upper right coordinate and are therefore equivalent to a point in 6 space dimensions. Every processor
creates a local 6-dimensional ADT of the bounding boxes (see figure 8). Logical rather than geometric splits

Figure 8. Building of the local ADT. Logical rather than geometrical splits are used to avoid degenerate trees.
Figure taken from.27

7 of 16

American Institute of Aeronautics and Astronautics



Figure 9. Gathering of the root leaves on all processors.

are used to avoid degenerate trees. The root leaves of the local trees are made available to all processors,
see figure 9, such that the geometric range covered by each local tree is known on every processor. Hence
possible target trees can be determined for every point to be searched.

The global algorithm proceeds as follows

• Determine for every point to be searched the target trees and determine the number of local trees to
be searched for the current set of points.

• Make this number available to all processors =⇒ Every processor can determine the total number of
points it has to search in the local tree.

• Determine the number of search rounds to avoid a possible memory bottleneck.

• Determine the sending and receiving processors for every search round.

• Loop over the search rounds

– MPI Alltoall to request data from processors.

– Send coordinates to be searched to the target processors.

– Perform the interpolation in the local tree to overlap between communication and computation.

– Loop over the number of processors for which I need to interpolate data in my local tree

• Receive the coordinates.
• Interpolate the data in my local tree.
• Send interpolation data back to the requesting processor.

– Loop over the number of processors to which I sent coordinates.

• Receive the interpolation data.

This algorithm works well when the global tree is evenly distributed over the processors, e.g. volume or
sliding mesh interpolation. When this is not the case, e.g. wall distance computation, the load imbalance
can be severe and a dramatic decrease in performance is observed. To improve this situation migration of
data combined with duplication of trees should be considered.

III. Results

This section presents some preliminary results for both the turbine and compressor of a typical aircraft
jet-engine. The tip gap regions of the rotors have been neglected and therefore shrouded casings are assumed.
Both the compressor and the turbine grids have the same topology consisting of an O-grid around the blade
and an H-type grid in the passage, see figure 10. The initial spacing for the turbine grids corresponds to
an average y+ value of 60, thereby requiring the use of wall functions.15,16 The total number of cells in
a passage, i.e. the O and H-block in figure 10, is 356,352. For the compressor grid the number of cells
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Figure 10. Grid topologies for a turbine passage (left) and compressor passage (right). Coarser versions of
actual grids are shown.

per passage differs per blade row, but on average approximately 280,000 cells per passage are used. As
this grid is a wall integration grid, with an average y+ value of 3, this is clearly too coarse to obtain a
grid-converged solution and therefore the compressor simulations should be considered as a demonstration
only. The subsonic inflow and outflow boundary conditions correspond to the regular cruise condition of the
engine. For all results shown the turbulence is modeled using the k-ω model.12

Figure 11. Convergence histories for the turbine, mixing plane assumption. 3W cycle in combination with a
5 stage Runge Kutta smoother.
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Figure 12. Entropy distribution for the mixing plane computation of the high pressure and first stage of the
low pressure turbine.

A. Steady computations

Steady-state computations using the mixing plane assumption are carried out for the high pressure turbine,
consisting of 1 stage, combined with the first stage of the low pressure turbine and for the high pressure
compressor, which contains 5 stages.

The convergence history for the turbine case is presented in figure 11. Although 3,000 multi-grid cycles
were used, the solution reached engineering accuracy after approximately 1,000 cycles. Note that the initial
solution on the fine grid was obtained by applying grid sequencing on the coarser meshes. Consequently, the
relative initial position for the convergence histories shown in figure 11 is already two orders of magnitude
lower than when the solution is initialized from free-stream conditions. The entropy field of a steady-state
mixing plane solution in a turbine passage is shown in figure 12. The abrupt disappearance of the wakes
between the blade rows is a direct consequence of the one-dimensional interpolation/averaging on the sliding
mesh interfaces.

The HPC simulation is far more challenging to compute due to the high compression ratio that results
from the work transmitted from the rotating blades to the fluid. Since the exit pressure is an order of
magnitude higher than the pressure at the inlet, the flow tends to reverse its direction as soon as large
pockets of separation occur in the passage. As a consequence, the computations must be carried out in
several steps, first by slowly raising the rotational speed of the wheels while keeping the pressure low at the
exit, and then by increasing the pressure once the full rotational speed was achieved. The entropy field of a
steady-state mixing plane solution in a compressor passage is shown in figure 13.

Figure 13. Entropy distribution for the mixing plane computation of the high pressure compressor.
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Figure 14. Evolution of the relative inlet and outlet
mass flow for the scaled turbine geometry.

Figure 15. Evolution of the relative torque on the four
blade rows for the scaled turbine geometry.

B. Unsteady computations of 20o sectors

For the 20o sector simulations the blade counts are changed such that the full wheel can be split into 18
sections and periodicity conditions can be used. The pitch and chord of the blades are adjusted to preserve
the flow blockage. The steady solutions obtained with the mixing plane assumption are used as initial
conditions for the unsteady computations. The physical time step is chosen such that a blade passage of the
blade row with the highest blade count is resolved with 50 time steps. For the turbine this corresponds to
2,700 time steps per revolution, while for the compressor 6,300 time steps per revolution must be taken.

The 20o turbine sector computation has been advanced for 1,300 time steps. Transient effects are still
present in the flow, as illustrated by time evolutions of the relative inlet and outlet mass flow rate, see
figure 14. However, the torque on the blades seems less sensitive and has reached a seemingly periodic state,
figure 15. Figures 16 and 17 show the mass flow evolution during the last 400 time steps compared to
mixing plane solutions computed using both the scaled and unscaled geometry. First, it can be seen that all

Figure 16. Comparison of the relative inlet mass flow
of the unsteady solution and the two mixing plane
solutions.

Figure 17. Comparison of the relative outlet mass
flow of the unsteady solution and the two mixing plane
solutions.
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solutions have a lower mass flow rate at the outlet than at the inlet, despite the use of a conservative scheme.
In a conservative scheme only the sum of the central and dissipative fluxes is conserved. The values shown in
figures 14, 16 and 17 correspond to the central contribution, which is not conserved as such. The difference
in mass flow is 3 to 4 percent, indicating that the solutions cannot be considered grid-converged. This
result was anticipated, but the decision was made to proceed with these grids in order to learn some initial
lessons about the unsteady nature of these large-scale computations at somewhat lower computational cost.
Secondly, the average mass flow for the unsteady computation is lower than for the mixing plane solutions.
Although this could still be a transient effect, figure 14 indicates that this is not the case. Finally, the
unsteady mass flow rate at the outlet, figure 17, shows a much higher frequency than the mass flow rate at
the inlet, figure 16. The flow at the outlet is influenced by all blade rows, while the flow at the inlet seems
to be influenced only by the first blade row.

Figures 18 to 21 show the relative torque on the blade rows for the unsteady solution of the last 400
time steps, its time-averaged values and for the mixing plane solutions.

Figure 18. Comparison of the relative torque on the
first stator of the unsteady solution and the two mix-
ing plane solutions.

Figure 19. Comparison of the relative torque on the
first rotor of the unsteady solution and the two mixing
plane solutions.

Figure 20. Comparison of the relative torque on the
second stator of the unsteady solution and the two
mixing plane solutions.

Figure 21. Comparison of the relative torque on the
second rotor of the unsteady solution and the two
mixing plane solutions.
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Figure 22. Turbine, 20o sector; Instantaneous entropy distribution for the unsteady solution for the scaled
geometry.

The difference between the value obtained with the mixing plane assumption and the time-averaged value
is between 1 and 3 percent. However, due to the steady nature of the mixing plane assumption, it does not
give any information about the amplitude and frequencies of the oscillations, which are important design
properties.

Figure 22 shows the instantaneous entropy distribution in the same plane as figure 12. It is clear that the
solution is now continuous over the sliding mesh interface, and the effect of the wakes on the downstream
blades is evident.

For the 20o compressor sector computation only 1,500 time steps have been computed, which corresponds
to 85o of rotation, starting from the mixing plane solution. This is not enough to reach the periodic state
and therefore no detailed comparisons are shown. Figure 23 presents the instantaneous entropy distribution
after 1,500 time steps. Again the interaction between the blade rows is clearly visible compared to the mixing
plane solution in figure 13.

Figure 23. Compressor, 20o sector; Instantaneous entropy distribution for the unsteady solution for the scaled
geometry.
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C. Unsteady computations of full-wheel geometries

Due to the smaller number of blade rows in the HPT, the computational costs for the unsteady simulation
of the full wheel turbine are smaller than for the compressor. Consequently most of the attention for the full
wheel simulations has been paid to the high pressure turbine augmented with one stage of the low pressure
part. The computational grid consist of 496 blocks and 88 million cells. The disk space needed to store this
grid in double precision is 2.1 GBytes. For the solution file at least 6 Gbytes of disk space is needed to store
the set of independent variables. However, if more information is stored in the solution file this number
increases. As for the 20o sector simulation one revolution of the HPT is resolved with 2,700 time steps.

Consequently disk storage space becomes an issue for these full wheel computations. If a solution is
written every time step at least 8×2, 700 = 21, 600 Gbytes = 21 TBytes are needed for one revolution of the
turbine simulation. The question is whether to store the whole solution every time step or only to dump a
priori chosen planes. The advantage of the latter approach is that the disk space requirements are reduced
by at least one order of magnitude. The disadvantage is that some a priori knowledge of the solution is
needed.

These numbers are based on a grid containing 88 million cells, i.e. approximately 300,000 per blade
passage. In section B it has been shown that this grid resolution is not sufficient to obtain a grid-converged
solution. It is estimated that at least a million cells are needed per passage for a grid converged solution
if the turbulence model is integrated up to the wall (no wall functions). The corresponding disk space
requirements increase by a factor 3 as well, under the assumption that 2,700 time steps for a full revolution
are still enough to obtain a time converged solution.

This case has been run on the LLNL ALC machine on either 300, 600, 1,200 or 1,800 processors, depending
on the available resources; SUmb writes the solution in a single file and a restart can be made on a different
number of processors due to the fully integrated parallel preprocessor. The solution has been advanced 600
time steps starting from the mixing plane solution. A comparison with the mixing plane and unsteady 20o

sector simulation is shown in figure 1.
The full wheel HPC simulation has been initiated as well. The computational grid consists of approxi-

mately 220 million cells and requires 5.7 GBytes of disk space. The size of a corresponding solution file is
at least 17 Gbytes, which leads to 23 Gbytes for grid and solution. Due to the higher blade counts in the
compressor, compared to the turbine, 7,000 time steps are needed per revolution, which still corresponds to

Figure 24. Instantaneous entropy distribution for the full wheel PW 6000 high pressure compressor simulation
after 40 time steps, i.e. 2o rotation of the HPC rotor.
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50 time steps per blade passage of blade row with the most blades. Consequently 155 TBytes of disk space
is required to store one revolution of the full wheel HPC for this grid.

Only 40 time steps, i.e. 2o of rotation, have been computed, see figure 24, which took 20 hours of wall
clock time on 600 processors on the LLNL ALC machine. Clearly more computational resources are needed
for a case this large.

IV. Conclusions

This paper describes the parallel algorithms required for the efficient unsteady simulation of large scale
turbomachinery problems on massively parallel platforms using multi-block structured grids. Load balancing,
parallel IO and the parallel ADT search algorithm have been discussed. It is shown that load balance is
absolutely essential to obtain good speed up and also that this is not a trivial task for multi-block structured
meshes. For the cases presented in this paper blocks had to be split for this purpose.

A consequence of this splitting during runtime is that the parallel IO becomes complicated. To avoid very
many, small requests the IO cannot be done locally anymore and an implementation using communication
is needed. It was attempted to use MPI derived data types for this purpose, which worked reasonably well
up until 200 processors. However, the performance for larger numbers of processors is rather disappointing
(on the LLNL ALC machine) and problems arise when the file size exceeds 2 GBytes. Therefore the derived
data type paradigm was abandoned. Instead in the currently used algorithm every processor is responsible
for a contiguous chunk of data, which is possibly communicated to/from other processors. No performance
tests have been conducted for this implementation.

The parallel ADT algorithm is a generalization of the sequential algorithm and is done such that no
memory bottleneck occurs. The reason for this is that some of the modern massively parallel machines
only have a very limited amount of local memory. Consequently, performance is sacrificed in the current
implementation to satisfy the local memory restriction. For containment searches the performance is still
very good, but for minimum distance searches, especially wall distances, this is not the case anymore.

Preliminary results of full-wheel unsteady simulations of the high pressure components of an aircraft
jet-engine have been presented. For the HPT a grid consisting of 88 million cells is used, for the HPC
this number is 220 million cells. Despite these large numbers of cells the grids are too coarse to obtain
grid-converged results.

The difference with the mixing plane assumption, which allows for a steady approximation of these
inherently unsteady problems, is clearly shown. Also differences with the unsteady solution using a scaled
geometry can be observed, although the full wheel simulations are still in too early a stage to quantify these
differences.

V. Future Work

It has been shown that the grids used in the full-wheel simulation are too coarse for a grid-converged
solution and finer grids are needed. In order to deal with this increased problem size as well as to reduce
the wall clock time more processors are needed than the 1,800 used so far. From tests done with the current
load balancing algorithm it is clear that it does not give satisfactory results for processor counts of 5,000
and higher. Consequently a different algorithm is needed that should incorporate the block splitting in the
partitioning algorithm rather than the segregated approach used in this work.

The parallel IO algorithm for which every processor is responsible for one contiguous chunk of data should
be optimal for reading and writing itself. It may lead to increased communication, but it is expected that
this is of minor importance. Further tests are needed to verify this expectation.

The efficiency of the parallel ADT search algorithm should be improved, in particular for minimum
distance searches. A more flexible approach is needed where either duplication of trees or migration of
data should be allowed to improve the efficiency. Also the very strict memory policy currently used could
be relaxed, especially for surface data. Tests have indicated that this leads to a factor 3 or 4 increase in
performance for wall distance searches.

For the unsteady simulations, both sector and full-wheel, a lot of work remains to be done, especially on
verification and validation.
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