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This paper demonstrates the accuracy of the nonlinear frequency domainmethod in applications to unsteady flow

calculations. The basis of themethod is a pseudospectral approach to recast a nonlinear unsteady systemof equations

in the temporal domain into a stationary system in the frequency domain. The nonlinear frequency domain method,

in principle, provides the rapid convergence of a spectral method with increasing numbers of modes, and, in this

sense, it is an optimal scheme for time-periodic problems. In practice it can also be effectively used as a reduced order

method in which users deliberately choose not to resolve temporal modes in the solution. A variable-time-period

method has been proposed such that the nonlinear frequency domain method can be applied to problems where the

time period of the unsteadiness is either known or unknown a priori. To validate the latter case, results from this

method have been compared with experimental results of vortex shedding in low Reynolds number flows past

cylinders. Validation of the first case utilizes experimental data of a pitching airfoil in transonic flow. These

comparisons demonstrate the efficiency of the nonlinear frequency domain method in representing complex

nonlinear flow field physics with a limited number of temporal modes.

Nomenclature

A, B, C, D = coefficients used in the Strouhal data curve fit
b = component of the control volume face velocity

vector
Cl = coefficient of lift
Cm = coefficient of moment
E = stagnation energy
F = component of flux vector contained in spatial

operator
Î = Fourier coefficient of unsteady residual
k = wave number
L� = lift transfer function
n = integer wave number
p = pressure
R = spatial residual
Re = Reynolds number
S = cell face normal
St = Strouhal number
T = time period of the unsteady solution or

temperature
t = time
u = component of the fluid velocity vector
V = volume
W = solution
x = spatial dimension
y� = nondimensionalized distance from wall
� = ratio of specific heats
�ij = Kronecker delta
� = heat transfer coefficient
� = absolute viscosity
� = density
� = shear stress tensor
� = pseudotime

Introduction

T HE calculation of unsteady flows continues to present a severe
challenge to computational fluid dynamics (CFD). While

preserving the accurate spatial discretizations associated with
established steady-state solvers, unsteady codes also need to
accurately resolve the time history of the solution. The challenge to
CFD lies in this added dimension and its associated computational
cost.

Unsteady flows can be divided into two main categories. The
first category includes flows where the resolution of the initial
transients is relevant, and accurate initial conditions are required. The
second category includes flows where the user only requires the
solution at a periodic steady state. As in the case of a steady flow
simulation, the final periodic state is independent of the initial
conditions.

The motivation of this research is to improve solver technologies
for the second class of problems. There existmany physical problems
within this class where boundary conditions force the unsteadi-
ness at predetermined frequencies. Examples of this include the
internal flows in turbomachinery, the external flow fields of
helicopter blades or propellers, and certain aeroelastic computa-
tions. In contrast, the unsteadiness may also be induced by instability
waves within the flow field. The resulting periodic flow is the
result of boundary conditions, but the unsteadiness is not forced
at any predetermined frequency. Examples in this group include
(but are obviously not limited to) vortex shedding behind a
cylinder and other fluid dynamic cases involving separated flows and
free shear layers. Estimates of the frequencies of the unsteadiness
can be gained via experimental data or simplified analytic models.
However, the exact temporal frequencies for a given spatial
discretization are usually impossible to determine a priori. The
research presented in this paper focuses on methods that are
amenable to both situations.

Several numerical approaches have been used to solve for
unsteady periodic flows. Predominantly, time advancement schemes
are applied to accurately resolve the flow transients until their decay
to a periodic steady state. The efficiency of the technique is a function
of the time scale of the transients relative to the time period of the
converged oscillations. This approach can easily include all the flow
field nonlinearities, but as these time scales diverge the cost of a time
accurate calculation may become untenable. Linearizations can be
applied to allow users to directly solve for the solution at its periodic
steady state. The governing equations are linearized by splitting the
solution into a steady and a significantly smaller periodic unsteady
component. The cost of the procedure grows linearlywith eachmode
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that can be solved independently of other modes. The approach gains
numerical efficiency at the expense of limiting its applicability to
flows where nonlinearities are insignificant.

Adamczyk [1] partially addressed this issue by proposing several
different linearizations and averaging operators of the velocity
variable to form what he termed the deterministic stress. Adamczyk
proposed modeling these terms, but subsequent authors [2,3]
proposed calculating these terms with a modified version of a
linearized frequency domain solver, where the modes are coupled
and require simultaneous solution of both the time-averaged
and unsteady terms. Although some of the nonlinearities are
addressed in the time-averaged solution, the higher order terms are
still neglected in the solution of the unsteady modes. In addition, the
method couples only the time-averaged solution to the higher
harmonics. These shortcomings were remedied byHall et al. [4] who
proposed the harmonic balance technique to directly solve a fully
coupled nonlinear system of equations at their periodic steady state.
This research proposes the nonlinear frequency domain (NLFD)
method which employs a similar pseudospectral approach but
deviates fromHall’s approach to improve the numerical efficiency of
the algorithm.

Methodology

Governing Equations

For an arbitrary volume of fluid �, conservation of mass,
momentum, and energy can be expressed in the following integral
form:

d

dt

Z
�

WdV �
I
@�

F �Nds� 0 (1)

This integral form contains volumetric integrals denoted as
R
� dV

and surface integrals denoted as
H
@� ds. For a two-dimensional flow,

the physical properties of the fluid (density �, Cartesian velocity
components ui, and stagnation energy E) are collected into the state
vector

W �
�
�u1

�u2

�E

2
664

3
775 (2)

The transport and/or production of these properties is accounted for
in the flux vector F. For convenience this overall flux is split into
convective, Fc, and viscous, Fv, components

F � Fc � Fv (3)

The convective fluxes will include those terms normally associated
with the Euler equations and the fluxes associated with a moving
control volume. The velocity of the surface of the control volume is
denoted as b. Using indicial notation these terms can be defined for
each coordinate direction i in two-dimensional space as

Fci
�

� �ui � bi�
�u1 �ui � bi� ��1ip
�u2 �ui � bi� ��2ip
�E �ui � bi� ��ip
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775 (4)

The viscous fluxes will include the stress tensor terms associated
with viscous dissipation

Fvi
�
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uj�ij � qi

2
664

3
775 (5)

Closure for the energy and viscous stress tensor terms is provided by
the following relationships:
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�
(6)

For all the analysis presented in this paper the ratio of specific heats �
and the Prandtl number Pr are held constant at 1.4 and 0.72,
respectively. The relationship between absolute viscosity � and
temperature T is determined by Sutherland’s law.

Transforming the Equations into the Frequency Domain

These equations are approximated using the finite volume
approach where the continuous surface integrals are represented by a
discrete summation of fluxes across a finite number of faces on the
control volume. The remaining term in the conservation laws is the
temporal derivative of the volumetric integral of the solution. This is
approximated as the product of the cell volume with the temporal
derivative of the average of the solution over the cell. The
approximation of thefluxvectorFc that ensures numerical stability is
the subject of shock capturing theory, and is not the focus of this
research. Any artificial dissipation provided by shock capturing
schemes and/or turbulence modeling is denoted Fd while natural
viscous dissipation is included in the Fv term.

V
@W

@t
�

X
cv

Fc � S �
X
cv

Fd �
X
cv

FvS� 0 (7)

Note that Eq. (7) and all subsequent formulas derived from it are valid
only for rigid mesh translation where the volume of each cell is not a
function of time. The spatial operatorR is introduced as a function of
space and time including all the convective and dissipative fluxes.
Taking advantage of this simplified notation, a semidiscrete form of
the governing equations can be written as

V
@W

@t
� R� 0 (8)

Assuming that the solutionW and spatial operator R are periodic in
time then both can be represented by separate Fourier series:

W �
XN=2�1

k��N=2

Ŵke
ikt; R�

XN=2�1

k��N=2

R̂ke
ikt (9)

where,

i�
�������
�1

p
(10)

These discrete Fourier transforms can be substituted into the
semidiscrete form of the governing equations provided by Eq. (8),
and the time derivative of the state variable can be moved inside the
series summation. Taking advantage of the orthogonality of the
Fourier terms results in a separate equation for eachwave number k in
the solution

ikVŴk � R̂k � 0 (11)

Here, however, each coefficient R̂k of the transform of the residual
depends on all the coefficients Ŵk, because R�W�t�� is a nonlinear
function of W�t�. Thus (11) represents a nonlinear set of equations
which must be iteratively solved. The solver attempts to find a
solution W that drives this system of equations to zero for all wave
numbers, but at any iteration in the solution process the unsteady
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residual Îk will be finite:

Î k � ikVŴk � R̂k (12)

The nonlinearity of the unsteady residual stems from the spatial
operator. There are two approaches to calculating the spatial operator
expressed in the frequency domain. The first uses a complex series of
convolution sums to calculate R̂k directly from Ŵk. Such an approach
was discussed in Hall’s introductory paper on harmonic balance
techniques [5]. Hall justly discarded the approach due to its massive
complexity (considering artificial dissipation schemes and
turbulence modeling) and cost that scales quadratically with the
number of modes N.

An alternative proposed by Hall is to use the pseudospectral
approach in the temporal domain. Our research employs a similar
approach in the frequency domain. The advantage to this latter
approach is in the application of the convergence acceleration
techniques used in the NLFD code. Other research performed by this
author demonstrates that the convergence rates of the unsteady
residual in the NLFD solver are equivalent to steady-state codes [6].
In this approach, an unsteady residual exists for each wave number
used in the solution and a pseudotime derivative acts as a gradient to
drive the absolute value of all of these components to zero
simultaneously.

V
@Ŵk

@�
� Îk � 0 (13)

A diagram detailing the transformations used by the pseudospectral
approach is provided in Fig. 1. We begin by assuming that Ŵk is
known for all wave numbers. Using an inverse fast-Fourier-
transform (FFT), Ŵk can be transformed back to the physical space
resulting in a state vector W�t� sampled at evenly distributed
intervals over the time period. At each of these time instances the
steady-state operatorR�W�t�� can be computed. AFFT is then used to
transform the spatial operator to the frequency domain where R̂k is
known for all wave numbers. The unsteady residual Îk can then be
calculated by adding R̂k to the spectral representation of the temporal
derivative ikVŴk.

The cost of the FFT is proportional toN ln �N�. For most realistic
values ofN (N � 1 ! 10) the cost of the pseudospectral approach is
dominated by the cost associated with calculating the spatial
operator. Consequently, the overall cost of the simulation scales by
the product of the cost of evaluating a steady-state spatial operator
and the number of time instances used to represent the solution N.

Boundary Conditions

Two separate sets of boundary conditions were employed for the
model problems shown in subsequent sections. For the cylinder, a
boundary condition based on the one-dimensional characteristic
equations was implemented to provide a radiation free condition that

essentially nullified any incoming waves. For the pitching airfoil, a
steadyRiemann invariant boundary conditionwas seperately applied
to each time sample in the solution. These relatively simple boundary
conditions take advantage of the diffusive character of the far-field
grid. The degree to which these boundary conditions reflect energy is
no longer a critical parameter given the de facto sponge created by
grid diffusion and the extended distance of the boundary. If one used
a time domain solver, the penalty associated with this approach
would be the additional computational time required to propagate the
unsteady waves across a larger domain. However, this is not the case
for a frequency domain approach that solves directly for the solution
at its periodic steady state.

Variable Time Period

A major outcome of our research has been the development of a
gradient approach for the class of problems where the time period of
the unsteadiness is unknown a priori. An iterative approach is
proposed that determines the time period of the fundamental
harmonic. In practice, the user provides an initial guess in the vicinity
of the final answer and gradient information is used to change the
estimate to the time period after each iteration in the solution process.
Convergence is achieved when changes in the fundamental time
period and all of the residual levels in the unsteady equations are
negligible.

A derivation of the gradient-based-variable-time-period
(GBVTP) method begins by noting that the wave number k is
calculated by normalizing the sinusoidal period of oscillation 2

with the time period of interest T

k� 2
n

T
(14)

The unsteady residual in Eq. (13) can then be written as a function of
the time period T

Î n �
i2
nV

T
Ŵn � R̂n (15)

The process of finding a solution to the unsteady flow equations is
regarded as an optimization problem where the magnitude of the
unsteady residual is minimized. A gradient of this residual with
respect to the time period can be calculated and used to iteratively
modify this time period until the magnitude of all components of the
unsteady residual are negligible.

Because the unsteady residual În is a complex quantity, its
magnitude squared is the sum of the square of its components. Using
the chain rule, a gradient of this cost function with respect to the time
period can be written as

1

2

@jÎnj2
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� Înr
@Înr
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@Îni
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(16)
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Fig. 1 Dataflow diagram of pseudospectral approach used to calculate spatial operator.

1430 MCMULLEN, JAMESON, AND ALONSO



The quantity În is already calculated while monitoring the
convergence of the solution (note that the real and imaginary parts of

În are Înr and Îni, respectively). The partial derivative terms can be
expanded as

@Înr
@T

� 2
nVŴni

T2
;

@Îni
@T

�� 2
nVŴnr

T2
(17)

The formulas can be further simplified by introducing cross product
notation with the Fourier coefficients of the solution and residual
written as vectors

W n � Ŵnre1 � Ŵnie2; In � Înre1 � Înie2 (18)

Using this notation the gradient can be expressed as themagnitude of
the cross product of the above vectors

1

2

@jÎnj2
@T

� 2
nV

T2
jIn 	Wnj (19)

The time period can be updated using the gradient information by
selecting a stable step �T

Tn�1 � Tn ��T
@jÎnj2
@T

(20)

Typically one can start with an initial guess for the time period in the
vicinity of the final answer. An unsteady flow solution can be
obtained by solving the equations ofmotion at some nonzero residual
level. The above gradient can then be used to adjust the time period at
each iteration in the solution process. As such, both the solution and
time period are simultaneously updatedwhile the residual is driven to
a negligible value.

To validate the GBVTP method, the NLFD code was used to
calculate the flow over a cylinder (see section) at a Reynolds number
of 105 in both fixed and variable-time-period modes. First, a
variable-time-period case was executed where the NLFD code
obtained a solution for the field variables and time period associated
with a machine-zero residual. Then a number of fixed-time-period
calculations were performed using time periods in the vicinity of the
one derived by the GBVTP case. In Fig. 2, the minimum residual
obtained by each of these fixed-time-period runs is plotted as a
function of the distance between the constant time period and that
determined by the GBVTP method. The plot shows that to obtain
machine-zero level residuals using fixed-time-period calculations
the Strouhal number specified by the user a priori must approximate

the GBVTP value to machine accuracy. The results from this
numerical experiment demonstrate the capability of the GBVTP
algorithm to find this value. In addition, since there is only one
minimum in the residual values, the data support the notion that there
is a unique Strouhal number associated with the exact solution of the
discretized equations.

Cylindrical Vortex Shedding

Test Case Description

This sectionwill compare results from theNLFD codewith results
obtained from independently conducted experiments of laminar
vortex shedding behind a cylinder. Given the work ofWilliamson in
this field [7,8], his experimental data will be used exclusively for
these comparisons. In addition, comparisons are also made with
Henderson’s [9] numerical results that employ spectral elements
with an eighth order basis.

Cylinder Results

Both spatial and temporal resolution surveys were conducted as
part of this research. The spatial surveys utilized four independently
generated grids, while the temporal surveys used a varying number
of wave numbers in the representation of the solution. For each
permutation of spatial and temporal resolution, we calculated 10
cylinder solutions at different Reynolds numbers between 60 and
150. Table 1 identifies all values of the three different parameters
used in these surveys. Including all the permutations, 160 different
solutions were calculated.

Variable-Time-Period Results

Figure 3 provides the Strouhal frequency statistics as a function of
Reynolds number for each temporal resolution computed on the
finest grid. For comparative purposes, Williamson’s [7,10,11]
experimental data is overplotted on the graphs with circles.

The difference between the experimental data and the one mode
solution actually increases with increasing Reynold number. This
variation can be explained by computing the L2 norm of the energy
within the solution for each harmonic:

kEkk �
�Z

�

j�̂ekj2dV
�
1=2

(21)

Figure 4 plots this norm as a function of the Reynolds number for
the finest grid used in the spatial survey. This plot shows that
the relative energy in the higher harmonics increases as the Reynolds
number increases. At the upper end of the Reynolds number range,
the unresolved modes alias more energy back into the lower modes
leading to a variation in the predicted Strouhal number between the 3
and 5-mode solutions. At the lower end of the Reynolds number
range, the higher modes carry substantially less energy and fewer
modes are required to accurately predict Strouhal number and other
statistics.

For each numerical solution, the Strouhal and Reynolds numbers
form a dependent pair that can be used to solve a least squares
problem for the coefficients A, B, C (assuming D� 0) in Eq. (22).

St � A� B

Re �D
� C�Re �D� (22)
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Fig. 2 Minimum residual of a fixed-time-period NLFD calculation.

Table 1 Values of parameters used in the three-dimensional

parametric survey, which combines both temporal and spatial resolution
surveys over a range in Reynolds number.

Variable Values

N Modes 1, 3, 5, 7
Grid 129 	 65, 193 	 81, 257 	 129, 385 	 161
Reynolds number 60, 70, 80, 90, 100, 110, 120, 130, 140, 150
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The shift operatorD, can then be chosen such that the error between
the curve fit equation (using the coefficientsA,B,C derived from the
numerical data) and the experimental results is minimized. This
parameter represents a statistically averaged Reynolds number shift
between the experimental and numerical datasets, and is provided in
Table 2.

Because of the limited number of converged solutions, the data for
the coarsest mesh are suspect and have not been included. In general,
the Reynolds number shift decreases by a factor of 4 for every
doubling in the grid size. This error component has a dissipative
influence lowering the effective Reynolds number of the numerical
solution. Notably, the magnitude of the shift operator is temporally
converged after using just three time varying harmonics.

Fixed-Time-Period Results

This section explores the relative merits of the GBVTP algorithm
by comparing a flow field statistic based on solutions computed with
and without the GBVTP algorithm. Figure 5 plots the base suction
coefficient (the negative mean pressure coefficient at the far leeward
edge of the cylinder) as a function of Reynolds number, for both
fixed-time-period and GBVTP data sets. The fixed-time-period
results used a constant time period based on interpolation of the
experimental data.

In most cases, the GBVTP algorithm effectively moves the
numerical results closer to the experimental data; representing a
positive influence on the accuracy of theNLFDmethod. This effect is
most noticeable for the coarse grid results shown in subplot (a) of
Fig. 5. This can be explained using Table 2 showing that differences
in Strouhal numbers between NLFD and experimental data increase
with decreasing spatial resolution. This inverse relationship implies
according to Fig. 2 that the minimum residual obtained for coarse
grid calculations will be much greater than that associated with the
fine grid. Ultimately, these larger residuals manifest themselves as an
increased error in the base suction coefficient predicted on the coarse
grid and provide an explanation as to why the effects of the GBVTP
algorithm vary with spatial resolution.

As with the Strouhal number results, the difference between the
NLFD and experimentally predicted base suction coefficient re-
sults decreases with decreasing Reynolds number. Again this
can most likely be attributed to the varying levels of aliasing error
with Reynolds number documented by Fig. 4. Surprisingly, this
difference between NLFD and experimental results on the finest
mesh is smaller than the difference between the Henderson results
and the experimental data over the entire range inReynolds numbers.

Pitching Airfoil Experimental Validation

This section compares the numerical results produced by the
NLFD code with results obtained from independently conducted
experiments of a pitching airfoil rotating periodically about its
quarter chord at a given frequency. Far-field quantities such as angle
of attack, velocity, and thermodynamic properties of the fluid are
held constant in time. The convergence of these results is assessed by
surveys of spatial and temporal resolution based on global force
coefficients. The experimental data used for comparison was
compiled by Davis [12] and published in Agard report 702. This
section uses the dataset identified by the experimentalist as the
priority case within the report (Dataset 2, CT Case 6, Dynamic Index
55).

AC-mesh grid topology has been used exclusively for theNavier–
Stokes calculations of the pitching airfoil. The grids were generated
with the a hyperbolic mesh generation tool. The average height of the
first cell adjacent to the wall is quantified in Table 3 in terms of y�

units based on a Reynolds number of 12:5 	 106 for the 64A010
airfoil. Other descriptive parameters including grid dimensions and
far-field boundary distances are also provided in Table 3.

Coefficient of Lift Results

Figures 6 provides Cl predictions as a function of temporal
resolution for the finest grid. To facilitate comparison, the
experimental results are overplotted for all the cases. Most
importantly, the results exhibit little variation over the range of
temporal resolutions; one time varying mode provides a solution
convergent to plotting accuracy.
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Fig. 3 Strouhal number as a function of Reynolds number.
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Fig. 4 Norm of the energy as a function of Reynolds number.

Table 2 Shift in Reynolds number between the NLFD calculations and

the experimental dataset for all permutations of temporal and spatial

resolution.

N Modes 193 	 81 Grid 257 	 129 Grid 385 	 161 Grid

1 44.7 31.1 19.3
3 33.5 8.7 3.3
5 33.6 8.5 2.9
7 33.6 8.6 2.9
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Transfer functions are introduced to quantify the time varying
results presented in the previous paragraph. The magnitude of this
transfer function is computed by dividing the magnitude of the
Fourier coefficient for Cl at a given wave number by the magnitude
of the Fourier coefficient for � at the same wave number

L� �
Ĉlk

�̂k

� kĈlk
k

k�̂kk
ei�
Ĉlk

�
�̂k� (23)

This is analogous to the lift curve slope commonly used in the
analysis of steady-state airfoils. The phase lag of the transfer function
is defined as the difference in phase angles between the Fourier
coefficients for Cl and � quantified in terms of degrees. The phase
angle represents the fraction of the time period that the coefficient of
lift lags behind the angle of attack.

Table 4 provides the magnitudes and phase lags of the lift transfer
for the fundamental harmonic. The deviation between the NLFD
and experimental results is on average 5.5% for the magnitude of
the lift transfer function and 20.3% (5:2�) for the phase shift. No
distinct trends are found in the data as spatial resolution is varied,
and little variation is exhibited as a function of temporal resolution.
These statistics reconfirm the results presented in Fig. 6; in that
adding time varying modes into the solution provides no significant
improvement.

Coefficient of Moment Results

Figure 7 provides Cm predictions as a function of temporal
resolution. The experimental results are overplotted for all the cases
to facilitate the comparison with the numerical results.

The numerical results show little variation as a function of
temporal resolution. In all cases, the variation between the turbulent
Navier–Stokes calculations and experimental results is still
significant. Although not documented here, numerical experiments
have been performed [6] that show time accurate techniques (based
on a 3-4-1 implicit discretization of the temporal derivative) and
NLFD methods converging to identical answers as temporal
resolution increases. Since time accurate solvers andNLFDmethods
converge to the same answer the disagreement between the Cm data
results should not be attributable to the method used in discretizing
the temporal derivative. Rather, the source of this discrepancy can be
found in other aspects of the numerics (boundary conditions and/or
spatial discretization including turbulence modeling) or in the
experimental data.

We can provide bounds as to the magnitude of the latter case by
investigating post-test corrections applied to raw data gathered in
modern experiments. Green et al. [13,14] have provided such data for
a 0012 airfoil tested in NASA’s Transonic Cryogenic Tunnel using
both slotted and adaptive wall technologies. For angles of attack
whose magnitude were less than 2� over a variety of runs, the post-
test Wall Interference Assessment/Correction code provided mean
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Fig. 5 Base suction coefficient as a function of Reynolds number. a)
193 � 81 grid; b) 385 � 161 grid.

Table 3 Description of meshes employed for the NLFD Navier–Stokes

calculations.

Dimensions
Boundary distance

(chords)
Distance from first cell

to wall (y�)

129 	 33 15 11.6
193 	 49 12 6.9
257 	 65 12 3.8

Table 4 Magnitude (kĈl1k=k�̂1k) and phase shift (�Ĉl1 ���̂1) lift

transfer functions for various spatial and temporal resolutions.

Source 1 Mode 2 Mode 3 Mode

Magnitude
Experiment 0.095
129 	 33 0.104 0.103 0.103
193 	 49 0.097 0.097 0.097
257 	 65 0.101 0.101 0.101

Phase shift
Experiment �25:6
129 	 33 �20:3 �20:0 �20:1
193 	 49 �20:9 �20:9 �20:9
257 	 65 �20:0 �20:0 �20:0
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Cm corrections of 6:25 	 10�4 and mean angle of attack corrections
of 0:33�. Given differences between experiments, these steady
results should not be directly comparedwith corrections that could be
made for unsteady experiments. However, these observations in
conjunction with the temporal convergence experiments referenced
in the previous paragraph, seem to suggest that more research needs

to be performed on the spatial operators. Unfortunately, little
conclusive evidence is offered in regard to the variation inCm results
as a function of spatial resolution. There is some variation in the
results between the different meshes, but no consistent trend is
observed between grid refinement and improving the agreement with
experimental results.

Conclusions

For the cylindrical vortex shedding problem, the temporal
resolution survey shows that only three time varying modes are
required to predict the Strouhal number and base suction coefficient
to engineering accuracy for the entire range of laminar Reynolds
numbers. However, the energy in the higher harmonics decreases
with decreasing Reynolds number. At the lower end of the Reynolds
number range, one or two modes can be used to achieve results that
are as accurate as three mode calculations at the higher end of the
range. Surprisingly, some of the NLFD results are closer to the
experimental data than the Henderson results calculated using a very
high order method.

Using an initial guess based on experimental data, the GBVTP
method can be used to predict the time period of the fundamental
harmonic. This shedding frequency is unique for a given
discretization and boundary conditions, and is the only frequency
that will allow the unsteady residual to decay to zero. In general, the
GBVTPmethod improved the agreement between the numerical and
experimental results for base suction coefficient in comparison to
methods where the time-period was fixed a priori. The improvement
is largely a function of the difference between the shedding
frequency value associated with the fixed-time-period calculation
and the final value predicted by the GBVTP method.

The motivation for selecting the transonic pitching airfoil model
problem was to demonstrate the ability of the NLFD method to
accurately resolve flows of engineering importance in turbulent
viscous environments. The numerical experiments confirm the
accuracy and efficiency of the NLFD method for this problem. It is
remarkable that using just one time varying mode, the NLFD
predictions for coefficient of lift provide excellent agreement with
experimental results. Numerical tests confirm that NLFD is an order
of magnitude more efficient than dual time stepping methods for
periodic unsteady flows of the type presented here.
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