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Abstract

Hypersonic air-breathing propulsion systems offer greater efficiency through use of atmospheric oxy-

gen rather than on-board compressed oxidizer tanks, for applications including access to space and

hypersonic cruise but require significant further development. The high cost of wind tunnel and

flight testing motivates the increased use of computer simulations and motivates advancements to

these simulation techniques. A number of the challenges remaining in aerospacecraft design and

simulation-based design techniques including gradient-based optimization and uncertainty quantifi-

cation can be addressed by improving on methods of gradient computation. This dissertation focuses

on developments towards generalizing a particular method of evaluating sensitivities and gradients

(the continuous adjoint method) to a wider range of functions and multi-fidelity flowpath models.

The primary contributions of this work are:

• The development of the continuous adjoint for a generalized outflow-based functional.

• A framework that utilizes this generalized functional to find the surface sensitivity for objectives

defined external to the CFD volume, enabling multi-fidelity flowpath design.

• A multi-objective adjoint implementation that utilizes the principle of superposition to combine

already-implemented functionals.

• Optimization studies utilizing these methods on a hypersonic inlet modeled using a multi-

fidelity flowpath, including a three-dimensional viscous inlet, showing relatively large perfor-

mance changes for small changes to geometry.
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Chapter 1

Introduction

What if spacecraft were completely reusable vehicles that could land or take off from a conventional

airport? What if any point on earth was accessible within a couple of hours? What if small satellite

launches were less expensive? Hypersonic air-breathing propulsion systems, which offer greater

efficiency through use of atmospheric oxygen rather than on-board compressed oxidizer tanks, have

the potential to make these ideas a reality, but require significant further development. Supersonic

combustion ramjets, or scramjets, are airbreathing engines that operate in the hypersonic regime

above Mach 5. Tests of scramjets have had partial success in flight tests such as the Hyper-X,2

X-51,3 and HIFiRE4 projects. Sub-orbital horizontal takeoff and landing (HTOL) flights have been

achieved by Scaled Composites, and much work has been accomplished towards reusable rockets by

companies such as Space-X and Blue Origin. Research into hypersonic air-breathing propulsion and

aerospacecraft design has been conducted in the United States and other countries, but progress

has been limited in part by the high cost and risk of flight and wind tunnel tests. This motivates

the increased use of computer simulations, and motivates advancements to simulation techniques.

A number of the challenges of aerospacecraft design and simulation-based design techniques can

be addressed by improving on methods of gradient computation, which facilitates gradient-based

design and uncertainty quantification. This dissertation focuses on generalizing a particular method

of evaluating sensitivities and gradients to a wider range of functions and multi-fidelity flowpath

models, used specifically for design of hypersonic inlets and applicable to other problems.

The development of hypersonic engines is built on a long history of technological progress, from

the development and growth of computers, to the first supersonic flights and the development of

rocket fuels capable of taking payloads into orbit. Testing, simulation, and design techniques have

also progressed. Early methods, many still used today, rely on high-cost experimental results to form

empirical relations.5 Analytical methods were developed, as the understanding of the underlying

processes improved. Fluid dynamics simulation techniques were at first limited to potential flow,

and then to inviscid flow, and more recently to Reynolds-Averaged Navier Stokes (RANS) flow, as

1
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the power and utility of computers and maturity of computational methods has increased. Even

higher fidelity simulations are now possible, including Large Eddy Simulation (LES),6 Detached

Eddy Simulation (DES),7 Direct Numerical Simulation (DNS),8 and simulations including plasma

effects.9 For engineering applications where large complex vehicles and a large number of flight

conditions must be simulated, these more expensive simulations are often out of reach as a practical

tool. It is expected that they will be used in the future, as the availability of computational resources

increases and the algorithms become more efficient.

Computational Fluid Dynamics (CFD) simulations including Euler through DNS have been

increasingly used in recent decades to reduce required wind tunnel and flight tests for aerospace

applications including aircraft development, turbine engine development, and design of access-to-

space and re-entry vehicles.5 In the case of access-to-space and re-entry vehicles, there are sometimes

no ground facilities capable of producing the conditions of interest.10 Physics-based simulations

also produce greater detail of the phenomena of interest, whereas experiments must contend with

limits on the quantity and type of measurements that can be taken.5 In general, simulation-based

techniques reduce the cost of design. Between the computational costs of accurate simulation, the

limitations of experimental facilities, and the complex design challenges of these engines, the design

of hypersonic airbreathing propulsion systems stretches the current abilities of aerospace technology

in several areas.

Improving upon simulation techniques and sensitivity evaluations is motivated by the challenges

that have arisen in the use of CFD and the design of hypersonic engines. A variety of performance

metrics should be considered, as well as the computational cost of running the simulations needed

to evaluate these metrics as well as their gradients. In the realms of optimization, uncertainty

quantification, mesh adaptation, and error estimation, it is not just the prediction of the relevant

quantities, but also their gradients with respect to the design variables of the problem. Ideally, we

would like to obtain gradients with respect to multiple objectives, and incorporating information

from multiple models, at the highest efficiency possible. The computation of gradients, especially

in problems with large numbers of design variables and quantities of interest, can be a large cost to

the optimization process, potentially requiring hundreds of additional simulations for a single design

step. By contrast, the continuous adjoint method provides gradients in a computationally efficient

manner, while it suffers from a more limited range of objectives and limited system complexity.

Expanding that range of objectives, and their complexity, for the continuous adjoint method is the

subject of this thesis. The tools developed in this dissertation are applied to the shape optimization

of a scramjet inlet.

Hypersonic airbreathing propulsion for access to space has been researched in various forms

since the 1950s.11 Several design, ground test, and flight test programs have been conducted in

recent decades. The X-30, also known as the Orient Express, the HySTP program, or the National

AeroSpace Plane (NASP) was one such project.12 The X-30 was designed as a single stage to orbit
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(SSTO) airbreathing vehicle, and as a potential replacement for the Space Shuttle. The NASP

program office existed from 1986 to 1995. It was preceded by studies in the 60s for Single- and Two-

Stage To Orbit (TSTO) aerospace planes. Studies including air-breathing propulsion as a potential

replacement for the Space Shuttle began in 1975.12 In the 90s the NASP program was restructured

to include more incremental testing of technology.

Several conceptual design studies have been conducted, including studies investigating the trade-

offs between different propulsion systems13,14 as well as those investigating the system design with

either a rocket-based combined cycle15–18 (RBCC) or a turbine-based combined cycle14,19 (TBCC).

Professor Smart’s group at the University of Queensland has done ample work both in testing and

design of advanced scramjet engines.20–23 This includes design of the REST-class inlets,24 which will

be discussed further in Section 2.2.1. The work in this dissertation is centered around a REST-class

inlet25 that was designed for conditions similar to HIFiRE Flight 2, a Mach 7, 1730 psf (82.832 kPa)

flight.4

Flight and wind-tunnel test programs have built on and complemented conceptual design studies.

The HyShot program20 consisted of a double-wedge intake with supersonic combustion. The second

flight test, in 2001, successfully reached the target altitude at Mach 7.5, as well as supersonic

combustion for approximately 3 seconds. The X-43A, or Hyper-X program aimed to demonstrate

hypersonic airbreathing propulsion systems that would enable the use of this technology for access

to space.26 It was hoped that the development of airbreathing propulsion would increase the safety

and decrease the cost of space access vehicles. The X-43A employed a rectangular cross-section.

The Hyper-X flight 2 at Mach 7 was successfully conducted in March 2004.26 The Hypersonic

Collaborative Australia/United States Experiment (HyCAUSE) flight test program27 employed an

inward-turning inlet with an elliptical cross-section. Inward-turning inlets can exceed the Kantrowitz

limit, and this test employed moveable inlet geometry to facilitate starting. The flight and ground

tests of this engine were conducted at Mach 10, dynamic pressure of 50-1600 psf (2.4-76.6 kPa).

Both the X-43A and HyCAUSE projects were hydrogen-fueled. The HyCAUSE program began

in 2004 with ground tests and CFD analyses, and the flight experiment was conducted in June

2007. The HIFiRE project4 built on the HYCAUSE and HyShot programs. This engine uses a

hydrocarbon fuel, and is intended to investigate acceleration performance as well as transition from

dual-mode to scram-mode operation. The X-51A Scramjet Engine Demonstrator-WaveRider (SED)

flight demonstrator was part of the Air Force Research Lab (AFRL) HyTech program. The X-51

was fueled by JP-7, and was intended to reach flight Mach numbers between Mach 6 and 6.5.3 Its

fourth flight test was successful at Mach 5.1,28 with 210 seconds of scramjet combustion in May

2013.

Hypersonic airbreathing propulsion has been advanced from conceptual designs to flight tests

over the last 50 years, yet despite the significant investments in this technology these engines still

face difficulties in a number of areas including achieving thrust greater than drag, avoiding unstart,
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and maintaining supersonic combustion. Moving from the current state of the art to using these

engines for TSTO launch vehicles will require including complex physical phenomena and design

trade-offs at an early stage in the design process. The work in this dissertation opens the door

to doing just that—through increasing the complexity of problems that can be addressed by the

continuous adjoint method, an efficient method of evaluating gradients that can now be applied to

a wider range of gradient-based optimization problems.

1.1 Research Scope & Contributions

This section will enumerate the contributions of this dissertation to gradient evaluations and scram-

jet design as well as limitations in the scope. The continuous adjoint method is used to evaluate

gradients, which are employed in gradient-based optimization for scramjet inlet shape design prob-

lems. While a large number of challenges are faced by scramjet design and the continuous adjoint

method, only a small number of these challenges will be addressed by this dissertation.

The primary contributions of this dissertation are:

• The development of the continuous adjoint for a generalized outflow-based functional.

• A framework that utilizes this generalized functional to find the surface sensitivity for objectives

defined external to the CFD volume, enabling multi-fidelity flowpath design.

• A multi-objective adjoint implementation that utilizes the principle of superposition to combine

already-implemented functionals.

• Optimization studies utilizing these methods on a hypersonic inlet modeled using a multi-

fidelity flowpath, including a three-dimensional viscous inlet, showing relatively large perfor-

mance changes for small changes to geometry.

These contributions are tied together by the theme of generalizing the adjoint method to a

wider range and complexity of objectives than previously thought possible, and by reducing the

development time necessary to address new objectives with the adjoint method. Previously-available

methods for the continuous adjoint require lengthy derivation for new functionals, and additional

code implementation as well as verification of that implementation prior to use for real analysis.

This has also been the case for combinations of objectives that have been treated in the past as

a single objective, requiring separate derivation from their component parts. More significantly,

however, these developments allow the use of the continuous adjoint to address functionals that

would have not only required complex and unwieldy derivation and implementation, but would have

been impossible to address due to the requirement that the functional be defined within the CFD

volume and boundaries.
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The scope of this dissertation covers the adjoint method for inviscid and viscous compressible flow,

under the assumption of negligible viscous variations at the outflow boundary where the objective

is evaluated. This assumption is consistent with the assumptions usually used for the continuous

adjoint. A number of assumptions are made about the physical effects within the CFD volume that

additionally limit the scope. Real gas effects (i.e., changing specific heats) are neglected within the

CFD, although for the application studied these effects may be important. These effects are included

in a one-dimensional external model, but neglected in the CFD volume. The adjoint for CFD with

real gas effects is possible, and is the subject of much research,29 however it is outside the scope of

this work. Additional hypersonic effects that are not expected to be significant for the particular

design case, including chemical reactions, ionization, and radiative heat transfer are also outside

the scope and are neglected. In summary, the scope of this dissertation is limited to developments

for sensitivity evaluation of existing physical models, and does not include modifications to those

physical models.

Some of the methodology in this dissertation and preliminary results were included in previous

work in applying the continuous adjoint method to multi-objective optimization,30 deriving the

continuous adjoint boundary conditions for an objective of mass flow rate,31 using finite difference

methods to evaluate the change in performance for a thermostatically deformed inlet.32

1.2 Scramjet Design

The tools developed in this dissertation are applied to the shape optimization of a scramjet inlet.

This section will introduce the scramjet flowpath and discuss existing literature on scramjets and

challenges relevant to their design. A scramjet is an air-breathing engine that uses the compression

of air over the forebody and inlet to achieve the conditions necessary for supersonic combustion,

using no mechanical compressor, as illustrated in Figure 1.1. The methods used to simulate a multi-

fidelity flowpath are also summarized in this figure, and will be described further in Section 2.2 and

Section 4.2. Some of the contributions of this dissertation are focused on the transfer of information

between models that occurs at station 3 in Figure 1.1.

Scramjet engines operate in hypersonic conditions, ranging from Mach 5 to Mach 10 at current

levels of technology. Above Mach 5, it becomes more efficient to utilize supersonic combustion

rather than decellerating the air to subsonic speeds as is done in ramjets, which operate up to

around Mach 5.5. A comparison between ramjet and scramjet efficiency is shown in Figure 1.2.

Scramjets have the potential to facilitate more efficient trans-atmospheric flight and airplane-like

operations of launch vehicles as well as military applications. Launch vehicle conceptual designs

that incorporate scramjets include the U.S.-based National Aerospace Plane (NASP),33 and the

European SpaceLiner concept.34

The propulsion systems for scramjet-based launch vehicles must transition between different
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Figure 1.1: Scramjet flow path with station numbers indicated along top border of the image.
Methods used to simulate each portion of the flow path are indicated along the bottom edge of the
image. Contour levels are of Mach number.

propulsion techniques because scramjets only become efficient around Mach 5, and gradually lose

thrust as altitude increases and the availability of atmospheric oxygen decreases. Two broad cat-

egories are identified in literature: Rocket-Based Combined-Cycle (RBCC) and Turbine-Based

Combined-Cycle (TBCC). Two-Stage-To-Orbit (TSTO) system designs are more common, how-

ever Single-Stage-To-Orbit (SSTO) systems have also been considered. Conceptual design studies

have been performed to evaluate the trade-offs between these systems,13,17,18 with varying assump-

tions and conclusions. Hunt15,16 details a NASA Dual-Fuel Airbreathing Hypersonic Vehicle study,

including the trade-offs of hydrogen or hydrocarbon fuels: hydrogen-based fuel provides greater cool-

ing capacity and greater range than hydrocarbon fuels for the same Mach number, however its low

density leads to a larger required vehicle volume and corresponding aerodynamic drag and structural

weight. This vehicle concept was intended to operate either as a Mach 10 cruise vehicle or as a Two-

Stage-To-Orbit (TSTO) launch system. Scuderi et al.,19 further analyze this concept, comparing

TBCC versus RBCC and fueling variants, analyzing both the Mach 10 and space launch missions

and finding that a hydrogen-fueled TBCC variant results in lower take-off gross weight for the TSTO

mission. Investigations comparing staging Mach number for transition between propulsion types14

indicate that Mach 7 may be a reasonable point to transition from first-stage to second-stage propul-

sion. Flight tests at or close to Mach 7 have also been conducted including HIFiRE 2,4 HyShot 2,20

and Hyper-X.2 The performance at Mach 7 is therefore important to a successful design, and is the

operating point chosen in this work.

Figure 1.2 illustrates the specific impulse Isp versus Mach number for a variety of engines, show-

ing both the relative efficiency of airbreathing and rocket engines as well as the decreasing efficiency

of airbreathing engines as the freestream Mach number increases. Scramjet performance measures
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including Isp are discussed further in Section 2.2.2. This figure also plots RBCC and TBCC per-

formances. Specific impulse can be larger for airbreathing engines because they are not carrying

oxidizer tanks onboard. The trade-off is that the airbreathing engines must sufficiently compress

the air entering the engine without too large a loss in efficiency. The inlet case investigated in this

dissertation, and discussed in further detail in Chapter 6, is designed to operate at Mach 7 using

hydrogen fuel, within the range shown in Figure 1.2 where scramjets have higher Isp than ramjets.

Figure 1.2: Comparison of airbreathing and rocket-based propulsion cycles and combined systems
reproduced from Moses et al.26

Scramjet flight tests including the HyShot,20 HIFiRE,4,35 X-513 and X-43A2 projects have had

success in achieving positive thrust, while also highlighting the difficulties of designing hypersonic

air-breathing engines. The challenging and multi-faceted design considerations of these engines, as

well as the high expense and risk of flight testing, motivate the use of more complex and multi-

fidelity objective functions in shape design. Despite the challenges, a more efficient launch system

may be possible, due to the higher specific impulse from airbreathing engines. However, advanced

design tools are needed to overcome the challenges of these engines.

In most literature, once the design moves past the basic conceptual stage where overall sizing and

propulsion types are chosen, the components of the engine (inlet, isolator, combustor, and nozzle)

are studied in isolation. This is done to simplify the problem and limit the computational expense,

but higher performance can be achieved by including the entire flowpath as shown by Smart22 in

work aimed at determining reasonable compression ratios for scramjet inlets. In that work, the inlet

was modeled with an empirical method based on previous inlet designs. Various design techniques

for scramjet inlets will be discussed in further detail in Section 2.2.1. The methodology developed in
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this dissertation is used to improve upon the performance of an inlet designed with these methods.

Idealized scramjet inlets designed in isolation result in very long engine lengths in order to achieve

high efficiency, however such long lengths introduce issues with integrating the engine into the larger

vehicle, structural weight and compliance, and efficient operation only at a single design point. When

incorporating the engine into the larger vehicle, the inlet shape is coupled with the outer mold line

of the fuselage. Active cooling may be required where fuel or another coolant is circulated next

to the surfaces of the engine being heated by the friction of air. A small thrust margin where the

difference of thrust and drag is small relative to the magnitude of drag, in addition to structural

deformations, manufacturing tolerances, and uncertain freestream flow properties contribute to a

highly sensitive design. This is just a selection of factors that lead to a need to move away from or

make modifications to idealized designs, discussed further in Section 2.2.1.

There are also a number of design challenges that a scramjet engine must overcome to operate at

all, much less operate efficiently. The most dramatic of these is the phenomenon of “unstart”, where

the shock system moves forward on the vehicle, significantly increasing drag and decreasing thrust

as the flow in the combustor suddenly shifts from supersonic to subsonic flow. This phenomenon

will be discussed in further detail in Section 2.1.2. It is important for scramjet designs to take

the phenomena of unstart into consideration. Additional design challenges include ensuring that

the simulations take into account the relevant physics that may include phenomena not usually

encountered at lower speeds. These considerations will be discussed in further detail in Section 2.1.1.

In some situations this adds an additional simulation burden, and the particular physical phenomena

encountered can change the resulting design. A need to reduce drag results in a sharp nose for many

scramjet vehicle designs. This narrow geometry introduces issues of structural compliance in a hot

and high-pressure flow, where aerothermoelastic considerations may need to be taken into account.

Modern aerospace design has trended towards including multidisciplinary considerations as the

designs of the engines, fuselage, lifting surfaces, and control surfaces are tightly coupled in aerospace

design. This coupling is only more pronounced for scramjet vehicle designs. An external compression

region labeled as “inlet/forebody” in Figure 1.1 results in designs where the outer mold line of the

fuselage is coincident with the surface providing a majority of the compression required by the engine.

In addition, the difference of thrust and drag (installed thrust) is small relative to the magnitude of

the drag, meaning that small changes in either quantity results in failure to accelerate the vehicle.

Increasing the current capabilities to evaluate sensitivities is required to address the challenges

of simultaneously meeting performance requirements, vehicle integration, and improving efficiency.

The complex and multi-faceted design problem would benefit from efficiently computed sensitivities

for a broader range of functions. Sensitivity analysis also contributes to the evaluation of uncer-

tainty. Simulating a full flowpath at high fidelity is computationally expensive and unfeasible in

many situations; this dissertation introduces a method of incorporating information from a multi-

fidelity flowpath to the continuous adjoint method, which is a tool used for high-fidelity sensitivity
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evaluation.

Based on previous airbreathing hypersonic propulsion and vehicle concept studies, a Mach 7

hydrogen-fueled scramjet geometry is investigated in this work. This operating point is important

to consider for system design, since as a potential staging Mach number the vehicle would be re-

quired to produce thrust greater than drag but may be close to the operating limits of the first

stage airbreathing propulsion system. The specific inlet geometry is drawn from NASA studies

of Ferlemann and Gollan25,36 at or around Mach 7 and intended to produce high-efficiency three-

dimensional inlets for flight conditions similar to the HIFiRE 24 trajectory. The aim is to improve

the performance of this inlet by developing a method to evaluate high-fidelity surface sensitivity to

multi-fidelity flowpath performance. However, the methods developed in pursuit of this goal can

also be applied to other problems.

The available literature on the type of inlet studied in this work, the REST-class inlet,21,24,25,36

reveals both that these inlet have great potential as well as some remaining problems. These inlets

can meet design requirements of being easily incorporated into the vehicle, approaching desired

pressure ratios, and providing an elliptical combustor entrance. However, while the method of

creating the inlet incorporates a boundary layer correction, the boundary layer growth predicted

by CFD far exceeds the flat-plate correlation due in part to “roll-up” of the boundary layer in the

corners of the inlet geometry. This leads to a discrepancy between the desired pressure ratio as

well as a significant level of flow distortion at the outflow that would detrimentally effect combustor

performance. In work by Gollan and Ferlemann,25 a regression surface was created using several

automatically-generated REST-class designs in order to improve on the performance of factors such

as the boundary layer thickness and compression ratio. They were able to use this methodology

to produce a design that improved on an objective function that combined multiple quantities of

interest, however the authors noted that this objective was an arbitrary combination of a selection

of quantities of interest, and not necessarily an indication of overall performance. This can be

compared to work by Smart22 that was able to incorporate the entire flowpath performance, but

which did not address the precise inlet geometry and relied on an empirical fit based on the small

data set of experimental results that exists for scramjet engines.

Given that a relatively small number of experimental data points are available for scramjets, that

more experimental results come at a high cost, and that CFD results on these inlets are comparatively

expensive due to the high degree of mesh refinement required, there is a need to provide methods

that can efficiently improve on scramjet inlet designs incorporating the entire flowpath performance

rather than isolated inlet performance, and requiring a smaller number of simulations. Aiming to

provide this capability led to the developments within this dissertation, which are applicable to a

wider range of problems beyond the scramjet inlet case addressed in this work. Scramjet design is

discussed further in Section 2.2.1.
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1.3 Gradient-Based Optimization

Gradient-based design optimization utilizes simulation techniques, gradient calculations, and op-

timization algorithms to iteratively improve upon a design. This is a subset of simulation-based

design, which also includes gradient-free methods such as genetic algorithms and other gradient-free

methods.37,38 Gradient-based methods include steepest descent and sequential quadratic program-

ming (SQP). The first SQP methodology is attributed to Wilson,39 with further foundational work

in this area by Powell40,41 and Han,42 and there is ample further literature on the topic.43 The

continuous adjoint is one option for evaluating the gradients needed for this design technique.

Specifications Baseline

Analyze

Evaluate
J(~x) & c(~x);
∂J
∂~x & ∂c

∂~x .

Optimized?

Change Design

Fixed Design

yes

no

Figure 1.3: Optimization flow chart. J and c refer to the objective and constraints.

There are many optimization algorithms available, which vary the way that the design variables

are altered at each step and how the gradients and constraints are applied. For this work, standard

optimization algorithms are used. The developments of this dissertation focus on improvements to

the gradient computation, and optimization is used as a demonstration of their application. While

optimization routines will be discussed to provide background information no developments have

been made in this dissertation to modify the optimization algorithms themselves.

Figure 1.3 illustrates a generic optimization process, starting from the specifications, along with

the objective function J and constraints c that define the optimization problem. A baseline design

is created with low fidelity or designer-intuition based methods. This baseline design is the initial

point of the optimization and is usually chosen to meet the design constraints. The system is then

analyzed with a mathematical model. The objective, constraints, and gradients of these values

with respect to design variables ~x are found, and used to determine whether the design has been

optimized (or if a maximum number of iterations or other criteria has been reached). If not, the

design is changed by perturbing ~x based on gradient values, and the optimization process continues
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until the exit criteria are met.

Categories of optimization frameworks include multi-disciplinary, multi-point, multi-objective,

and multi-fidelity optimization. Multi-disciplinary optimization refers to the use of multiple models,

each evaluating different physical systems, in order to optimize including the effects of and constraints

coming from different disciplines. Multi-point optimization evaluates performance at multiple op-

erating conditions, in contrast to single-point optimization. Multi-objective optimization refers to

balancing multiple performance parameters, often through applying constraints to some of them.

Multi-fidelity optimization can refer either to a system where different components are simulated at

different levels of fidelity (in a way similar to using different discipline-based models), or it can refer

to using a single model with different levels of fidelity as the optimization progresses. For example,

one might start the optimization process at low fidelity and use high fidelity methods later on, or

sampling techniques might be used to populate a response surface used for intermediate optimization

steps.

In this dissertation, the term “multi-fidelity”, or “multi-fidelity flowpath” refers to the use of

multiple models within the evaluation of a single design. The flowpath of the engine is modeled with

a combination of high-fidelity and low-fidelity simulations to compromise between computational

cost and detail. This should not be confused with the practice of changing fidelity level of the

overall model during the optimization process, which includes methods such as response surface

generation,44 and multi-fidelity methods to reduce uncertainty.45 These methods are likely to be

useful in design of hypersonic engines, however they will not be included in this work. In other words,

a multi-fidelity flowpath model is used as the mathematical model that produces J and c. This means

that J and c in the flow chart illustrated in Figure 1.3 are evaluated using a combination of models

coupled together. A single-point optimization is conducted using a multi-fidelity flowpath model

that incorporates multiple design considerations. Further background of optimization techniques is

included in Section 2.2.3.

1.4 The Adjoint Method

There are several methods available to compute gradients. The adjoint method is a particularly

efficient method due to its independence from the number of design variables and step sizes. This

generates a new Partial Differential Equation (PDE) problem that uses information from the direct,

or flow solution, to produce sensitivity of a function with respect to small normal deformations

of the surface. This method depends on the choice of objective function, usually chosen as an

integral over one of the boundaries of the computational domain. The details of this method will

be discussed further in Section 2.3.3. Further details of this method are presented in Section 3.1,

and modifications to this method introduced with this work are detailed in Section 3.2 through

Section 3.4.
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There are two main categories of the adjoint method: continuous, and discrete. The continu-

ous and discrete adjoint methods provide surface sensitivities at the approximate cost of a single

additional flow solution, as compared to the finite difference method that perturbs each design

variable and re-evaluates the objective. The continuous adjoint method solves the discretization

of the linearized fluid problem, while the discrete adjoint method solves the linearization of the

discretized fluid problem. In other words, the continuous adjoint method solves a problem defined

by careful implementation of a PDE defined by taking the linearization of the original continuous

fluid problem. The discrete adjoint method solves a problem defined by taking the adjoint of the

already-discretized fluid problem. A flowchart comparing the process to arrive at sensitivities via

these two methodologies is illustrated in Figure 1.4. Another way of phrasing the difference between

the continuous and discrete adjoint is that the continuous adjoint method finds the inexact deriva-

tive of an exact functional while the discrete adjoint method finds the exact derivative of an inexact

functional. Nadarajah and Jameson46 thoroughly discuss the trade-offs between continuous and

discrete methods. As the mesh spacing approaches zero, the discrete and continuous formulations

approach one another in terms of the mathematical expressions, and in practice as the mesh size

increases the results become more accurate relative to finite difference gradients and each other.

Since the discrete adjoint method is the exact derivative of the inexact functional, it has generally

better agreement with finite difference gradients. The cost of deriving the discrete adjoint has been

considered greater,46 however it has been made significantly more accessible in recent years thanks

to the advent of automatic differentiation (AD).47

The adjoint method can be traced back to the application of control theory to PDE problems

by Lions48 and Pironneau.49,50 The continuous adjoint method was first developed for aerodynamic

optimization by Jameson,51 and since then much work has been presented in the literature in the

development of solution methods, applications, and derivations to include additional objectives and

physical phenomena. Further work in the continuous adjoint method by Reuther et al.52 extended

this method to multi-block codes and full aircraft simulations, and Jameson & Martinelli53 pro-

vide further work in adjoint-based optimization of transonic aircraft. Giles & Pierce54 derived the

adjoint equations for viscous compressible flow and examined solution behavior, showed that the

adjoint variables have a logarithmic singularity at sonic points, and that the adjoint variables are

continuous across shocks. Castro55 et al. developed an adjoint method for unstructured grids,

which expands the grid-generation choices. Papadimitriou & Giannakoglou56 derived the adjoint for

a total pressure objective function at an outlet. Othmer57 developed the continuous adjoint for a

function of velocity in an incompressible flow, for topology optimization of duct flow. Hayashi58 et

al. detail characteristic-based boundary conditions for open boundaries of the adjoint for surface-

based functionals. Palacios et al.59 implemented many of these capabilities in an open-source CFD

solver, SU2, which facilitated further development and is used in this work. Working in the SU2

framework, Economon60 developed an adjoint formulation for unsteady problems, and Copeland61
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developed an adjoint formulation for heat flux objectives in chemically reacting non-equilibrium flow.

Arian & Salas62 have also explored expanding the limits of what objectives can be addressed by the

continuous adjoint method, focusing on solid wall boundaries.

Governing Eqns
R(U) = 0

Linearize
govn eqns

Derive adjoint
govn Eqns

Discretize Adjoint

Adjoint governing
equations

Sensitivity,
Error Estimate,

Uncertainty
Quantification

Discretize
govn eqns

Linearize discrete
govn eqns

Derive adjoint

R′[u](v, ψ) + J′[u](v) = 0
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(
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)T
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Figure 1.4: Continuous vs Discrete Adjoint Formulations

The open-source multiphysics simulation suite SU263 is used and modified in this dissertation,

and includes both continuous and discrete formulations for the adjoint method. The discrete adjoint

method as implemented in SU2 utilizes automatic differentiation of the initial CFD code to find an

exact derivative of the inexact functional. More detail about AD methods is available in work by

Gauger et al.64 and Zhou et al.65 This method has some advantages in obtaining results that are

generally much closer to finite difference results, however there are greater memory requirements

due to the larger amount of information needed during calculation. The continuous adjoint method,

by contrast, is sometimes more removed from finite difference and discrete adjoint result, however it

benefits from lower memory usage and, particularly relevant to this dissertation, the boundary con-

ditions are relatively accessible within the implementation. An additional benefit of the continuous

adjoint method is the possibility of exploiting numerical methods to improve convergence or address

numerical instabilities in ways that are not available to the discrete adjoint method.

Mader et al.47 and Albring et al.66 have worked at making the discrete adjoint method more

efficient and expanding its capabilities. The work contained in this dissertation approaches the

problem from the other direction - by making the boundary conditions of the continuous adjoint

method more general such that the numerical efficiency of the continuous adjoint method can be

utilized with a reduced limitation on the objective function. Discrete adjoints via the automatic

differentiation (AD) approach to entire tool chains has been studied, for example work by Gauger
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et al.64 that applied this method to a transonic airfoil. By contrast, in this work the adjoint

method is applied to only one component, allowing a more flexible range of models to be used while

exercising the benefits of the continuous adjoint method. The discrete adjoint is a useful tool, and

it may be possible to apply a similar methodology as presented in this dissertation to the discrete

adjoint, however that task requires significant further development and is outside of the scope of

this dissertation.

1.4.1 Estimated Computational and Monetary Benefit

The benefits of, and need for, these developments can be shown through examining the number

of PDE solutions required as compared to the finite difference method. In this section, the term

“adjoint” is used to refer to both the discrete and continuous forms, which would require the same

number of PDE solutions. The trade-offs between the discrete and continuous adjoint are described

in detail in Section 2.3.3. The finite difference method is less efficient as it requires a much larger

number of function evaluations as the number of design variables grow, however it has the benefit

of not requiring significant further implementation to be applied to new functionals. The develop-

ments in this work decrease the amount of work required to apply the continuous adjoint to new

functionals, making this more efficient method more accessible. The discrete adjoint for combina-

tions of functionals was also implemented in this work, however the generalized outflow functional

developed in this work is currently only available with the continuous adjoint.
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Figure 1.5: PDE solutions required for gradient calculation relative to number of design variables,
including both direct and adjoint solutions.

Figure 1.5 compares the number of PDE solutions required to compute the gradient of a sin-

gle function. The adjoint method, whether using the discrete or continuous form, projects surface

sensitivity onto the design variables, and so has a cost independent of the number of design vari-

ables. Figure 1.6 compares the number of PDE solutions expected to complete an optimization
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Figure 1.6: Number of PDE solutions required for optimization, assuming optimizer iterations ≈
number of design variables and no line searches.

problem. This plot also includes the number of PDE solutions required if each functional composing

a multi-objective problem requires a separate adjoint formulation, in order to illustrate the benefit

of including a multi-objective adjoint formulation. In these plots, the number of PDE solutions

required is estimated as the number of design variables times the evaluations required for a gradient

evaluation. This assumes that the gradient evaluation is able to re-use the solution produced in the

evaluation of the functional, and that no line-searches requiring additional function evaluations are

needed.

A realistic industry design problem may require hundreds if not thousands of design variables, and

the number of major optimizer iterations required is generally proportional to the number of design

variables.67 Using a mere 100 design variables as an example, the evaluation of the gradient requires

99 fewer PDE solutions when using the adjoint. In the optimization problem with the same number

of variables, 9,900 fewer PDE solutions are estimated to be needed. These savings are decreased if

a multi-objective problem is addressed where the adjoint needs to be evaluated separately for each

component of the objective. Estimating the cost at $0.10 per CPU hour and assuming 5,000 CPU

hours per PDE evaluation leads to an estimate of saving $49,500 per gradient evaluation, or $4.95

million per optimization, for a problem with 100 design variables when using the adjoint compared

to the finite difference, and assuming no line searches (or a single gradient evaluation per optimizer

step). In this dissertation, these dramatic savings in computational and monetary cost are made

available to a wider range and complexity of functionals than previously possible. This facilitates

efficient simulation-based design for more realistic problems that may depend on multiple quantities

of interest and use multiple interconnected simulations.
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1.5 Dissertation Layout

This dissertation will proceed with a discussion of the relevant physical phenomena and existing

techniques used for scramjet design and gradient-based optimization in Chapter 2. Following this

background information, the details of the continuous adjoint method for a generalized outflow-based

functional and other contributions summarized in Section 1.1 are described and derived in Chapter 3.

Implementation details are included in Chapter 4, and verification results in Chapter 5. Chapter 6

details the specific design problem addressed and the results of various optimization studies that

utilize the methodology developed in this dissertation. Conclusions and final remarks are included

in Chapter 7.



Chapter 2

Relevant Physical Phenomena &

Existing Methodology

This chapter will begin with a discussion of the physical phenomena relevant to hypersonic flow

in Section 2.1, followed by a discussion of the current techniques used to design scramjet inlets in

Section 2.2.1 and of optimization methods in Section 2.2.3. Section 2.3 discusses the methods used

to model the set of phenomena that are included within the scope of this work and the adjoint

method. More detailed discussion and mathematical formulation of the continuous adjoint method

is reserved for Chapter 3. This chapter will close with a summary of the various challenges that are

inherent to the scramjet engine design problem or arise from the limitations of existing methodologies

highlighted in the individual sections.

2.1 Hypersonic Flow

Hypersonic flow describes a wide range of flow conditions and physical phenomena, not all of which

will be relevant to this work. Section 2.1.1 will discuss hypersonic flow in general, summarizing

the phenomena associated with hypersonic flow. Table 2.1 provides a convenient reference for the

various flow phenomena that could be relevant to hypersonic flow, and the subset that are relevant

to the particular cases in this work. Unstart is a phenomenon that deserves its detailed discussion,

included in Section 2.1.2, although unstart is included only through approximate methods in the

results presented in Chapter 6.

2.1.1 Flow Phenomena

When the governing equations of fluid flow are non-dimensionalized, the Mach number (M = |~v|
c ) and

Reynolds number (Re = ρu∞D
µ ) appear as non-dimensional coefficients. These governing equations,

17
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the Navier Stokes equations, are discussed in more detail in Section 2.3.2. These non-dimensional

values can be used to divide fluid flow into regimes that categorize the fluid by what phenomena

dominate its behavior, and in some cases similarity solutions are possible. The Mach number relates

the flow velocity to the speed of sound, which can also be described as the rate that information

travels through the fluid. The flow regimes defined by the Mach number can be described as subsonic

(M < 1), transonic (M ≈ 1), supersonic (M > 1), and hypersonic (M � 1).

There is a clear physical limit that defines the transition from subsonic to supersonic flow - once

past the speed of sound, the fluid is moving faster than the speed at which pressure waves travel

through that fluid. The transition from supersonic to hypersonic, by contrast, is not defined as

a single discrete change in Mach number. Instead, it is characterized by the gradually increasing

importance of various phenomena that are either not present or not significant at lower speeds. The

significance of these phenomena is determined by a combination of the Mach number, temperature,

and density of the flow around a vehicle. A general rule of thumb is that hypersonic flow begins

around Mach 5, which also happens to be the Mach number around which scramjet propulsion is more

efficient than ramjets due to the costs of deccelerating air outweighing the difficulties of combustion

at supersonic speeds. Table 2.1 summarizes the major phenomena associated with hypersonic flow,

and notes which phenomena are relevant and/or included in the analyses of this work. The following

paragraphs will elaborate on the details of hypersonic phenomena.

Oblique shocks are discontinuities that occur in supersonic flow when it is turned at a high enough

angle for the characteristics, or Mach lines, intersect. In other words, a discontinuity that forms

when a body in the flow forces the fluid to change direction faster than can be achieved continuously.

As the Mach number increases, the angle of the discontinuity relative to the solid body decreases,

bringing this discontinuity very close to the physical body. The area between the shock and the

body is referred to as the “shock layer”. Depending on the Reynolds number, the shock layer may

be so thin as to overlap with and interact heavily with the viscous boundary layer. The thin shock

layer is one aspect of hypersonic flow that becomes more significant as the Mach number increases.

When flow passes through a shock, there is a sharp increase in entropy. When a blunt body is in

supersonic flow, a bow shock forms such that the entropy change very close to the nose is very high,

while further away from the body downstream the shock angle is higher and has a lower entropy

change. This results in high entropy gradients within the flow, effecting the growth of boundary

layers. The “entropy layer” is another phenomenon that occurs in hypersonic flow. The interaction

of the entropy layer and the boundary layer is called the “vorticity interaction” due to the strong

vorticity. This complicates the analysis of boundary layers as it is no longer clear how to define the

outer edge of the boundary layer.

The Reynolds number is the ratio of the inertial to viscous forces, and its value is correlated

with the behavior of the boundary layer, a region close to solid walls where velocity gradients form

due to viscous effects. The behavior of boundary layers change as the Mach number of the flow
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Table 2.1: Summary of Hypersonic Phenomena.

Phenomenon Inclusion in this
work

Effect Limits/conditions when
significant

Shock Layer Included through
Reynolds Aver-
aged Navier Stokes
(RANS)

Oblique shock lies close to
the solid body. May inter-
act with boundary layer at
lower Reynolds numbers.

Increasingly significant as
Mach increases.

Entropy
Layer

Included through
RANS

Large entropy gradients
interact with boundary
layers.

Near blunt edges/noses
and regions with interact-
ing shocks.

Viscous Inter-
action

Included through
RANS. Viscosity
changes neglected
in adjoint formula-
tion.

Interactions with high
temperature that increase
the viscosity and decrease
the density to make
boundary layers grow
much faster.

Low(er) Reynolds Num-
ber.

Convective
Heat Flux

Included in RANS
and quasi 1-D
models with an
assumed isother-
mal wall.

Dominates design of hy-
personic vehicles by struc-
tural effects, and effect on
boundary layers.

Any hypersonic flow.

Real Gas Ef-
fects

Neglected in
CFD, included in
quasi 1-D flow.

Non-constant specific
heats.

T > 800◦K.

Chemically
reacting flow

Neglected:
small regions of
T > 2000◦K exist
in CFD, likely
with insignificant
effect. Chemical
equilibrium as-
sumed in Quasi
1-D model.

Changing composition
of gases, non-equilibrium
flow, non-ideal flow.

Near ablating surfaces,
and/or when temperature
high enough: O2 dissoci-
ation begins around T >
2000◦K−4000◦K, and N2
dissociation begins around
T > 9000◦K.

Ionized flow Not significant:
temperature too
low

May encounter plasma
effects, communication
black-out.

T > 9000◦K.

Radiative Heat
Flux

Not significant:
temperature too
low

Effects bow shock behav-
ior, gas temperature, vis-
cous effects.

T > 10, 000◦K.

Rarefied gas dy-
namics

Not significant:
Kn� 1

velocity-slip,
temperature-slip con-
ditions. As density
decreases further, non-
continuum (ie, kinetic
theory and the free
molecular regime)

Knudsen number O(1),
generally at altitudes > 92
km.



20 CHAPTER 2. RELEVANT PHYSICAL PHENOMENA & EXISTING METHODOLOGY

increases. Viscous dissipation transforms the kinetic energy of the freestream flow into internal

energy, increasing the temperature of the gas. In hypersonic flow, the effects of this temperature

increase begin to dominate the boundary layer characteristics. As the temperature increases, the

density of the gas decreases, forcing the boundary layer to be larger in order to accommodate

the required mas flow rate. The viscosity of the gas increases with the temperature, which also

acts to increase the thickness of the boundary layer. These two effects together make hypersonic

boundary layers grow more rapidly than at lower speeds. This behavior is described as the “viscous

interaction”. When the Reynolds number is low enough that the boundary layer intersects the shock

layer, the shock layer must be treated as viscous. In hypersonic flows, the boundary layer thickness

approaches a limit dependent only on the Mach and Reynolds number:

δ ∝ M2
∞√
Rex

. (2.1)

High temperature flow is another phenomenon that becomes more significant in hypersonic flow.

There are several effects associated with high temperature, which are grouped into “high-temperature

effects”. When the temperature increases enough to cause dissociation of the gas, the boundary layer

becomes chemically reacting. Ablation of the vehicle surface also creates a chemically reacting layer.

Ablation is the erosion of the vehicle surface whether by friction forces or by chemical reactions with

the heat shield material. The effects of chemically reacting gas may extend throughout the shock

layer. This affects the specific heats of the flow, and the gas no longer follows the “ideal” relations

that are used for lower-speed flow. The effect of non-constant specific heat is held to be significant

above a temperature of around 800◦K. At 1 atm, oxygen begins to dissociate around 2000◦K,

and is totally dissociated around 4000◦K. gaseous Nitrogen dissociates around 9000◦K, and ions

begin to form. When the gas begins to be ionized, plasma effects may be important, depending on

charge concentrations, temperature, and density of the fluid. The effects of chemical changes and

specific heats are sometimes also referred to as “real gas effects”. These effects change the behavior

of the fluid around the vehicle. The most significant high-temperature effect in terms of vehicle

design, however, is the heat transfer into to surface of the vehicle, which becomes significant well

before chemical changes to the gas come into play. Aerodynamic heating dominates the design of

hypersonic vehicles. This comes in the form of convective heating due to the contact of the fluid

against the surface of the vehicle, and at high enough temperatures radiative heating may also be

significant. At reentry speeds, the high temperature effects cause “communications blackout” due

to the ionization of gas that electromagnetically shields the vehicle from radio frequencies.

Hypersonic vehicles designed to fly at high altitudes must also contend with rarefied gas dynamics

where the density of the flow is low enough to significantly change the way that the flow must be

modeled. These effects are influenced by the mean free path, λ, which is defined by the mean distance

a molecule travels before impacting another molecule. When λ is small relative to the size of fluid
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property gradients (represented by the Knudsen number, Kn = λ/L), the flow can be treated as a

continuum. As λ increases with decreased density, the assumption of continuum flow becomes less

valid. As the Knudsen number approaches 1 at low densities (92 km, 300,000 ft) although the bulk

flow can be treated as continuum, the flow at the surface of the vehicle can no longer be treated the

same way as at higher densities. Rather than a “no-slip” condition where the fluid velocity goes to

zero at the solid wall, there is a “velocity-slip condition”. The temperature at the wall is also no

longer equal to the temperature of the wall, called the “temperature slip condition”. As the altitude

continues to increase, and the flow is no longer treated as a continuum, kinetic theory must be used

in the “free molecular regime”.

Hypersonic flow introduces a challenge of determining whether and how to simulate each of the

phenomena discussed in this section. This choice depends not just on the freestream flow conditions

but also on the vehicle geometry, which determines whether high-temperature effects are relevant.

What values are desired at a higher accuracy also determine what type of simulation is required.

The computational cost and simulation complexity may be counted as an additional challenge to

be addressed. Several effects that become significant in hypersonic flow have been described in this

section. However, not all of them are significant in this work, and not all of them will be modeled.

Whether each of the effects described in this section were included in the analyses used in this work

is summarized in the second column of Table 2.1.

Scramjet engines at current levels of technology operate in the region of Mach 5 - Mach 10. Tests

of these engines have occurred around 30 km altitudes, and as the engine requires oxygen from the

atmosphere to operate, there is an upper limit to the altitude at which these engines can operate.

Under these conditions, temperatures are not high enough to expect significant radiative heat flux,

and temperatures above which real gas effects would be expected only occur in some areas of the

flowpath. The Knudsen number is low enough to assume continuum flow, and viscous effects are

expected to be significant. For these reasons, Reynolds-Averaged Navier-Stokes flow is used for the

flow over the inlet. A one-dimensional channel flow model is used in the combustor, where changing

specific heats are included due to the higher temperature occurring there. Section 6.2.1 includes

a discussion of whether these assumptions are appropriate based on the detailed flow solutions

computed.

For greater accuracy Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) could

be used, which would more accurately resolve turbulence. Unsteady effects are also neglected. These

tools exist, however they require greater computational resources, and are outside the scope of this

work. It will likely be possible to use these more advanced methods for design, rather than just for

analysis, however at the present time this is out of reach due to the computational expense. In this

work, RANS simulations are used, as it is sufficient to model steady flow in many circumstances,

although more accurate modeling of turbulent effects is desirable.
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Table 2.2: Parameters related to unstart

Metric Description Relevant Equation(s)

Rayleigh limit Thermodynamically choked channel, leading
to subsonic flow and unstart.

Equation 2.3

Korkegi limit73 Flow separation occurs in boundary layer,
leading to unstart.

Equation 2.4

Kantrowitz limit74 Minimum area ratio that can “self-start”. Equation 2.5
Isentropic compression Maximum compression possible for isentropic

flow; idealized maximum compression.
Equation 2.6

2.1.2 Unstart

Unstart is a phenomenon experienced by supersonic engines that can cause catastrophic failure. A

“started” flow is one that has achieved supersonic speeds throughout a channel, and is associated

with the maximum mass flow rate through the channel under given inflow conditions. A flow is

“choked” when the flow is sonic at the throat or minimum area of the channel. An “unstart” occurs

when a started flow transitions suddenly to subsonic, when a pressure disturbance downstream forces

a shock to travel upstream, through the throat of the channel, and finally moving the shock system

forward of the inlet. This results in subsonic flow and reduced mass flow through the engine. The

thrust of an engine is reduced, and the new shock structure creates additional drag through increased

pressure on the exterior surfaces and through the deceleration of a greater mass of air across the

shocks, in the worst case across a detached bow shock.

Studies of unstart included experimental work investigating bleeding and moveable geometry as

methods to address unstart68 as well as the control systems to restart.69 Waltrup and Billig70,71

conducted extensive work investigating the interactions between inlets and combustors, and con-

ducted much early work in developing isolator geometries. An isolator is a channel separating the

inlet from the combustor, which serves to introduce a pressure rise that prevents disturbances from

the combustor from traveling upstream and causing an unstart. Although theoretical work has

since been conducted to predict unstart and its behavior, empirical methods based on experimental

results72 are still among the methods commonly used.

Predicting unstart is a difficult and computationally intensive task because it depends not only

on the freestream conditions and engine geometry, but also on hysteresis, turbulent effects, and

unsteady flow phenomena. The result of unstart simulations is often not a determination of whether

or not the engine will unstart, but rather as a probability of unstart. Theoretic understanding of

the physical processes that control or lead to unstart as well as the ability to simulate this process

is currently an open area of research with much further work. Some of the parameters or limits that

are used to describe unstart are summarized in Table 2.2, and will be described in further detail in

the following paragraphs.

Jang, Nichols & Moin75 detail a stability analysis of unstart. There are two categories of unstart,
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referred to as Rayleigh and Korkegi limits. The Rayleigh limit is defined as the point where the bulk

flow reaches the sonic condition due to thermal choking. In other words, heat addition to the flow

causes deceleration leading to a sonic condition. At the point where a single point in the flow (the

throat) reaches the sonic condition, two possible solutions exist: either the flow will return smoothly

to supersonic, or the flow will continue to decelerate to subsonic flow. This is a steady phenomenon,

and can be predicted with one-dimensional flow. The Korkegi limit73 on the other hand is by nature

an unsteady phenomenon: when regions of separated flow form high pressure downstream is able

to push the flow upstream despite the bulk flow being supersonic. Predictions of this limit require

detailed unsteady analysis.

To prevent unstart via the Rayleigh limit, the minimum Mach number or the total temperature

ratio of the flow path can be taken into account, in either case increasing the margin to thermal

choking. The total temperature ratio at which the flow would become sonic can be found start-

ing from the differential equation describing Rayleigh flow, which is non-adiabatic flow through a

frictionless constant-area channel with no mass addition:

dM2

M2
=

1 + γM2

1−M2

(
1 +

γ − 1

2
M2

)
dTt
Tt

. (2.2)

Integrating between the initial Mach number M and 1 results in the following relationship for

the relative total temperature at the sonic condition.

Tt
Tt,M=1

=
2(γ + 1)M2

(1 + γM2)2

(
1 +

γ − 1

2
M2

)
. (2.3)

Equation 2.3 provides an estimate for the total temperature ratio at thermal choking, which could

be used to inform reasonable constraints to provide a safety margin to unstart. As this equation

was found by assuming constant area, frictionless walls, and no mass addition, the actual total

temperature ratio where the flow chokes will differ in a real engine, or in an engine model that takes

these other effects into account.

Preventing unstart via the Korkegi limit requires introducing a pressure rise through the isolator

that increases the pressure disturbance from the combustor that would cause unstart. In this work,

the Rayleigh limit is taken into account within the combustor analysis as the one-dimensional flow

model is able to predict the thermal choking point. The script has been written to always take the

subsonic branch, resulting in low thrust values such that this condition is avoided in the optimization

process. This limit is also taken into account by applying a penalty to the total temperature ratio,

which is associated with increasing the margin to the Rayleigh limit.

The Korkegi limit is more difficult to account for as it requires an unsteady simulation. However,

empirical correlations exist that can be exploited here. An engineering solution developed to reduce

the risk of unstart is a constant-area duct that serves to isolate the inlet from the combustor,

referred to as the isolator. It acts to increase the static pressure entering the combustor through a
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series of reflected oblique shocks. These shocks increase the static pressure at the end of the duct,

reducing the ability of a pressure rise in the combustor to travel upstream and unstart the inlet.

Through experimentation, empirical correlations have been developed by Waltrup & Billig70 as well

as Sullins72 to determine the minimum length of an isolator given the back pressure applied at the

end of the constant-area channel.

Sullins72 provides a correlation for the pressure rise through rectangular ducts, modified here for

notation consistent with the station numbers in Figure 1.1:

(M2
2 − 1)(S/H)Re0.3

θ√
θ/H

= 50

(
P

P2
− 1

)
+ 170

(
P

P2
− 1

)2

. (2.4)

In Equation 2.4, S is the length along the isolator from station 2, H is the duct height, θ =∫ ρ(y)u(y)
ρrefuref

(
1− u(y)

uref

)
dy is the momentum thickness, and Reθ is the Reynolds number based on θ.

Given quantities at station 2, Equation 2.4 predicts the pressure rise that would occur over a back-

pressured isolator of a given length. The quantities in this correlation were not used directly in the

objective functions, and isolators were assumed to be un-back-pressured, however this correlation

can be used to check the designs for feasibility.

A related metric of scramjet inlet performance is self-starting capability. This means that the

minimum area throat has a Mach number greater than 1 even when a normal shock exists ahead

of the inlet, and so the conditions downstream of the throat will be supersonic regardless of the

upstream shock structure. This is contrasted with an inlet that has sonic conditions at the throat,

which will have either subsonic or supersonic flow downstream depending on the geometry and

backpressure. In order to be self-started, the contraction ratio must be greater than the ratio that

would result in the sonic condition. This can be estimated with the Kantrowitz limit.74 A normal

shock wave is assumed at the beginning of the internal compression section, decelerating the air from

freestream. The area that would produce sonic flow is then calculated assuming a one-dimensional

isentropic flow and a perfect gas;

(
A2

A4

)
=

1

M2

(
(γ + 1)M2

2

(γ − 1)M2
2 + 2

) γ
γ−1

(
γ + 1

2γM2
2 − (γ − 1)

) 1
γ−1

(
1 + γ−1

2 M2
2

γ+1
2

) γ+1
2(γ−1)

. (2.5)

The maximum isentropic contraction ratio can also be found by solving for the area associated with

decelerating the flow isentropically to the sonic condition:

(
A4

A0

)
= M0

(
γ + 1

2

) γ+1
2(γ−1)

(
1 +

γ − 1

2
M2

0

) γ+1
2(γ−1)

. (2.6)

The ratio from Equation 2.6 represents the largest contraction ratio possible while maintaining

choked flow. A larger contraction ratio will result in unchoked flow and decreased mass flow rate

even under the most ideal isentropic and inviscid conditions.
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The Kantrowitz limit is a more conservative limit, which may not be possible to meet under

some conditions or other design requirements that lead to choosing an inlet that is not self-starting

and that therefore has some risk of un-starting. In some cases the Kantrowitz limit can be exceeded

with bleeding holes and bypasses that facilitate starting the inlet. As the freestream Mach number

increases, it becomes less feasible to require a self-starting inlet, both because the limited contraction

ratio may not be able to provide the necessary compression, and because the normal shock at the

internal section is less likely to occur. The isentropic limit from Equation 2.6, on the other hand, is

a stricter limit: a channel that exceeds this limit will not only fail to self-start, but will be choked

and un-started.

Unstart is a complex phenomenon with multiple causes whose prediction and simulation is still

an open area of research. Within this work, consideration of unstart is limited to quantities that

are correlated with reducing the risk of encountering unstart, and detailed prediction or modeling

of this phenomenon is outside the scope of this work. An comparison of designs with respect to

Equation 2.4 is included in Section 6.2.3, Table 6.3.

2.2 Design Techniques & Optimization

This section describes existing techniques for designing scramjet inlets, quantities of interest, and

optimization methods. The design techniques described in Section 2.2.1 produce the initial design

point used in optimization studies in Chapter 6, which use the methods described in Section 2.2.3

to improve a selection of the quantities discussed in Section 2.2.2.

2.2.1 Existing Scramjet Design Techniques

Scramjet engines and a review of literature related to their design and operation was presented

in Section 1.2. This section will review existing methods of scramjet inlet design and scramjet

flowpath design to provide context for the new methodologies we have developed in this work and

for the optimization studies conducted. Engine components are often designed without knowledge

of the full flowpath performance, however the operation of the entire engine cycle can be included

at the conceptual design level. Work by Smart22 has examined desirable inlet compression ratios

through analysis of the full flowpath utilizing a mix of one-dimensional and empirical methods. This

method yields information about what properties an inlet should have considering full flowpath

performance, however details of the geometry that would produce that performance and is subject

to the limitations of using empirical models to predict inlet performance.

There are trade-offs between inlet efficiency and the performance of the full engine cycle. If

the compression of the inlet is not sufficient, the combustion process will not operate well, and too

much compression will challenge the structural limits of the vehicle as well as requiring flow bleed

or variable geometry to avoid unstart.
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The two main categories of hypersonic inlets are “two-dimensional” rectangular cross-sectioned

designs based on straight ramps (see Figure 2.2) that benefit from flow and manufacturing sim-

plicity, and “three-dimensional” or “inward-turning” designs based on streamline tracing method-

ologies. Scramjets with rectangular inlets have included the X-432 and related NASA conceptual

access to space design studies,15 as well as HIFiRE flight 24 and the X-513 program. There are ben-

efits from a simplicity of design and integration, however three-dimensional “inward-turning” inlets

are thought to have higher efficiency. The HYCAUSE27 program tested both inward-turning and

two-dimensional inlets. The inward-turning inlets are expected to result in advantages for vehicle

integration, reduced structural weight and reduced cooled surface area.

Billig76 introduced streamline tracing methodologies, which start from an ideal desired flowfield

and trace a cross section through that flow to arrive at a three-dimensional inlet shape. When the

cross-section is circular, these inlets are similar to the Busemann inlet.77 An example is shown

in Figure 2.3. A Busemann inlet77 is illustrated in Figure 2.1, which uses Mach waves to design

a surface that isentropically compresses the flow up to a conical shock that returns the flow to

horizontal. These inlets have theoretically high performance, but they neglect viscous effects and

often generate long inlet lengths and complex geometries that are sensitive to small changes in flow

conditions.

Further work by Smart24 built on streamline tracing techniques to develop Rectangular-to-

Elliptical-Shape-Transition (REST) inlets that trace multiple cross-sections through the desired

flow field and blend them to arrive at designs with rectangular entrances and elliptical exits for ease

of integration with a flat underside of a vehicle and an elliptical cross-sectioned combustion cham-

ber. A pictoral representation is shown in Figure 2.4. These REST inlets include a boundary-layer

correction, however analysis of the flow using CFD reveals that there is significant boundary-layer

growth36 and the inlets may not achieve the desired performance. This motivates the use of high

fidelity optimization where those complex interactions can be taken into account in the design pro-

cess. Due to the high computational cost of gradient-based design optimization, an inverse design

should be used as the initial point to reduce the number of iterations required by the optimizer.

2.2.2 Quantities of Interest

Design challenges relevant to hypersonic vehicles include shape uncertainty, the risk of unstart that

causes a sudden and sometimes catastrophic loss of thrust, and the requirement to operate at a wide

range of conditions as the vehicle accelerates to an altitude where rocket propulsion takes over. The

aerodynamic performance, heat flux and associated Thermal Protective System (TPS) thickness,

combustion, and mixing are all also relevant factors to consider in the design of a scramjet and its

inlet. There are several quantities that could be chosen for the objective function, some of which

are in conflict, and the choice of objective will strongly determine the outcome. Heiser & Pratt80

provide much further detail on hypersonic air-breathing design and performance. When the inlet is
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Figure 2.1: Flowfield of a full Busemann inlet.78

considered in isolation from the rest of the cycle, the kinetic energy efficiency,

ηKE =
ht2 − h′2
ht0 − h0

=
u′22
u2

0

, (2.7)

or the total pressure recovery,

Ptr = Pt2/Pt0 , (2.8)

are often used. ηKE compares kinetic energy that the gas would have if it were expanded isentrop-

ically, to the kinetic energy of the freestream flow. Ptr indicates how much work the gas would do

if expanded isentropically, relative to the freestream. While these measures rely only on the inlet,

they both assume that the flow will behave isentropically downstream of the inlet. This is generally

not the case, especially for a scramjet engine where a shocks, boundary layers, and heat transfer are

expected to be significant. Therefore, it may be beneficial to consider the engine cycle performance

during the optimization process.

When the behavior of the combustor and nozzle are known or assumed, the stream thrust can

be evaluated:

Fun = ṁ0c0M0

(
(1 + f)

M10

M0

√
T10

T0
− 1

)
+

A10

A0

(
P10

P0
− 1

)
. (2.9)

In this equation M is the Mach number, P is the static pressure, T is the static temperature, f is

the mass flow fraction of fuel:air, c indicates the speed of sound, A is the cross-sectional area, and ṁ

is the mass flow rate. The quantities with subscript 0 are the freestream values, and the quantities

with subscript 10 are values at the exit of the nozzle or expansion ramp, as shown in Figure 1.1.
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Figure 2.2: Two dimensional inlet (rectangular cross-section).24

Figure 2.3: “Sugar-Scoop” design in Virginia Tech Wind Tunnel.79

Fun is a component of other performance measures, the specific impulse and overall cycle effi-

ciency :

Isp =
Fun

ṁfg0
(2.10)

ηo =
FunV0

ṁfhpr
. (2.11)

Isp compares the stream thrust to the force of gravity acting on the fuel mass flow rate (the gravi-

metric fuel rate). ηo compares the rate of work done by the stream thrust to the energy contained

in the fuel.

The fuel fraction f and fuel products enthalpy hpr will be assumed constant, as are the freestream

velocity and gravity constant, and so a term Fun
ṁ0

, the specific thrust will be used that is directly



2.2. DESIGN TECHNIQUES & OPTIMIZATION 29

Figure 2.4: REST-class inlet diagram.24

proportional to both Isp and ηo. When an estimate of drag is included, the term Fun−Dest
ṁ0

will be

referred to as the specific installed thrust.

Other design considerations are the risk of unstart and the heat flux into the surface of the

vehicle. Unstart may be caused either by thermally choked flow or by a back pressure rise. To

avoid thermally choking, or the Rayleigh limit, the total temperature ratio τe may be limited. For

pressure-based unstart, the Korkegi limit, an unsteady simulation would be required. These concepts

are discussed in Section 2.1.2.

We can see from the number and interconnected nature of the potential quantities of interest

that the choice of an appropriate objective function quickly becomes a complex problem. Many of

the design considerations run counter to one another, or require high-fidelity unsteady multi-phase

simulation to be evaluated accurately. The utility of the methods presented in this work will be

demonstrated using relatively low-fidelity simulation of the performance downstream of the isolator,

which determines the quantities that can be included. The tools developed in this work would also

be compatible with higher fidelity methods. Fun, Ptr, ṁ, inlet surface heat flux, drag, and τe will

be included. Prior to the developments included in this work, some of these quantities would have

required finite difference or automatic differentiation of an additional code. Obtaining the gradient

of a combination of the objectives already accessible to the continuous adjoint method (heat flux,

ṁ, and Ptr), would have required multiple gradient evaluations.
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2.2.3 Gradient-Based Optimization

This section will discuss the mathematical background underpinning automated design optimiza-

tion. One purpose of this section is to show what the gradient value contributes to the optimization

process. In short, it provides both a direction in which to change the design variables, and infor-

mation necessary to identifying the optimized design. This section will also introduce the concept

of Lagrange multipliers, which are used for constrained optimization and lead to the derivation of

adjoint equations that can be used to obtain gradient values more efficiently.

Specifications Baseline

Analyze

Evaluate
J(~x) & c(~x);
∂J
∂~x & ∂c

∂~x .

Optimized?

Change Design

Fixed Design

yes

no

Figure 2.5: Optimization flow chart

During a conventional (non-automated/optimizer-based) design process, an initial design is first

chosen that satisfies the requirements of the problem, usually based on previous designs, intuition,

and empirical correlations. This baseline design is evaluated using analytical or experimental tech-

niques, and changes are made iteratively until a fixed design is determined that is by some measure a

“good” design. The design changes are determined by intuition and experience, and/or by trial and

error. Optimization algorithms also start from a baseline design determined by the designer, and

changes are made iteratively, however the method by which those changes are made and the decision

about whether the design should be fixed are made by an algorithm based on mathematical formu-

las. This process is shown in Figure 2.5. This section will summarize the mathematical formulations

that support optimization algorithms, and motivate the search for efficient gradient evaluations. A

discussion of the work available in literature on optimization algorithms can be found in Section 1.3,

and the equations presented here follow on Nash and Sofer.81
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A general constrained optimization problem statement is, or nonlinear program is:

minimize f(~x)

with respect to ~x ∈ Rn

subject to ĉj(~x) = 0, j = 1, ..., m̂

ck(~x) ≥ 0, k = 1, ...,m

. (2.12)

In this problem statement, f is the objective function, which is minimized by convention. For

a quantity that should be maximized, f would be its negative or inverse value. ~x is the vector

of n design variables, and c are equality and inequality constraints. When the objective and/or

constraints are nonlinear functions of the design variables, this is referred to as a Non-Linear Problem

(NLP). When the objective and constraints are linear functions of the design variables, it is referred

to as an LP. There has been much work done in the development of algorithms to address both

types of problems; this problem addressed in this work is an NLP.

To implement NLP algorithms, we need a mathematical statement of the necessary and sufficient

conditions for a local minimum. Taylor’s theorem states that for a function f that is n times

differentiable, there exists θ ∈ (0, 1) such that:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + . . .+

1

(n− 1)!
hn−1fn−1(x) +

1

n!
hnfn(x+ θh)︸ ︷︷ ︸

O(hn)

. (2.13)

At a local minimum the function value will be lower than surrounding points,

f(x∗) < f(x∗ + ε) = f(x∗) + εf ′(x∗) +
1

2
ε2
∂2f(x∗ + εθ)

∂x2
, (2.14)

where −δ ≤ ε ≤ δ with a small positive δ. For a multi-variate problem,

f(~x∗) < f(~x∗ + ε~p) = f(~x∗) + ε~pT∇f(~x∗) +
1

2
ε2~pT∇2f(~x∗ + εθ~p)~p. (2.15)

For a sufficiently small value of ε, εf ′(x∗)� 1
2ε

2f ′′(x∗+ εθ), which means that in order for f(x∗) to

be a local mimimum:

εf ′(x∗) ≥ 0. (2.16)

In order for this to hold for negative as well as positive values of ε, f ′(x∗) = 0, or for a multi-variate

problem: ∇f(~x∗) = 0. This defines 1st order optimality. Since ε2 ≥ 0, the 2nd order optimality

condition is f ′′(x∗) ≥ 0, or for multiple variables: ~pT∇2f(~x∗)~p ≥ 0 for all p ∈ Rn, in other words,

the Hessian H = ∇2f is positive semi-definite. These are the necessary conditions for optimality,

which when violated show that a point is not a minimum. To verify a point as a minimum, sufficient
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conditions require that the Hessian is positive-definite.

For a problem with equality constraints, the same conditions must be satisfied; however the

search direction ~p is no longer arbitrary, because the solution must lie along a contour defined by

the constraints,

∇fT dx = 0

ĉj(x+ dx) = 0

∇ĉTj dx = 0 for j = 1, . . . , m̂.

(2.17)

This is now a problem with n unknowns, and (n + m̂) equations. Lagrange provided a way to

address this problem, by subtracting the total derivative of the constraint and introducing Lagrange

multipliers (λi):

∇fT dx+
∑
j

λj∇ĉTj dx = 0 =
∑
i

 ∂f

∂xi
dxi −

∑
j

λj
∂ĉj
∂xi

dxi


∑
i

dxi

 ∂f

∂xi
−
∑
j

λj
∂ĉj
∂xi

 = 0.

(2.18)

This creates n equations:

∂f

∂xi
−
∑
j

λj
∂ĉj
∂xi

= 0 for i = 1, . . . , n, (2.19)

in (n+m) unknowns, where the Lagrange multipliers λj provide the additional m unknowns. The

system is closed by satisfying the original constraint equations. Applying this to he optimization

problem, a stationary point of the Lagrangian, L = f(x)− λT ĉ(x), satisfies the constraints and the

necessary conditions on the gradient ∇f(~x) = g(~x). The necessary conditions of a constrained prob-

lem can now be stated in terms of the Lagrangian, and are referred to as the Karush-Kuhn-Tucker

(KKT) conditions. Sufficient conditions are defined by the positive-definiteness of a subspace defined

by the linearization of the constraints. Table 2.3 summarizes necessary and sufficient conditions for

various situations, including the KKT conditions. For nonlinear constraints (of the form ck(~k ≥ 0),

slack variables are introduced that put these constraints in a similar form as the equality constraints.

The KKT conditions assume that the constraints are linearly independent, and alternate methods

should be used in situations where that assumption is not satisfied, and depending on the problem

and methods used it may be more convenient even when the constraints are linearly independent, to

use the penalty method, which adds a function dependent on the constraint value to the objective

function, resulting in a situation where the optimizer moves towards feasibility as the optimizer

progresses.
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Table 2.3: Necessary and Sufficient Optimality Conditions

Optimization Problem Necessary Conditions Sufficient Conditions

Unconstrained, single variable
f ′(x∗) = 0
f ′′(x∗) ≥ 0

f ′(x∗) = 0
f ′′(x∗) > 0

Unconstrained, multivariate
g(~x) = ∇f(~x), H(~x) = ∇2f(~x)

‖g(~x∗)‖ = 0
~pTH~p ≥ 0

‖g(~x∗)‖ = 0
~pTH~p > 0

Constrained, L = f(~x)− λT ĉ(~x)
∂L
∂xi

= ∂f
∂xi
−
∑
j
∂ĉj
∂xi

= 0
∂L
∂λj

= ĉj = 0

(KKT conditions)

wT∇2
xxL(x∗, λ̂∗)w > 0 for

all w ∈ Rn such that
∇ĉj(x∗)Tw = 0

There are many optimizer algorithms that draw upon the equations presented in this section,

including those mentioned in Section 1.3. In this work, the SNOPT82 algorithm is used.

2.3 Modeling Fluid Flow & The Adjoint Method

This section will review the conservation equations, put them in the form used for numerical solu-

tions, and introduce the backbone of the adjoint method: linearization of the governing equations

and Lagrange multipliers. The history and previous developments in the adjoint method are dis-

cussed in Section 1.4.

2.3.1 Conservation Equations

The governing equations of fluid flow are developed from the conservation of mass, momentum, and

energy. From these foundational concepts, partial differential equations with boundary conditions

are stated in terms of the variables of a fluid flow, and discretized on a grid such that the unknown

values of the fluid variables can be found through iterative methods. The boundary conditions of the

problem are defined by the physical geometry being modeled, and the flow conditions at a distance

away. The unknowns are the conservative variables at points on the computational grid and the

thermodynamic state of the fluid. These equations are derived with the assumption that the fluid

can be treated as a continuous medium, allowing physical properties of the fluid to be described as

scalar or vector fields as a function of time and location. The continuum hypothesis is generally held

to be sufficiently satisfied if the Knudsen number is much less than 1, Kn = λ/L � 1, where λ is

the mean free path of a particle of the gas and L is the length scale of the relevant flow pheomenon.

For some hypersonic flows, specifically reentry vehicles, this assumption breaks down. For all cases

in this work, Kn << 1 and the continuum assumption will be used.

In this section some basic concepts necessary to move forward in the explanation of computational

fluid dynamics will be reviewed. Throughout this section, and at other points in this work, Einstein

notation will be used; aijbi =
∑
i aijbi. It may also be helpful to review the Reynolds transport
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theorem, which states that for any material volume Ω(t) and differentiable scalar field φ we have:

d

dt

∫
Ω(t)

φdΩ =

∫
Ω(t)

(
∂φ

∂t
+∇ · (φ~v)

)
dΩ (2.20)

For greater detail and the proof of this theorem, the reader should refer to Wesseling83 and Hirsch,84

as well as other texts on computational fluid dynamics.

This section will expand the conservation of mass, momentum, and energy in the forms convenient

for analysis of fluid flows. The conservation of mass requires that the change of mass of an

arbitrary volume (Ω) equals the mass production in that volume. Except in multiphase flows, the

rate of mass production will be zero;

d

dt

∫
Ω(t)

ρdΩ =

∫
Ω(t)

dρ

dt
dΩ =

∫
Ω(t)

∂ρ

∂t
+∇ · (ρ~v) dΩ = 0 , (2.21)

where the density ρ has replaced φ in Reynolds transport theorem. Since this must hold for every

Ω,

∂ρ

∂t
+ ·∇ · (ρ~v) = 0 . (2.22)

Equation 2.22 is called the mass conservation law or the continuity equation.

Newton’s law of conservation of momentum states that the rate change of momentum of a

material volume equals the total force acting on that volume. Splitting the force into body (f b) and

surface (fs) forces, the ith component of the conservation of momentum is:

d

dt

∫
Ω(t)

ρvidΩ =

∫
Ω(t)

f bi dΩ +

∫
S(t)

fsi dS . (2.23)

The surface forces can be stated in terms of a stress tensor and the outward normal direction of the

volume surface, fsi = σijnj . The stress tensor can be related to the fluid motion by a constitutive

relation. For Newtonian fluids,

σij = −Pδij + 2µ

(
εij −

1

3
(∇ · ~v) δij

)
, (2.24)

where the rate of strain tensor is defined as:

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
=

1

2

(
∇~v +∇~vT

)
. (2.25)

For brevity in later equations, the term ¯̄τ will refer to the sum of the rate of strain tensor and

the divergence term: ∇~v + ∇~vT − 2
3 (∇ · ~v) ¯̄I. A number of shorthand terms are summarized in

Appendix A for easy reference throughout the text. Substituting for fsi and expanding the Reynolds
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transport theorem on the left hand side of Equation 2.23,∫
Ω(t)

{
∂ρvi
∂t

+
∂(ρvivj)

∂xj

}
dΩ =

∫
Ω(t)

ρf bi dΩ +

∫
S(t)

fsi dS

=

∫
Ω(t)

(
ρf bi +

∂σij
∂xj

)
dΩ

∂ρvi
∂t

+
∂(ρvivj)

∂xj
= ρf bi +

∂σij
∂xj

.

(2.26)

The fourth line of Equation 2.26 is found by noting that the equation must hold for every volume

Ω. The body force f b is usually neglected, except cases such as stratified flow under the force of

gravity, which is outside the scope of this work.

Combining 2.26 and Equation 2.24 results in the Navier-Stokes equations:

∂ρvi
∂t

+
∂(ρvivj)

∂xj
= − ∂P

∂xi
+ 2

∂
{
µ(εij − 1

3 (∇ · ~v)δij)
}

∂xj
+ ρf bi . (2.27)

In vector form,

∂~v

∂t
+∇ · (ρ~v ⊗ ~v) = −∇P +∇ · ¯̄τµ+ ρ~f b . (2.28)

There are several forms of these equations that are commonly used. Nondimensionalization of these

equations produces the dimensionless parameters of the Reynolds number and Mach number.

The conservation of energy draws from the first law of thermodynamics, that work done

on a closed system plus the heat added is equal to the increase of the kinetic and internal energy

(E = e+ 1
2vivi):

d

dt

∫
Ω(t)

ρEdΩ = W +Q . (2.29)

W and Q are respectively the rate of work done on and the rate of heat addition into the fluid

volume Ω. The work done on the volume can be expressed in terms of the body and surface forces,

and the heat added in terms of the heat flux per unit area, σq = k~n · ∇T , where k is the thermal

conductivity and T is the temperature. Expanding these terms,

W =

∫
Ω(t)

∂viσij
∂xj

+ ρf bi dΩ

Q =

∫
Ω(t)

ρq dΩ +

∫
S(t)

k~n · ∇Tds∫
Ω(t)

∂ρE

∂t
+
∂(ρviE)

∂xi
dΩ =

∫
Ω(t)

(
∂viσij
∂xj

+∇ · (k∇T ) + ρvif
b
i + ρq

)
dΩ

. (2.30)
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Noting that the last line must hold for every Ω,

∂ρE

∂t
+
∂(ρviE)

∂xi
=
∂viσij
∂xj

+∇ · (k∇T ) + ρvif
b
i + ρq . (2.31)

We have now summarized the conservation of mass (Equation 2.22), momentum (Equation 2.27),

and energy (Equation 2.31), which comprise the governing equations of fluid flow.

Closing the Equation Set with Thermodynamic Relations

In addition to the five unknown conservative variables, we must also find two thermodynamic vari-

ables to describe the thermodynamic state of the gas. We therefore need two additional equations

to close the system. For a perfect gas the system of equations is completed by P = ρRT and

e = e(T ). Combining the conservative variables into U =
{
ρ, ρ~vT , ρE

}
and defining flux vectors ~F ,

the conservation equations can be summarized:

∂ρ

∂t
+∇ · (ρ~v) = 0

∂ρvi
∂t

+
∂(ρvivj)

∂xj
= − ∂P

∂xi
+
∂µτij
∂xj

+ ρf bi

∂ρE

∂t
+
∂(ρviE)

∂xi
=
∂viσij
∂xj

+∇ · (k∇T ) + ρvif
b
i + ρq

P = ρRT

e = e(T ) .

(2.32)

From here on, body forces (f b) will be neglected.

Particulars for Hypersonic Flow

In hypersonic flow, depending on whether the temperature has exceeded a particular point, additional

effects may need to be considered. This especially effects the energy equation, where the energy of

chemical reactions may also be needed. The closure of the equations through the equation of state

would be modified where real gas effects are expected to be relevant, as the specific heats can no

longer be assumed constant. Multi-species flow is sometimes considered. The temperature range

experienced in the inlet for this work was low enough to reasonable neglect these effects.

Some of the effect relevant specifically to hypersonic flow are included automatically by the

satisfaction of the conservative equations. This includes shock-boundary layer interactions and

entropy layers. These effects are expected to be relevant to the design case used in this work, and

so the Navier Stokes equations will be used to model the flow.
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2.3.2 Fluid Governing Equations in Conservation Form

This section will summarize the translation of the conservation equations into the vector forms

used in computational fluid dynamics, referred to as the Conservation Form. Linearization of these

equations will also be summarized. Jacobian matrices and flux vectors will be introduced. This

material is needed for the derivation of the continuous adjoint problem.

Flux Vectors

Collecting the conservation equations into a vector form will allow them to be expressed in a com-

pressed form, and allow the use of vector calculus solution methods. The first three equations can

be abbreviated as follows:

∂

∂t


ρ

ρ~v

ρE

+∇ ·


ρ~v

ρ~v ⊗ ~v
ρ~vE

 =


0

−∂P∂~x +∇ · [µ¯̄τ ]
T

∂viσij
∂xj

+∇ · (k∇T ) + ρq


∂

∂t


ρ

ρ~v

ρE

+∇ ·


ρ~v

ρ~v ⊗ ~v + ¯̄IP

ρ~vE + P~v

 =


0

∇ ·
[
µ(∇~v +∇~vT − 2

3 (∇ · ~v) ¯̄I)
]T

∇ ·
(
~v · µ

(
∇~v +∇~vT − 2

3 (∇ · ~v) ¯̄I
))

+∇ · (k∇T ) + ρq

 .

(2.33)

Using U to refer to the vector of conservative variables and introducing flux vectors F ,

∂U

∂t
+∇ · ~F c = Q+∇ · µ1

tot
~F ν1 +∇ · µ2

tot
~F ν2 . (2.34)

In this equation, ~F c refers to the vector of convective fluxes. Equation 2.34 is a concise statement

of the governing equations of fluid flow, and has introduced notation for the vector of conservative

variables,

U =


ρ

ρ~v

ρE

 , (2.35)

as well as the convective flux vector, viscous flux vector, and source terms:

~F c =


ρ~v

ρ~v ⊗ ~v + ¯̄IP

ρE~v + P~v

 , ~F v1 =


~0T

¯̄τ

¯̄τ · ~v

 , ~F v2 =


~0T

¯̄0

cp∇T

 , Q =


qρ

~qρ~v

qρE

 , (2.36)

where for generality nonzero source terms have been included, and qρE = ρq, the product of heat
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addition per mass and density.

Equation 2.34 also transitions from using a generic viscosity µ and thermal conductivity, to

using a total viscosity with the first viscous flux µ1
tot, and a thermal conductivity term µ2

tot. These

quantities are defined in terms of the laminar and turbulent viscosity:

µ1
tot = µdyn + µtur

µ2
tot =

µdyn
Prd

+
µtur
Prt

.
(2.37)

The laminar viscosity (µdyn) is a function of temperature only, specifically Sutherland’s law:85

µ = µref

(
T

Tref

)3/2
Tref + S

T + S
, (2.38)

where S is Sutherland’s constant. The turbulent viscosity is found from a turbulence model. Several

options are available, generally grouped into one-equation and two-equation models. The one-

equation Spalart-Allmaras86 and two-equation SST k-omega87 are implemented in the CFD code

used in this work, and the SST model is used for its expected better performance in shock-boundary

layer interactions.

Equation 2.34 is now reorganized to define the residual, which will be driven to zero by iterative

numerical methods.

R (U) =
∂U

∂t
+∇ · ~F c −∇ ·

(
µ1
tot
~F ν1 + µ2

tot
~F ν2
)
−Q = 0 . (2.39)

The inviscid form of these equations, otherwise known as the Euler equations are:

R (U) =
∂U

∂t
+∇ · ~F c −Q = 0 . (2.40)

In order to solve this system of equations using PDE methods, we must translate it into a quasi-

linear form. This is done with Jacobian matrices, which are expanded in the Appendix, Section A.2.

Implementation

The open-source CFD suite SU2, developed in the Aerospace Design Lab at Stanford University, was

used to generate flow solutions and the adjoint solution, and was modified as part of this work. SU2

uses the Finite Volume Method (FVM) to solve partial differential equations on unstructured meshes.

Further information is available in works by the SU2 team.59,63 In the Reynolds-Averaged-Navier-

Stokes (RANS) equations, a turbulence model is used to account for the Reynolds stresses. The

one-equation Spalart-Allmaras86 and two-equation SST k-omega87 turbulence models are available.

The continuous adjoint equations are solved in a similar fashion, re-using methods implemented

to solve partial differential equations and the information generated by the flow solver. Numerical
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methods and other details will be discussed further in Section 4.1

A new boundary condition and other modifications were implemented in this work in order to

produce the continuous adjoint solution for generalized outflow-based objective functions. These

equations are presented in Section 3.2. The RANS equations with the SST turbulence model were

used for viscous simulations. The second order JST scheme was used. Further details of numerical

methods are discussed in Section 4.1.2.

2.3.3 The Adjoint Method

Advances in computer speed and efficiency make simulation-based design more feasible, however

the CPU time required for high-fidelity optimization with large number of design variables is still

significant. Efficient calculation of the gradient of the objective function(s) significantly reduces the

computational cost of optimization. The adjoint method provides gradients at a computational cost

independent of the step size and of the number of design variables. Adjoints have been applied to

scramjet designs in the past, for example Wang et al.88 used a discrete adjoint for a pressure-based

functional on the solid surface of a scramjet inlet to accelerate Monte-Carlo characterization of the

probability of unstart.

The continuous and discrete adjoint methods provide surface sensitivities at the approximate cost

of a single additional flow solution, as compared to the finite difference method that perturbs each

design variable and re-evaluates the objective. The continuous adjoint method solves the discretiza-

tion of the linearized fluid problem, while the discrete adjoint method solves the linearization of the

discretized fluid problem. In other words, the continuous adjoint method solves a problem defined

by careful implementation of a PDE defined by taking the linearization of the original continuous

fluid problem. The discrete adjoint method solves a problem defined by taking the adjoint of the

already-discretized fluid problem. These methods should be equivalent if the discretization of both

are perfect and if the numerical tricks such as limiters and other corrections are included.

The discrete adjoint method as implemented in the SU2 framework utilizes automatic differen-

tiation of the initial CFD code to find an exact derivative of the inexact functional. More detail

is available in.64,65 This method has some advantages in obtaining results that are generally much

closer to finite difference results, however there are greater memory requirements due to the larger

amount of information needed during calculation. The continuous adjoint method, by contrast, is

sometimes more removed from finite difference and discrete adjoint result, however it benefits from

lower memory usage and, particularly relevant to this work, the boundary conditions are relatively

accessible within the implementation.

Some work47,66 has focused on making the discrete adjoint method more efficient and expanding

its capabilities. This work approaches the problem from the other direction - by making the boundary

conditions of the continuous adjoint method more general such that the numerical efficiency of the

continuous adjoint method can be utilized with a lesser limitation on the objective function. Arian
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& Salas62 have also explored expanding the limits of what objectives can be addressed by the

continuous adjoint method, focusing on solid wall boundaries.

Section 3.1 will discuss the adjoint method in the context of fluid flow. Here, this methodology

is discussed in general terms applicable to many problems. The adjoint method leverages Lagrange

multipliers to solve for the sensitivity of a function with respect to an arbitrary number of variables

at a fixed cost. This method relies on linearization, and assumes that the domain is smoothly

differentiable. This section will lay out the general methodology of adjoints, so that the reader

will be able to see the underlying framework without the distraction of the large and complicated

equations required for the adjoint of the governing equations of fluid flow. The derivation here is

similar to work presented by Jameson,51 with modifications to some of the notation for consistency

with later equations.

The derivation of an adjoint method starts with defining the objective function J , some functional

defined in terms of state variables U and independent design variables x.

J(U, x) (2.41)

We want to find the variation of J with respect to x, and in order to do so we need to define the

relationships between x and U . The state variables and design variables are related to each other by

a governing equation, often describing a physical system, stated in the following form as a constraint,

R(U, x) = 0 . (2.42)

The first variation of the functional and governing equations with respect to variations in U and x

are as follows:

δJ =
∂J

∂U
δU +

∂J

∂x
δx, (2.43)

δR =
∂R
∂U

δU +
∂R
∂x

δx = 0 , (2.44)

where the variation in the governing equations is set to zero to ensure that this constraint is met

for every arbitrary variation δx and corresponding δU . This step has linearized the system. Equa-

tion 2.44 can be used to find δU for a given δx, and the result substituted into Equation 2.43 in

order to find δJ
δx , however this process would need to be repeated for every additional x. Therefore, it

would be convenient to find a relationship between δJ and δx that does not depend on δU . Because

δR can be set to 0,

δJ = δJ − λδR = δU

(
∂J

∂U
− λ∂R

∂U

)
+ δx

(
∂J

∂x
− λ∂R

∂x

)
, (2.45)
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where the augmented objective J is equivalent to J and the adjoint variables λ are arbitrary because

R has been set to zero. Because λ are arbitrary, we can choose them such that this equation is

independent of δU , in other words:

∂J

∂U
− λ∂R

∂U
= 0. (2.46)

Equation 2.46 is the adjoint equation, which is used to find the values of λ that make the system

independent of the variation in U . At this point we are left with:

δJ
δx

=
δJ

δx
=

(
∂J

∂x
− λ∂R

∂x

)
, (2.47)

which describes the sensitivity of the functional J with respect to the independent, or design, vari-

ables x. The challenge then is to solve the system described by Equation 2.46 for the adjoint variables

λ. Methods for doing so for a system of Partial Differential Equations (PDEs) were introduced by

Lions48 and Pironneau50 for elliptic PDEs, and applied to the hyperbolic PDEs for aerodynamic

optimization by Jameson.51

2.4 Summary of Challenges

Some of the challenges that are relevant to scramjet design and optimization have been noted in

preceding sections, and will be reviewed here in order to provide context for the proceeding sections

and developments of this dissertation.

Before embarking on an optimization problem, or even evaluating sensitivities, first the direct or

“flow” problem should be solved. A high accuracy is desired, but there are trade-offs between accu-

racy and computational cost that become more significant in hypersonic flow as various additional

phenomena become more significant including non-equilibrium gas effects and shock-boundary layer

interactions. For the Mach and Reynolds numbers used in this work, Reynolds-Averaged Navier

Stokes is a reasonable choice for the inlet of the scramjet, although some inaccuracy is introduced

by neglecting real gas effects. Real gas effects are included in the combustion model, where higher

temperatures increase the significance of these effects. Non-equilibrium, ionization, and rarefied gas

effects are not expected to be significant for the problem investigated in this work. The phenomenon

unstart that is a consideration for hypersonic airbreathing engines is difficult to predict with current

techniques, and often requires significantly more computationally expensive techniques including

unsteady flow, however some empirical methods exist.

The simulation or prediction of the vehicle performance also encounters the problem of accessing

the most relevant quantities of interest. It is common to use simulations that address a single

component of the engine, for example the inlet. However, without knowledge of the remainder of

the engine flowpath, no matter how high of fidelity is used in the simulation the most relevant
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quantities of interest may not be accessible. Specifically, inlet simulations can produce quantities

such as the total pressure ratio, static pressure ratio, mass flow rate, and flow distortion measures.

Each of these quantities are correlated in different ways with improved engine performance, however

the specific balance between them is often not clear, and highly dependent on the specifics of the

engine downstream. This motivates the use of multi-fidelity methods that can provide a prediction of

the full engine performance without an overly costly increase in computation time. The simulation of

the entire flowpath is particularly important for scramjet engines, where phenomena such as unstart

and quantities like the maximum pressure in the combustor become important, and are sensitive to

the inlet design.

In an optimization process, the result is generally dependent on the initial point. There has been

much work that can contribute the the initial point, which is described in Section 2.2.1, however

there are often discrepancies between the predicted performance and the performance under higher

fidelity (CFD) models, which motivates optimization using those higher fidelity methods in order to

achieve the desired performance and satisfy constraints. An additional challenge within the design

process is the choice of objective and constraints, as there are often several conflicting quantities of

interest, as detailed in Section 2.2.2

After the initial point is created for the optimization process, the next challenge is to produce

sufficiently accurate gradients at a reasonable computational cost. The continuous adjoint method

provides an attractive option, as its cost is relatively low and constant relative to the number of design

variables. However, existing methods for the continuous adjoint method are limited to functionals

defined within the CFD volume, to single functionals (requiring additional solution evaluations for

additional objectives or constraints), and require additional derivation and code implementation for

functionals that had not been previously addressed. Some of these limitations are eased for the

discrete adjoint method when automatic differentiation is used, which does not require additional

implementation for new objectives or combinations of objectives, but which requires that the code be

compatible with the automatic differentiation program. Additional trade-offs between the continuous

and discrete adjoint methods are discussed in Section 1.4. The continuous adjoint method is mainly

used in this work.

The main challenges addressed by this work are the challenges relevant to the continuous adjoint

method and expanding the range and complexity of functionals that it can address. These devel-

opments facilitate optimization problems that utilize a compromise between high- and low-fidelity

methods through the use of a multi-fidelity flowpath.



Chapter 3

Generalizing the Continuous

Adjoint Method

Chapter 3 starts with an overview of the derivation of the continuous adjoint method for the com-

pressible, steady, Navier-Stokes equations in Section 3.1 for a selection of functionals. This leads to

Section 3.2 that provides the derivation for generalized functionals, building on the equations de-

veloped in Section 3.1 and allowing contrasting between deriving the continuous adjoint method for

specific functionals and generalized functionals. The generalized functional facilitates the application

of the continuous adjoint method to a broader range of functionals, and Section 3.3 describes how

to exploit this methodology through providing the necessary partial derivative terms. Section 3.4

provides details of using superposition to provide gradients of multiple functionals simultaneously.

Section 3.1 reviews derivation details that can be found in the literature, and Section 3.2 - Section 3.4

provide the details of the methods developed in this work. Navigation of this chapter may be aided

by the flow chart in Figure 3.1.

3.1 The Continuous Adjoint Method for Compressible Vis-

cous Flow

This section will detail the derivation of the continuous adjoint method for compressible fluid flow

for a selection of functionals that have been previously addressed in literature. A discussion of

available literature is included in Section 1.4. The equations governing fluid flow were reviewed in

Section 2.3.2, and the reader may find it helpful to refer to this section. These equations will compose

a constraint on the minimization problem that defines the adjoint method. The computational

domain is composed of an aerodynamic surface S in a fluid, Ω ⊂ R3. There are a number of different

boundary conditions that can be applied. An example of a set of boundary conditions that might

43
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be applied are:

R (U) = ∇ · ~F c −∇ ·
(
µ1
tot
~F v1 + µ2

tot
~F v2
)
−Q = 0 in Ω

~v = 0 on S

T = Tw on S

(W )+ = W∞ on Γ∞, Γin

~v · ~n = 0 on Γsym

P = Pe on Γe|M<1 ,

(3.1)

where the open boundaries are composed of the farfield Γ∞, inflow Γin, outflow Γe, and symmetry

Γsym components. The open boundaries will sometimes be referred to collectively as Γ. An outflow

boundary condition of a constant pressure is applied at outflow boundaries. The characteristic

variables W result from the diagonalization of the convective Jacobian matrices, and (W )+ indicates

the positive characteristics. Defining a nonlinear program, or minimization problem, which satisfies

these governing equations with an objective function defined in terms of the aerodynamic forces and

temperature at the surface S,

min
S
J(S) =

∫
S

j(~f, T, ∂nT, ~n)ds

subject to: R(U) = 0,

(3.2)

where ~f is the force on the surface, T is the temperature, and ~n is the outward-pointing unit

normal vector to the surface S.A more standard derivation is to address a single functional. Using

a Lagrangian formulation,

min
S

J(S) =

∫
S

j(~f, T, ∂nT, ~n)ds−
∫

Ω

ΨTR(U)dΩ, (3.3)

where the vector of adjoint variables Ψ are introduced as the Lagrange multipliers, which are arbi-

trary thanks to the constraint that R(U) = 0. The components of this vector are:

Ψ =



ψρ

ψρu

ψρv

ψρw

ψρE


=


ψρ

~ϕ

ψρE

 . (3.4)

We will now take the first variation of the Lagrangian or augmented functional,

δJ(S) = δJ −
∫

Ω

ΨT δR(U,∇U)dΩ, (3.5)
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Gov’n Equations
and BC’s (Eqns 3.1)

Objective
Function

Linearize
BC’s

(Table 3.2)

Linearize
Gov’n
Eqns

(Table 3.1)

Linearize Functional
(Table 3.4,Eqn 3.99)

Combine, eliminate
terms (Section 3.1.6,

Section 3.2.3)

Adjoint Formulation:
Adjoint PDE (Equation 3.39)
Adjoint BCs (Table 3.7)
Sensitivity (Tables 3.5 and 3.6)

Figure 3.1: Derivation of Adjoint Equations

and solve for the values of Ψ that eliminate dependence on the unknown variations δU (similar to

Equation 2.46), in order to find an expression for δJ/δS, the surface sensitivity (similar to Equa-

tion 2.47). The surface S is assumed continuously differentiable
(
C1
)
, and the shape perturbation

is described by infinitesimal deformations in the normal direction:

S′ = {~x+ δS(~x)~n(~x) : ~x ∈ S). (3.6)

In order to solve for the adjoint variables that eliminate dependence on δU , the components of

Equation 3.5 will be expanded. The expressions will then be combined to eliminate and simplify

terms, resulting in the adjoint PDE and its governing equations. The remaining nonzero quantities

comprise the surface sensitivity. Figure 3.1 provides an illustration of the process used to derive the

adjoint equations, with reference to the equations and tables that summarize the result of each step.

Boxes in this flow chart with bold boundaries indicate the steps that differ between the derivation

for a specific functional and the derivation for a generalized functional, which will be presented in

Section 3.2.

3.1.1 Surface Variations & Shorthand Terms

Throughout the derivation of the adjoint equations, knowledge of surface variations will be useful.

Some useful identities exist that aid in linearizing the equations as well as simplifying the terms on
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the boundaries of the adjoint problem:∫
δS

(·)ds =

∫
S′

(·)ds−
∫
S

(·)ds∫
δS

jds =

∫
S

(∂nj − 2Hmj)δSds

Hm = (κ1 + κ2)/2

∂n(j) = ~n · ∇(j)

δ~n = −∇S(δS),

(3.7)

where Hm is the mean curvature of S and (κ1, κ2) are curvatures in two orthogonal directions on

the surface. The relationship for δ~n holds for small deformations.89 ∇S represents the tangential

gradient operator on S. Additional shorthand terms will be introduced within the derivation of the

adjoint equations, and for reference they are also summarized in Appendix A.1.

A property that will be used repeatedly in these equations is that
∫
S
∇S((·)δS)ds = 0 on a closed

surface. In order to apply these same equations to domains where the solid surface is not closed (ie,

for internal flows where a solid-walled duct is capped by an outflow boundary), we note that δS = 0

on open boundaries, and require by careful choice of design variables that deformations are chosen

such that δS goes smoothly to 0 at the borders between S and Γ.

3.1.2 Linearizing the Governing Equations

The linearized form of the direct (fluid flow) problem will be used in the derivation of the adjoint

equations. This section details the linearization process for the governing PDE as well as several

boundary conditions. This section is concluded tables summarizing the resulting linearized form for

easy reference in the later derivations. The governing equations of fluid flow were discussed in a

previous section. The residual of the steady Reynolds Averaged Navier Stokes (RANS) equations is

as follows:

R (U) = ∇ · ~F c −∇ ·
(
µ1
tot
~F v1 + µ2

tot
~F v2
)
−Q = 0 in Ω. (3.8)
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Linearizing this equation with respect to small deformations δS,

δR(U,∇U) = δ
(
∇ · ~F c −∇ · µktot ~F vk −Q

)
= ∇ · δ ~F c −∇ · δ(µktot ~F vk)− δQ

= ∇ · δ ~F c −∇ ·
(
~F vkδµktot

)
−∇ ·

(
µktotδ

~F vk
)
− δQ

=∇ ·

(
∂ ~F c

∂U
δU

)
−∇ · ~F vk ∂µ

k
tot

∂U
δU

−∇ · µktot

[
∂ ~F vk

∂U
δU +

∂ ~F vk

∂(∇U)
δ(∇U)

]
− ∂Q
∂U

δU

= ∇ ·
(
~Ac − µktot ~Avk

)
δU −∇ · ~F vk ∂µ

k
tot

∂U
δU

−∇ · µktot ¯̄Dvkδ(∇U)− ∂Q
∂U

δU.

(3.9)

Applying the assumption of frozen viscosity (δµktot = 0) simplifies the problem significantly, although

the assumption of constant viscosity may introduce inaccuracies. In order to fully account for the

variation of turbulent velocity, the adjoint of the turbulence model, with additional adjoint variables,

would be required. These terms are detailed for the S-A turbulence model by Bueno90 and Zymaris,91

however additional derivation would be required to form the adjoint of the SST model, and these

effects are outside the scope of this work. Equation 3.9 also introduces the Jacobians ~Ac = ∂ ~F c

∂U ,

~Aνk = ∂ ~F νk

∂U and ¯̄Dνk = ∂ ~F νk

∂(∇U) , which are expanded in the Appendix in Equation A.10, A.11, A.12,

A.13, and A.16. The final line of Equation 3.9 as well as the corresponding linearization of the

Euler Equations are included in Table 3.1.

3.1.3 Expansion of δR

The term including the linearized governing equations, from the right hand side of the Lagrangian

defined in Equation 3.5 will now be expanded in order to separate boundary terms and define the

volume PDE that will be solved for the adjoint variables Ψ. Using the expression for δR expanded

in Equation 3.9, the right hand side of the Lagrangian is now:

δJ = δJ −
∫

Ω

ΨT ∂

∂t
(δU) dΩ−

∫
Ω

ΨT∇ ·
(
~Ac − ¯̄I5~uΩ − µktot ~Avk

)
δU dΩ

+

∫
Ω

ΨT∇ · µktot ¯̄Dvkδ(∇U) dΩ +

∫
Ω

ΨT ∂Q
∂U

δUdΩ.

(3.10)
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Integrating by parts in order to collect terms inside the divergence operator, and then applying the

divergence theorem:∫
Ω

∇ ·
(
ΨT[ ]δU

)
dΩ =

∫
Ω

∇ΨT · [ ]δUdΩ +

∫
Ω

ΨT∇ · [ ]δUdΩ∫
Ω

ΨT∇ · [ ]δUdΩ =

∫
∂Ω

ΨT[ ]δU · ~nds+

∫
Ω

∇ΨT · [ ]δUdΩ.

(3.11)

Substituting for the placeholder term:∫
Ω

ΨT∇ · ( ~Ac − ¯̄I5~uΩ − µktot ~Avk)δUdΩ =

∫
∂Ω

ΨT( ~Ac − ¯̄I5~uΩ − µktot ~Avk)δU · ~nds

+

∫
Ω

∇ΨT · ( ~Ac − ¯̄I5~uΩ − µktot ~Avk)δUdΩ.

(3.12)

The viscous stress terms require integrating by parts twice, a technique used by Castro55 to eliminate

the second-order derivatives:∫
Ω

ΨT∇ ·
(
µktot

¯̄Dνk · δ(∇U)
)
dΩ =

∫
∂Ω

ΨT
(

ΨTµktot
¯̄Dνk · δ(∇U)

)
· ~nds

+

∫
Ω

∇ΨT ·
(
µktot

¯̄Dνk · δ(∇U)
)
dΩ.

(3.13)

Applying integration by parts a second time and using ∇(δU) = δ(∇U) in a continuum:∫
Ω

∇ · (∇ΨT · (·)δU)dΩ =

∫
Ω

∇ · (∇ΨT · (·)δUdΩ +

∫
Ω

(∇ΨT · (·)) · ∇(δU)dΩ∫
Ω

(
∇ΨT · µktot ¯̄Dνk

)
· ∇(δU)dΩ =

∫
∂Ω

(
∇ΨT · µktot ¯̄DνkδU

)
· ~nds

−
∫

Ω

∇ ·
(
∇ΨT · µktot ¯̄Dνk

)
δUdΩ.

(3.14)

Combining these terms, we can now restate the Lagrangian succinctly, introducing shorthand

terms for terms on the surface and collecting the volume terms remaining after the application of

the divergence theorem. Shorthand terms B1, B2, and B3 are grouped by convective flux terms that

are relevant to both viscous and inviscid problems in B1, viscous flux terms in B2, and the terms

dependent on ∇U in B3. B3 includes both viscous stress terms and heat transfer terms.

B1 = ΨT
(
~Ac − ¯̄I5~uΩ

)
δU · ~n,

B2 = ΨTµktot ~A
vkδU · ~n+ ΨTµktot

¯̄Dvk · ∇(δU) · ~n,

B3 = ∇ΨT · µktot ¯̄DvkδU · ~n.

(3.15)
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Writing the Lagrangian using the shorthand terms introduced in Equation 3.15:

δJ = δJ −
∫
∂Ω

(B1 −B2 +B3) ds

−
∫

Ω

[
−∇ΨT ·

(
~Ac − ¯̄I5~uΩ − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U

]
δU dΩ.

(3.16)

δU must now be eliminated from these equations. The bracketed term under the volume integral

from Equation 3.16 represents the PDE system known as the adjoint equations. Solving for the

values of the adjoint variables Ψ that drive the bracketed term to 0 eliminates dependence on δU

from the volume therms. The adjoint variables must also satisfy boundary conditions defined by

eliminating dependence on δU from the combination of δJ and the surface terms in Equation 3.16.

The remaining terms, dependent only on the flow solution, the values of the adjoint variables, and

δS, produce the surface sensitivity. The following sections will expand the boundary integrals, and

then combine them with the functional variation to form the boundary conditions on the adjoint

equations.

Expanding Adjoint Boundary Integrals

This section will expand the boundary integrals introduced in Equation 3.16, and apply linearized

boundary conditions of the direct (flow) problem in order to simplify the integrals prior to com-

bination with expansions of the functional term. The boundaries ∂Ω can be divided into solid

boundaries that lie on the surface of the object in the flow field, farfield boundaries, inflow, outflow,

and symmetry boundaries. At the open boundaries, viscous perturbations are generally neglected,

making the boundary equations equivalent in the viscous and inviscid forms. This is a reasonable

assumption at farfield boundaries where viscous effects are expected to be negligible. Inclusion of

viscous terms in outflow boundaries may be reasonably considered for future work. Jacobians, trans-

formation matrix, and shorthand terms can be found in Appendix A. Some of the shorthand terms

used include: a0 = (γ − 1), φ = (γ − 1) |~v|
2

2 , vn = ~v · ~n and vnr = (~v − ~uΩ) · ~n. The transformation

matrix M can be found in the Appendix, Equation A.9. A vector of primitive variable perturbations,

δV = {δρ, δ~v, δP}T has been introduced to these equations for easier manipulation.

Expansion & Simplification of B1 The expression B1 contains the convective terms as well

as terms related to the mesh motion, ~uΩ. These terms are common to both the viscous (Navier-

Stokes, RANS) and inviscid (Euler) equations. Shorthand terms can be found in the appendix,
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Equation A.1, along with Jacobians. B1 will first be expanded using the convective Jacobian:

B1 = ΨT
(
~Ac − ¯̄I~uΩ

)
δU · ~n = ΨT

(
~Ac − ¯̄I~uΩ

)
· ~nMδV

= ψT


−~uΩ · ~n ~nT 0

−(~v · ~n)~v + φ~n
[

¯̄I(~v · ~n− ~uΩ · ~n) + ~v ⊗ ~n− a0~n⊗ ~v
]

a0~n

(~v · ~n)(φ−H) −a0~v
T(~v · ~n) +H~nT γ(~v · ~n)− ~uΩ · ~n

MδV.

= ψT


vnr ρ~nT 0

(vnr)~v ρ
[

¯̄Ivnr + ~v ⊗ ~n
]

~n

φ
a0

(vnr) ρ(vnr)~v
T + ρH~nT vn + 1

a0
(vnr)

 δV,

(3.17)

Simplification of B1 on Solid Walls In either viscous or inviscid flow Equation 3.17 can be

simplified by applying the flow tangency boundary condition ~v · ~n− ~uΩ · ~n = 0:

ΨT
(
~Ac − ¯̄I~uΩ

)
δU · ~n = ψT


0 ρ~nT 0

~0 ρ [~v ⊗ ~n] ~n

0 ρH~nT vn

 δV

=


0

(ρψρ + ρ~v · ~ϕ+ ρHψρE)~n

~ϕ · ~n+ ψρEvn


T

δρ

δ~v

δP


= (ρψρ + ρ~v · ~ϕ+ ρHψρE)(δ~v · ~n) + (~ϕ · ~n+ ψρEvn)δP.

(3.18)

Finally,

B1 = ϑ(δ~v · ~n) + (~ϕ · ~n+ ψρEvn)δP , (3.19)

The shorthand term ϑ = (ρψρ+ρ~v · ~ϕ+ρHψρE) has also been introduced here. Note that this result

is the same for both viscous and inviscid flows, as well as for symmetry planes where flow tangency

is also imposed. In stationary domains, where ~uΩ = ~0 and the flow tangency boundary condition

becomes vn = 0, the equation reduces to:

B1,~uΩ=~0 = ϑ(δ~v · ~n) + (~ϕ · ~n+ ψρE)δP. (3.20)

Simplification of B1 on Farfield, Inflow, and Outflow Boundaries At open boundaries

the characteristics of the equation must be considered. In the boundary conditions of the direct

problem, the sign of the eigenvalues of the convective flux Jacobian determines how the solution
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state is updated. The linearized boundary condition is expressed as:

(δW )+ = 0 on Γ∞, Γin, & Γe. (3.21)

For the terms in B1, this means that under some conditions components of δV will be set to 0.

Expansion & Simplification of B2 The boundary integral B2 is generally only considered on

solid surfaces, as the effect of viscosity is neglected at other boundaries. Therefore B2 will only

be considered on a no-slip wall S. In order to simplify this term, we will need the variation of

the viscous flux vector, the property that δ(∇U) = ∇(δU) in a continuum, and the application of

the no-slip boundary condition, ~v − ~uΩ = ~0. This variation, under a frozen viscosity assumption

(δµ = 0), is as follows:

δ(µktot
~F vk) = µktot

∂ ~F vk

∂U
δU + µktot

∂ ~F vk

∂(∇U)
· δ(∇U) = µktot

~AvkδU + µktot
¯̄Dvk · δ(∇U). (3.22)

B2 can now be simplified:

B2 = ΨTµktot
~AvkδU · ~n+ ΨTµktot

¯̄Dvk · ∇(δU) · ~n

= ΨT
[
µktot ~A

vkδU + µktot
¯̄Dvk · ∇(δU)

]
· ~n

= ΨTδ(µktot
~F vk) · ~n

= ΨTδ(µ1
tot
~F v1) · ~n+ ΨTδ(µ2

tot
~F v2) · ~n

= ΨTδ


·
¯̄σ

¯̄σ · ~v

 · ~n+ ΨTδ


·
·

µ2
totcp∇T

 · ~n

= {ψρ, ~ϕ, ψρE}


·

δ ¯̄σ · ~n
δ(¯̄σ · ~v) · ~n

+ {ψρ, ~ϕ, ψρE}


·
·

µ2
totcpδ(∇T ) · ~n


= ~ϕ · δ ¯̄σ · ~n+ ψρEδ(¯̄σ · ~v) · ~n+ ψρEµ

2
totcpδ(∇T ) · ~n,

(3.23)

Resulting in the following expression for B2:

B2 = ~ϕ · δ ¯̄σ · ~n+ ψρE~v · δ ¯̄σ · ~n+ ψρEδ~v · ¯̄σ · ~n+ ψρEµ
2
totcp∂n(δT ). (3.24)

For flows on stationary domains, ~uΩ = 0 and ~v = 0 on the surface. For stationary domains, the
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equation can be further simplified:

B2,~uΩ=~0 = ~ϕ · δ ¯̄σ · ~n+ ψρEδ~v · ¯̄σ · ~n+ ψρEµ
2
totcp∂n(δT ). (3.25)

The Navier-Stokes or RANS equations generally also add a condition on the temperature, usually

either an isothermal, adiabatic, or fixed heat flux condition. Which thermal condition is chosen

further simplifies B2.

Expansion & Simplification of B3 Similar to terms of B2, B3 will only be considered on a

no-slip solid wall S. B3 includes components related to viscous stresses as well as to heat transfer,

and these terms will be considered separately here as B1
3 and B2

3 respectively:

B3 = Bk3 = B1
3 +B2

3 . (3.26)

Expanding the Viscous Stress Component B1
3 The Jacobian of the viscous stresses can be

expressed compactly, using ~δi = {δi1, δi2, δi3}T as:

¯̄Dν1
ij =


0 ~0T 0

−vi~δj + 2
3vj

~δi − ~vδij ~δj ⊗ ~δi − 2
3
~δi ⊗ ~δj + ¯̄Iδij ~0

− 1
3vivj − |~v|

2δij vj~δ
T
i − 2

3vi
~δTj + ~vT δij 0

 . (3.27)

Expanding

¯̄Dν1
ij δU = ¯̄Dν1

ij MδV

= ¯̄Dν1
ij


δρ

~vδρ+ ρδ~v
|~v|2
2 δρ+ ρ~v · δ~v + 1

γ−1δP


=


0

(−vi~δj + 2
3vj

~δi − ~vδij)δρ+
[
~δj ⊗ ~δi − 2

3
~δi ⊗ ~δj + ¯̄Iδij

]
(~vδρ+ ρδ~v)

(− 1
3vivj − |~v|

2δij)δρ+
{
vj~δ

T
i − 2

3vi
~δTj + ~vTδij

}
· (~vδρ+ ρδ~v)



=


0{

−vi~δj + 2
3vj

~δi − ~vδij
}
δρ+

{
~δjvi − 2

3
~δiv + ~vδij

}
δρ+

{
~δjδvi − 2

3
~δiδvj + δijδ~v

}
ρ

− 1
3vivjδρ− |~v|

2δijδρ+
(
vjvi − 2

3vivj + |~v|2δij
)
δρ+ ρ

(
vjδvi − 2

3viδvj + ~v · δ~vδij
)


=


0{

~δjδvi − 2
3
~δiδvj + δijδ~v

}
ρ

(vjvi − vivj) δρ+ ρ
(
vjδvi − 2

3viδvj + ~v · δ~vδij
)
 .

(3.28)
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Canceling further,

¯̄Dν1
ij δU =


0{

~δjδvi − 2
3
~δiδvj + δijδ~v

}
ρ

ρ
(
vjδvi − 2

3viδvj + ~v · δ~vδij
)
 . (3.29)

B1
3 = ∇ΨT · µ1

tot
¯̄Dv1δU · ~n

= µ1
tot∇ΨT · ¯̄Dν1δU · ~n

= µtot∇


ψρ

ϕ

ψρE


T

·


0{

~δjδvi − 2
3
~δiδvj + δijδ~v

}
ρ

ρ
(
vjδvi − 2

3viδvj + ~v · δ~vδij
)
 · ~n

= ρµ1
tot


0

∇~ϕ · δ~v − δ~v · 2
3

¯̄I∇ · ~ϕ+∇~ϕTδ~v

∇ψρE(~v · δ~v)− 2
3

¯̄I(∇ψρE · ~v) + (δ~v · ∇ψρE)~v

 · ~n.
(3.30)

The result can be rearranged with the introduction of convenient shorthand terms:

¯̄Σϕ = µ1
tot(∇~ϕ+∇~ϕT − 2

3
¯̄I∇ · ~ϕ)

¯̄ΣψρE = µ1
tot(∇ψρE~v +∇ψρE~vT −

2

3
¯̄I∇ψρE · ~v),

(3.31)

which reduces B1
3 to:

B1
3 = µ1

totρ

[
~n · (∇~ϕ+∇~ϕT − 2

3
¯̄I∇ · ~ϕ) · δ~v + ~n · (∇ψρE~v +∇ψρE~vT −

2

3
¯̄I∇ψρE · ~v) · δ~v

]
= ρ~n · ¯̄Σϕ · δ~v + ~n · ¯̄ΣψρE · δ~v

= ρ~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· δ~v. (3.32)

Expanding the Heat Transfer Component B2
3 The Jacobian of the heat transfer component

can be expanded as follows:

¯̄Dν2
ij =

γ

ρ


0 ~0T 0

~0 ¯̄0 ~0
δij
a0

(
φ− P

ρ

)
−δij~vT δij

 . (3.33)
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The term B2
3 can be expanded in a similar way as B1

3 :

B2
3 = ∇ΨT · µ2

tot
¯̄Dν2δU · ~n

= µ2
tot∇


ψρ

ϕ

ψρE


T

· δij
γ

ρ


0 ~0T 0

~0 ¯̄0 ~0
1
a0

(
φ− P

ρ

)
−~vT 1




δρ

~vδρ+ ρδ~v
|~v|2
2 δρ+ ρ~v · δ~v + 1

γ−1δP

 · ~n
= µ2

tot∇ (ψρE) · δij
γ

ρ

(
δρ

a0

(
φ− P

ρ

)
+ ~v · (~vδρ+ ρδ~v) +

(
|~v|2

2
δρ+ ρ~v · δ~v +

1

γ − 1
δP

))
· ~n

=
γµ2

tot∇ (ψρE)

ρ

(
δρ

(
|~v|2

2
− P

ρ(γ − 1)

)
− (|~v|2δρ+ ρ~v · δ~v) +

(
|~v|2δρ

2
+ ρ~v · δ~v +

δP

γ − 1

))
· ~n

= µ2
tot∂n (ψρE)

γ

ρ

((
− Pδρ

ρ(γ − 1)

)
+

(
δP

γ − 1

))
.

(3.34)

From the equation of state,

δT = δ
( ρ

PR

)
= δ

(
γ

cp(γ − 1)

P

ρ

)
δT =

γ

cp(γ − 1)

1

ρ
δP − γ

cp(γ − 1)

P

ρ2
δρ,

(3.35)

which leads to:

B1
3 = µ2

tot∂nψρEcpδT. (3.36)

The total contribution from B3 can now be expressed concisely as:

B3 = B1
3 +B2

3 = ~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· δ~v + µ2

totcp∂n(ψρE)δT (3.37)
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Combining Terms of δR

Combining the terms from Equation 3.19, 3.24, and 3.37, the variation of the augmented functional

is:

δJ = δJ

−
∫

Ω

[
−∇ΨT ·

(
~Ac − ¯̄I5~uΩ − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U

]
δU dΩ

−
∫
S

ϑ(δ~v · ~n) + (~ϕ · ~n+ ψρEvn)δP ds

+

∫
S

~ϕ · δ ¯̄σ · ~n+ ψρE~v · δ ¯̄σ · ~n+ ψρEδ~v · ¯̄σ · ~n+ ψρEµ
2
totcp∂n(δT ) ds

−
∫
S

~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· δ~v + µ2

totcp∂n(ψρE)δT ds−
∫

Γ

(
~Ac − ¯̄I5~uΩ

)
· ~nMδV ds.

(3.38)

The volume terms are eliminated by setting

∇ΨT ·
(
~Ac − ¯̄I5~uΩ + µktot ~A

vk
)

+∇ ·
(
∇ΨT · µktot ¯̄Dvk

)
+ ΨT ∂Q

∂U = 0 onΩ , (3.39)

which is the PDE that defines the adjoint equations. Equation 3.39 is the system of equations that

the adjoint variables Ψ will satisfy in the volume of the computational domain, subject to boundary

conditions that combine terms from δJ and the surface integrals from Equation 3.39. The following

sections will expand the development of the boundary conditions.

3.1.4 Linearizing Boundary Conditions

In order to ensure that the constraint expressed by the Lagrangian (R(U) = 0) is satisfied, the

variations δU must be restricted to physically realizable solutions. This is achieved by using the

linearized form of the direct problem’s boundary conditions to introduce relationships between the

flow variations at the boundaries. A selection of boundary conditions will now be linearized: flow

tangency, no-slip conditions, adiabatic wall, isothermal wall, and characteristic-based conditions.

Flow Tangency Boundary Condition

In inviscid flow, the boundary condition usually applied at the wall is a flow tangency boundary

condition. The same equations are also valid for symmetry planes:

(~v − ~uΩ) · ~n = 0 on S. (3.40)
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Linearizing this boundary condition with respect to a small perturbation of the surface δS leads to:

(~v − ~uΩ)′ = (~v − ~uΩ) + δ(~v − ~uΩ) + ∂n(~v − ~uΩ)δS

(~n)′ = ~n+ δ~n

(~v − ~uΩ)′ · (~n)′ = {(~v − ~uΩ) + δ~v − δ~uΩ + ∂n(~v − ~uΩ)δS} · (~n+ δ~n)

= (~v − ~uΩ) · δ~n+ δ~v · ~n+ ∂n(~v − ~uΩ)δS · ~n.

(3.41)

In order to simplify the last line of Equation 3.41 we have used Equation 3.40, neglected products

of variations, and applied δ~uΩ = ~0 to apply a constant grid velocity. Rearranging this equation and

applying δ~n = −∇S(δS):

δ~v · ~n = (~v − ~uΩ) · ∇S(δS)− ∂n(~v − ~uΩ)δS · ~n. (3.42)

In the case of a stationary grid,

δ~v · ~n = ~v · ∇S(δS)− ∂n~vδS · ~n. (3.43)

No-Slip Wall Boundary

For a solid wall in viscous flow, a no-slip boundary is usually applied,

~v − ~uΩ = ~0. (3.44)

In hypersonic flow, a slip wall is sometimes used in regimes where rarefied gas is expected. This is

outside the scope of this work. The linearization of the no-slip condition proceeds as follows:

(~v − ~uΩ)′ = (~v − ~uΩ) + δ(~v − ~uΩ) + ∂n(~v − ~uΩ)δS

(~v − ~uΩ)′ − (~v − ~uΩ) = δ~v + ∂n(~v − ~uΩ)δS

δ~v = −∂n(~v − ~uΩ)δS,

(3.45)

where the perturbed velocity (~v − ~uΩ)′ is set to zero in order to satisfy the original boundary

condition, and a constant grid velocity is used: δ~uΩ = 0.

Isothermal Boundary

For an isothermal condition, T = Tw , as so the linearization with respect to a small perturbation

δS is:

T ′ = T + δT + ∂n(T )δS. (3.46)
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Since T ′ = T to satisfy the direct problem boundary condition,

δT = −∂n(T )δS on S. (3.47)

The heat flux term from Equation 3.38 is now:

ψρEµ
2
totcp∂n(δT ) = −ψρEµ2

totcp∂
2
n(T )δS, (3.48)

which will be used when forming the adjoint boundary conditions after these expressions are com-

bined with the variation of the functional.

Constant Heat Flux or Adiabatic Boundary

For a constant heat flux,

∂nT = ~n · ∇T = qn on S, (3.49)

where qn is the known heat flux or 0 for the adiabatic condition. Linearizing this relationship and

assuming that the product of variations are negligible,

(∇T )′ · (~n)′ = [∇T + δ(∇T ) + ∂n(∇T )δS] · (~n+ δ~n)

= ∇T · ~n+∇T · δ~n+ δ(∇T ) · ~n+ ∂2
n(T )δS =

qn
cp

= ∇T · ~n.
(3.50)

This expression is equal to qn because the heat flux must remain constant to satisfy the direct

problem boundary condition. Rearranging and using the relationship δ~n = −∇S(δS) on small

deformations, as well as δ(∇T ) = ∇(δT ):

δ(∇T ) · ~n = −(∇T ) · δ~n− ∂2
n(T )δS on S

∂n(δT ) = ∇T · ∇S(δS)− ∂2
n(T )δS on S.

(3.51)

The heat flux term from Equation 3.38 is now:

ψρEµ
2
totcp∂n(δT ) = ψρEµ

2
totcp

(
∇T · ∇S(δS)− ∂2

n(T )δS
)
. (3.52)

Farfield, Inflow, & Outflow Boundaries

At farfield, inflow, and outflow boundaries the characteristics of the equation must be considered.

In the boundary conditions of the direct problem, the sign of the eigenvalues of the convective

flux Jacobian determines how the solution state is updated. The linearized boundary condition is
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Table 3.1: Linearized Residuals of Fluid Flow Governing Equations

Equation Residual Linearized Form

Steady
RANS

R (U) = ∇ · ~F c

−∇ ·
(
µ1
tot
~F v1 + µ2

tot
~F v2
)
−Q = 0

δR(U,∇U) = ∇ ·
(
~Ac − µktot ~Avk

)
δU

−∇ · ~F vk ∂µ
k
tot

∂U δU

−∇ · µktot ¯̄Dvkδ(∇U)− ∂Q
∂U δU.

Steady
Euler

R (U) = ∇ · ~F c −Q = 0 δR(U,∇U) = ∇ ·
(
~Ac
)
δU − ∂Q

∂U δU .

expressed as:

(W )+ = W∞

(δW )+ = 0.
(3.53)

The way in which this condition is applied depends on the number of characteristics entering or

exiting the flow and what physically realizable variations can occur. The characteristic directions

describe how information flows through the solution, and they result from the diagonalization of the

convective Jacobian. When the flow is locally supersonic in a particular directions, all characteristic

speeds have the same sign. This means that at an inflow, all properties of the flow are specified by the

inflow boundary conditions, while at the outflow the flow properties are determined by the volume

solution. Correspondingly, in the adjoint equation at a supersonic inflow none of the variations

are arbitrary because all flow properties have been specified, and at the outflow all variations are

arbitrary. When the flow is locally subsonic, one of the characteristic speeds of the flow solution is

negative, moving in the opposite direction of the fluid velocity. At an inflow, this means that if ṁ is

prescribed, P is determined by the volume solution and is not directly controlled by the boundary

condition. This is summarized further in Table 3.2.

Summary of Linearized Equations

The linearized form of the direct (fluid flow) problem will be used in the derivation of the adjoint

problem. Preceding sections showed the linearization process, and this section tabulates the resulting

equations and reviews the assumptions used in their derivation. The linearized form of the residual of

the fluid flow governing equations are shown in Table 3.1. The linearization of the RANS equations

is shown in Equation 3.9, and the linearization of the Euler equations is arrived at by removing the

viscous terms. The linearized form of the boundary conditions of the fluid flow governing equations

are shown in Table 3.2. In this table k refers to the number of conservative variables of the problem;

for a 2-dimensional problem k = 4, and for a 3-dimensional problem k = 5. This table includes

the conditions relevant to both the RANS equation and the Euler equations. For example, the flow

tangency condition is applied both at solid walls in Euler flow and at symmetry planes in either
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Table 3.2: Linearized Boundary Conditions for Fluid Flow

Boundary Type Boundary Condition Linearized Form

Flow Tangency (~v − ~uΩ) · ~n = 0 δ~v · ~n = (~v − ~uΩ) · ∇S(δS)− ∂n(~v − ~uΩ)δS · ~n
No-Slip Wall ~v − ~uΩ = ~0 δ~v = −∂n(~v − ~uΩ)δS
Adiabatic Wall ∂nT = ~n · ∇T = 0 ∂n(δT ) = ∇T · ∇S(δS)− ∂2

n(T )δS
Constant qn Wall ∂nT = ~n · ∇T = qn

cp
∂n(δT ) = ∇T · ∇S(δS)− ∂2

n(T )δS

Isothermal Wall T = Tw δT = −∂n(T )δS
Farfield, Inflow,
Outflow

(W )+ = W∞ (δW )+ = 0.

Subsonic Outflow: 1 value prescribed k − 1 variations arbitrary
prescribed pressure P = Pe δP = 0
Subsonic Inflow: k − 1 values prescribed 1 variation arbitrary
ṁ prescribed ρ~v = ρ0~v0 δρ = δ~v = 0
Supersonic Inflow: k values prescribed no variation arbitrary

δρ = δ~v = δP = 0
Supersonic Out-
flow:

0 values prescribed all variations arbitrary

viscous or inviscid flow. The assumptions applied in the linearization of the equations are: negligible

products of variations, small δS (allowing the use of δ~n = −∇S(δS)), δ(∇T ) = ∇(δT ), constant

grid velocity δ~uΩ = ~0, and frozen viscosity (δµ = 0).

3.1.5 Functional Variations

This section will review the variation of a selection of functionals that have been addressed in

literature. The derivation of the adjoint equations requires the variation of the chosen functional.

This section expands the variations of a selection of functionals. A summary table is provided at

the end of this section for reference. Common objective functions for aerospace applications can be

expressed in terms of the surface force ~f , the temperature T , the normal gradient of ∂nT , and the

normal vector ~n. It is therefore convenient to express the functional, and its variation, in terms of

these values. At outflow boundaries, it is convenient to express the functional directly in terms of

the primitive variables V . Including both surface terms and outflow terms:

J =

∫
S

j(~f, T, ∂nT, ~n)ds+

∫
Γe

j(V )ds. (3.54)

Expanding the variation of the functional, keeping the outflow surface undeformed with δΓe = 0,



60 CHAPTER 3. GENERALIZING THE CONTINUOUS ADJOINT METHOD

and observing that δ~n = −∇S(δS) holds for small deformations:89

δJ =

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
nT − 2Hmj

)
δSds+∫

S

(
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS)

)
ds+

∫
Γe

∂j

∂V
δV ds.

(3.55)

Hm is the mean curvature of S, (κ1 +κ2)/2, where κi are curvatures in orthogonal directions on the

surface. The terms multiplying δS will become part of the surface sensitivity, and the remaining

variational terms will be eliminated through the boundary conditions.

Variation of the Functionals on S

To simplify the situation, for now only functionals on the solid wall S will be considered. In this

case, the variation of the functional is now:

δJ =

∫
δS

j(~f, T, ∂nT, ~n)ds+

∫
S

δj(~f, T, ∂nT, ~n)ds. (3.56)

Using the relationships from Equation 3.7, the first term of Equation 3.56 is:∫
δS

j(~f, T, ∂nT, ~n)ds =

∫
S

(∂nj − 2Hmj)δSds

=

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
nT − 2Hmj

)
δSds.

(3.57)

The kernal of the second term from Equation 3.56 can be expanded with the chain rule the

relation from Equation 3.7 for δ~n:

δj(~f, T, ∂nT, ~n) =
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS). (3.58)

Combining the terms from Equation 3.57 and 3.58:

δJ =

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
nT − 2Hmj

)
δSds

+

∫
S

(
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS)

)
ds.

(3.59)

The variations δ ~f , δT , δ(∂nT ), and ∇S(δS) will need to be expanded in terms of the direct

(flow) solution and the surface variation δS. These variations depend on the constraints of the

direct problem, and will vary depending on whether a viscous or inviscid problem is chosen. The

partial derivative terms for a selection of commonly used functionals are listed in Table 3.3. The

choice of deriving the equations in terms of ~f , ∂nT , etc, can be seen from this table to simplify the
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Table 3.3: Partial Derivative Terms for Common Surface Functionals

Functional j ∂j

∂ ~f

∂j
∂T

∂j
∂(∂nT )

∂j
∂~n

CD
1
C∞

 cosα cosβ
sinα cosβ

sinβ

 · ~f 1
C∞

 cosα cosβ
sinα cosβ

sinβ

 0 0 0

CL
1
C∞

 − sinα
cosα

0

 · ~f 1
C∞

 − sinα
cosα

0

 0 0 0

Heat flux c∂nT 0 0 c c∇T

process. In this table, C∞ = 1
2ρ∞v

2
∞Aref where (·)∞ refers to freestream values and Aref is the

reference area used to calculate force coefficients. The angles α and β are the angle of attack and

side-slip angles of the flow. Note that the force-based functionals are all stated in the form j = ~d · ~f .

The terms of the functional kernal j can be expanded as:

~f =
(

¯̄IP − ¯̄σ
)
· ~n

∂nT = ~n · ∇T.
(3.60)

Correspondingly, their variations are:

δ ~f = δ
(

¯̄IP − ¯̄σ
)
· ~n =

(
¯̄IδP − δ ¯̄σ

)
· ~n−

(
¯̄IP − ¯̄σ

)
· ∇S (δS)

δ (∂nT ) = δ (∂nT )

δ~n = −∇S(δS).

(3.61)

From Equation 3.58, the terms on the surface of the adjoint problem become:

δJ =

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
nT − 2Hmj

)
δSds

+

∫
S

(
∂j

∂ ~f
·
((

¯̄IδP − δ ¯̄σ
)
· ~n−

(
¯̄IP − ¯̄σ

)
· ∇S (δS)

))
ds

+

∫
S

(
∂j

∂T
δT +

∂j

∂(∂nT )
(δ (∂nT ))− ∂j

∂~n
· ∇S(δS)

)
ds

=

∫
S

(
∂j

∂ ~f
·
(
∂n ~f −

(
¯̄IP − ¯̄σ

)
· ∇S

))
δS ds

+

∫
S

(
∂j

∂T
∂nT +

∂j

∂(∂nT )

(
∂2
nT
)
− 2Hmj −

∂j

∂~n
· ∇S

)
δS ds

+

∫
S

(
∂j

∂ ~f
·
(

¯̄IδP − δ ¯̄σ
)
· ~n+

∂j

∂T
δT +

∂j

∂(∂nT )
(δ (∂nT ))

)
ds.

(3.62)

This expression will now be simplified for a selection of functionals.
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Expansion of Variation for a Projected Force-Based Functionals

Common force-based functionals are based on a projection of the surface forces in a particular

direction. For example, lift and drag coefficients are composed of the surface forces projected in the

directions perpendicular to and parallel to the direction of fluid flow. Functionals in this form are

convenient for the adjoint formulation as they allow elimination of the surface curvature term Hm.

Using ~d as the direction in which the force is projected:

j = ~d · ~f
∂j

∂ ~f
= ~d ∂j

∂T = 0 ∂j
∂(∂nT ) = 0 ∂j

∂~n = ~0

∂n ~f = ~n · ∇
(
~f
)
.

(3.63)

the variation of the functional becomes:

δJ =

∫
S

(
~d · ∂n ~f − 2Hm

~d · ~f
)
δS ds

+

∫
S

(
~d · δ ~f

)
ds.

(3.64)

Expanding the variation of δ ~f ,

δJ =

∫
S

(
~d · ∂n ~f − 2Hm

~d · ~f
)
δS ds+

∫
S

(
~d · (( ¯̄IδP − δ ¯̄σ) · ~n− ( ¯̄IP − ¯̄σ) · ∇SδS)

)
ds

=

∫
S

(
~d · ∂n ~f − 2Hm

~d · ~f
)
δS − ~d · ( ¯̄IP − ¯̄σ) · ∇S(δS)ds

+

∫
S

(
~d · ( ¯̄IδP − δ ¯̄σ) · ~n

)
ds.

(3.65)

Using integration by parts to simplify some of the terms:

−
∫
S

~d ·
(

¯̄IP − ¯̄σ
)
· ∇S(δS)ds = −

∫
S

∇S ·
[
~d · ( ¯̄IP − ¯̄σ)δS

]
ds +

∫
S

∇S ·
[
~d · ( ¯̄IP − ¯̄σ)

]
δSds.

(3.66)
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Recombining:

δJ =

∫
S

(
~d ·
(

¯̄IδP − δ ¯̄σ
)
· ~n
)
ds

+

∫
S

(
~d · (∂n ~f)− 2Hm(~f · ~d) +∇S ·

[
~d · ( ¯̄IP )

])
δS ds

−
∫
S

∇S ·
[
~d · ( ¯̄IP − δ ¯̄σ)δS

]
ds

=

∫
S

(
~d ·
(

¯̄IδP − δ ¯̄σ
)
· ~n
)
ds

+

∫
S

{
~d · (∂n ~f)− 2Hm(~f · ~d) +∇S ·

[
~d · ( ¯̄IP − ¯̄σ)

]}
δS ds ,

(3.67)

where the above equation applies
∫
S
∇S (·) ds = 0 on a closed surface.

Further simplification:

~d · (∂n ~f)− 2Hm(~f · ~d) +∇S ·
[
~d · ( ¯̄IP − ¯̄σ)

]
= ∇S ·

[
~d · ( ¯̄IP − ¯̄σ)

]
+ ∂n(~d · ~f)− ~f · ∂n~d− 2Hm(~f · ~d)

= ∇S ·
[
~d · ( ¯̄IP − ¯̄σ)

]
+ ∂n(~d · (( ¯̄IP − ¯̄σ) · ~n))− (( ¯̄IP − ¯̄σ) · ~n) · ∂n ~d

− 2Hm[~d · (( ¯̄IP − ¯̄σ) · ~n)]

= ∇ ·
[
~d · ( ¯̄IP − ¯̄σ)

]
− (( ¯̄IP − ¯̄σ) · ~n) · ∂n~d.

(3.68)

The last line has used ∇ · ~q = ∇S · ~q + ∂n(~q · ~n)− 2Hm(~q · ~n).

Substituting the result into δJ :

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
∇ ·
[
~d · ( ¯̄IP − ¯̄σ)

]
− ( ¯̄IP − ¯̄σ) · ~n · ∂n~d

}
δSds

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
∇~d : ( ¯̄IP − ¯̄σ) + ~d · ∇ · ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
δSds

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
∇~d : ( ¯̄IP − ¯̄σ) + ~d · (∇ · ( ¯̄IP − ¯̄σ))− ( ¯̄IP − ¯̄σ) · ~n · ∂n~d

}
δSds.

(3.69)

The momentum equation written on the surface is:

∇ ·
(

¯̄IP − ¯̄σ
)

= ~qρ~v − ∂t(ρ~v). (3.70)

Taking the steady form (∂t(ρ~v) = 0), the variation of the functional is now:

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n~d

}
δSds. (3.71)
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The terms in Equation 3.71 dependent on δP and δ ¯̄σ in the first integral will be eliminated in

later steps of the derivation of the adjoint equations. The terms in the second integral will contribute

to the surface sensitivity.

Expansion of Variation for Heat Flux-Based Functionals

For a functional defined as a linear function of the heat flux,

j = c∂nT, (3.72)

with derivatives as noted in Table 3.3, and eliminating zeroed terms from Equation 3.62

δJ =

∫
S

(
c
(
∂2
nT
)
− 2Hmc∂nT

)
δS ds+

∫
S

c (δ (∂nT )) ds

+

∫
S

−c∇T · ∇S(δS)ds

=

∫
S

(
c
(
∂2
nT
)
− 2Hmc∂nT

)
δS ds+

∫
S

c (δ (∂nT )) ds

−
∫
S

∇S · (c∇TδS)−∇S · (c∇T ) δS ds

=

∫
S

(
c
(
∂2
nT
)
− 2Hmc∂nT +∇S · (c∇T )

)
δS ds+

∫
S

c (δ (∂nT )) ds,

(3.73)

where integration by parts and the identity
∫
S
∇S · (·)ds = 0 on a close surface have been used to

simplify these expressions. Since ∇·~a = ∇S ·~a+ ∂n(~a ·~n)− 2Hm~a ·~n, this expression can be further

simplified:

δJ =

∫
S

(∇ · (c∇T )) δS ds+

∫
S

c (δ (∂nT )) ds. (3.74)

Expansion of Variation for Total Pressure Objective

For integrated total pressure, evaluated at an outflow, in terms of the primitive variables included

in V :

J =

∫
Γ

Ptds

j = P

(
1 +

(γ − 1)|~v|2ρ
2γP

) γ
γ−1

= Pg
γ
γ−1 ,

(3.75)
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Table 3.4: Functional Variations

Functional j = Variation δJ =

Projected
force

~d · ~f
∫
S
~d · ( ¯̄IδP − δ ¯̄σ) · ~nds

+
∫
S

{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
δSds

Heat flux c∂nT
∫
S

(∇ · (c∇T )) δS ds+
∫
S
c (δ (∂nT )) ds

Total
Pressure

Pg
γ
γ−1

g = 1 + (γ−1)|~v|2ρ
2γP

∫
S

(g)
1

γ−1

(
|~v|2
2 δρ+ ρ~v · δ~v +

(
g − |~v|

2ρ
2P

)
δP
)
ds

where a shorthand g =
(

1 + (γ−1)|~v|2ρ
2γP

)
is introduced as shorthand. Expanding ∂j

∂V δV ,

δj = P
γ

γ − 1
g

1
γ−1

(
γ − 1

γP2
|~v|2
)
δρ+ P

γ

γ − 1
g

1
γ−1

(
ρ(γ − 1)

Pγ
~v

)
· δ~v

+ g
1

γ−1

(
g − P γ

γ − 1

γ − 1

2

|~v|2ρ
P 2γ

)
δP

= g
1

γ−1

(
|~v|2

2
δρ+ ρ~v · δ~v +

(
g − |~v|

2ρ

2P

)
δP

)
.

(3.76)

This is similar to the terms found by Papadimitriou56 minimizing total pressure loss for turbo-

machinery applications.

Summary of Functional Variations

Section 3.1.5 has detailed the expansion of a number of a selection of functional variations, including

force-based, heat-flux based, and outflow-based functionals. Table 3.4 summarizes the resulting

equations, which will be used later in the adjoint equation derivations. Many further functionals are

available in the literature; the discussion is restricted to a small number to serve as an example and

provide background for the generalized form that follows in Section 3.2.

3.1.6 Forming the Adjoint Boundary Conditions & Surface Sensitivity

In order to form the adjoint equations, we need to expand the variation of the Lagrangian, ap-

ply known relationships for δU from the linearized boundary conditions of the direct problem, and

eliminate the remaining dependence on δU from the equations to form the system of adjoint equa-

tions. Components of the variation of the Lagrangian have been expanded in Section 3.2.1 and

Section 3.1.2. Each of these sections concludes with summary tables that will be referenced during

the remainder of the derivation.

Taking the combination of the terms from δJ shown in Table 3.4, the relevant linearized bound-

ary condition from Table 3.2, and the adjoint boundary terms from Equation 3.38, produces the

boundary conditions that Ψ should satisfy to eliminate dependence on δU . This section will start
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with the solid wall boundary conditions for a force-based functional under adiabatic, isothermal,

and inviscid conditions. This is followed by the boundary conditions for a heat flux functional with

an isothermal wall, the boundary conditions for outflows and inflows, and finally a summary of the

terms found in this section. This is intended as a review of the derivation of the established adjoint

equations, and lays the groundwork for the generalized form and multi-objective form included in a

later section.

Adjoint Boundary Conditions for a Force-Based Functional and an Adiabatic Boundary

At an adiabatic boundary, the no-slip condition and a zero heat-flux constraint are applied in the

direct problem, and these terms must be linearized and factored into the adjoint equations. From

Table 3.2, the linearized no-slip condition is:

δ~v = −∂n(~v − ~uΩ)δS on S. (3.77)

The linearized adiabatic wall condition is:

∂n(δT ) = ∇T · ∇S(δS)− ∂2
n(T )δS onS. (3.78)

Factoring these into Equation 3.38, and assuming that the volume terms have been eliminated:

δJ = δJ +

∫
Ω

(. . .)dΩ

−
∫
S

ϑ(−∂n(~v − ~uΩ)δS · ~n) + (~ϕ+ ψρE~v)( ¯̄IδP − δ ¯̄σ) · ~n ds

+

∫
S

ψρE(−∂n(~v − ~uΩ)δS) · ¯̄σ · ~n+ ψρEµ
2
totcp(∇T · ∇S(δS)− ∂2

n(T )δS) ds

−
∫
S

~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· (−∂n(~v − ~uΩ)δS) + µ2

totcp∂n(ψρE)δT ds.

(3.79)

Substituting in the variation of a projected-force functional,

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
δSds

−
∫
S

ϑ(−∂n(~v − ~uΩ)δS · ~n) + (~ϕ+ ψρE~v)( ¯̄IδP − δ ¯̄σ) · ~n ds

+

∫
S

ψρE(−∂n(~v − ~uΩ)δS) · ¯̄σ · ~n+ ψρEµ
2
totcp(∇T · ∇S(δS)− ∂2

n(T )δS) ds

−
∫
S

~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· (−∂n(~v − ~uΩ)δS) + µ2

totcp∂n(ψρE)δT ds.

(3.80)

Dependence on δP and δ ¯̄σ by setting ~ϕ = ~d−ψρE~v. The dependence on δT is eliminated by setting

∂n(ψρE) = 0.
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Summarizing the equations for the force-based functional with an adiabatic wall boundary,

∇ΨT ·
(
~Ac − ¯̄I5~uΩ + µktot ~A

vk
)

+∇ ·
(
∇ΨT · µktot ¯̄Dvk

)
+ ΨT ∂Q

∂U = 0 on Ω

~ϕ = ~d− ψρE~v
∂n(ψρE) = 0

on S

ψρE,M<1 = −~ϕ · ~n (γ−1)
γ~v·~n−~uΩ·~n on Γin

{
ψρ

~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
ψρE,Me>1 = 0

on Γout.

(3.81)

The term involving ∇S and the second derivative of temperature from Equation 3.80 should now

be simplified in order to avoid the necessity of evaluating the second derivative. Via a sequence of

manipulations including application of the adiabatic boundary condition, the identity
∫
S
∇S ·(·)ds =

0 on a closed surface, and integration by parts, which can be found expanded in 92,

ψρEµ
2
totcp[∇T · ∇S(δS)− ∂2

n(T )δS]

= −µ2
totcp∇ST · ∇S(ψρE)δS − ψρE∇ · (µ2

totcp∇T )δS.
(3.82)

The energy equation on the surface under no-slip and adiabatic conditions can be expressed as:

∇ · (µ2
totcp∇T ) = P (∇ · ~v − ¯̄σ : ∇~v + ∂t(ρE) + (~qρ~v − ∂t(ρ~v)) · ~v − qρE . (3.83)

Using the steady form, and substituting the previous expressions into Equation 3.80,

δJ =

∫
S

{
~n ·
(
ϑ(∂n(~v − ~uΩ)) + ψρE (−∂n(~v − ~uΩ) · ¯̄σ) +

(
¯̄Σϕ + ¯̄ΣψρE

)
· (∂n(~v − ~uΩ))

)}
δS ds

+

∫
S

{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
δS ds

+

∫
S

{
µ2
totcpψρE

(
∇T · ∇S(δS)− ∂2

n(T )δS
)
− ψρE(P (∇ · ~v)− ¯̄σ : ∇~v + (~qρ~v · ~v − qρE)

}
δS ds ,

(3.84)

The surface sensitivity for a projected-force functional with an adiabatic wall is:

∂J

∂S
≈ δJ

δS
=
{
~n ·
(
ϑ(∂n(~v − ~uΩ)) + ψρE (−∂n(~v − ~uΩ) · ¯̄σ) +

(
¯̄Σϕ + ¯̄ΣψρE

)
· (∂n(~v − ~uΩ))

)}
+
{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
+
{
−µ2

totcp∇S(ψρE) · ∇S(T )− ψρE(P (∇ · ~v)− ¯̄σ : ∇~v + (~qρ~v · ~v − qρE)
}
.

(3.85)
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Adjoint Boundary Conditions for a Force-Based Functional and an Isothermal Bound-

ary

At an isothermal boundary, a similar process is used, this time substituting the linearized isothermal

wall condition, δT = −∂n(T )δS:

δJ =

∫
S

~d · ( ¯̄IδP − δ ¯̄σ) · ~nds+

∫
S

{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ~d

}
δSds

−
∫
S

ϑ(−∂n(~v − ~uΩ)δS · ~n) + (~ϕ+ ψρE~v)( ¯̄IδP − δ ¯̄σ) · ~n ds

+

∫
S

ψρE(−∂n(~v − ~uΩ)δS) · ¯̄σ · ~n+ ψρEµ
2
totcp∂n(δT ) ds

−
∫
S

~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· (−∂n(~v − ~uΩ)δS) + µ2

totcp∂n(ψρE)(−∂n(T )δS) ds.

(3.86)

Once again the dependence on δP and δ ¯̄σ can be eliminated by setting ~ϕ = ~d − ψρE~v. In order to

eliminate dependence on ∂n(δT ), ψρE = 0. Summarizing the equations for a force-based functional

with an isothermal wall:

∇ΨT ·
(
~Ac − ¯̄I5~uΩ + µktot ~A

vk
)

+∇ ·
(
∇ΨT · µktot ¯̄Dvk

)
+ ΨT ∂Q

∂U = 0 on Ω

~ϕ = ~d− ψρE~v
ψρE = 0

on S

ψρE,M<1 = −~ϕ · ~n (γ−1)
γ~v·~n−~uΩ·~n on Γin

{
ψρ

~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
ψρE,Me>1 = 0

on Γout.

(3.87)

Using a similar procedure as for the adiabatic wall,

∂J

∂S
≈ δJ

δS
= {~n · (ϑ(∂n(~v − ~uΩ)) + ψρE (−∂n(~v − ~uΩ) · ¯̄σ))}

+
{
~n ·
((

¯̄Σϕ + ¯̄ΣψρE
)
· (∂n(~v − ~uΩ))

)}
+
{
~d · [~qρ~v] +∇~d : ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n~d

}
+
{
−µ2

totcp∂n(ψρE)∂n(T )
}
.

(3.88)

3.1.7 Summary of the Continuous Adjoint Method Derivation

The derivation of the adjoint equations has, so far, followed a similar method as the derivations avail-

able in literature, where a defined functional is required prior to determining the adjoint boundary
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conditions and the surface sensitivity. This methodology will be slightly re-organized when deriv-

ing the generalized form in following sections. To summarize the equations found in this section,

Table 3.4 shows the variations for a selection of functionals that exist in the literature, Table 3.2

shows the linearized direct problem boundary conditions, and Table 3.1 summarizes the linearized

volume integral from the direct problem. The information from these tables is combined to pro-

vide the governing equations of the adjoint problem in Equation 3.39. The boundary conditions

applied to this PDE under a selection of functionals and boundary conditions are shown in 3.81 and

3.87. The remaining nonzero terms are collected into the surface sensitivty, again for a selection of

circumstances, in 3.85 and 3.88.

The purpose of this section has been to illustrate the established process of deriving the adjoint

equations, such that the reader can better understand the different tactics undertaken in the pro-

ceeding sections. Some of the difficulties encountered when deriving the adjoint equations include a

certain amount of repeated work done when deriving the adjoint formulation for a new functional.

As will be shown in following sections, the functional contributions to the surface sensitivity and to

the boundary conditions can be generalized, lessening the work required for additional functionals

and allowing the adjoint method to address functionals that previously would have been inaccessible.

3.2 Generalized Functionals

Section 3.1 detailed the derivation of the adjoint equations for a selection of specific functionals. This

section will demonstrate the derivation of the adjoint equations for arbitrary functionals, generating

a generalized form that depends on the partial derivatives of the functional. This methodology

broadens the number of functionals that can be addressed and opens the door to addressing func-

tionals that depend on external models rather than being limited to functionals that depend only

on quantities within the flow solution. The derivation for generalized functionals follows a similar

technique, with the derivation diverging at the expansion of the functional variations. The reader

is referred to Table 3.2 and 3.1 for the terms derived in Section 3.1 that will be needed in this

section. Section 3.1.5 detailed the functional variations for a selection of functionals that have been

previously addressed in literature. This section will start from the expansion of arbitrary functional

variations expressed in terms of convenient terms.

In outline, the derivation starts with the application of the divergence theorem and collection

of terms on the boundaries (Section 3.1.3), expansion and simplification of boundary terms (Sec-

tion 3.1.3), elimination of remaining arbitrary δU from the equations (Section 3.2.3), and finally

collection of the terms dependent on δS to form the surface sensitivity (Section 3.2.4). The equa-

tions derived are summarized in Section 3.2.5.
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3.2.1 Functional Variations

The derivation of the adjoint equations requires the variation of the chosen functional. This section

expands the variations of a selection of functionals. A summary table is provided at the end of this

section for reference. For functions defined on solid surfaces, it is convenient to express the functions

in terms of the surface force ~f , the temperature T , the normal gradient of ∂nT , and the normal

vector ~n. At outflow boundaries, it is convenient to express the objective directly in terms of the

primitive variables V . Equation 3.55 is restated here for convenient reference, and its components

will now be expanded. The resulting variations are summarized in Equation 3.99

J =

∫
S

j(~f, T, ∂nT, ~n)ds+

∫
Γe

j(V )ds

δJ =

∫
S

(
∂j

∂ ~f
· ∂n ~f +

∂j

∂T
∂nT +

∂j

∂(∂nT )
∂2
nT − 2Hmj

)
δSds+∫

S

(
∂j

∂ ~f
· δ ~f +

∂j

∂T
δT +

∂j

∂(∂nT )
δ(∂nT )− ∂j

∂~n
· ∇S(δS)

)
ds+

∫
Γe

∂j

∂V
δV ds.

(3.89)

Expansion of Variations for a Generalized Force-Based Functional

A slight modification can be made to the force-based variation to generalize the equation to func-

tionals that cannot be expressed as j = ~d · ~f . In this case, the variation of the functional is:

δJ =

∫
S

(
∂j

∂ ~f
· ∂n ~f − 2Hmj

)
δSds+

∫
S

(
∂j

∂ ~f
· δ ~f
)
ds, (3.90)

where the remainder of the partial derivatives are set to zero. The expansion proceeds similarly

as before, up until the point where the terms involving Hm were eliminated. Instead of being

eliminated, the expressions are simplified as follows:

δJ =

∫
S

(
∂j

∂ ~f
·
(

¯̄IδP − δ ¯̄σ
)
· ~n
)
ds

+

∫
S

{
∂j

∂ ~f
· (∂n ~f)− 2Hm(j) +∇S ·

[
∂j

∂ ~f
· ( ¯̄IP − ¯̄σ)

]}
δS ds.

(3.91)

Performing a simplification similar to Equation 3.68:

∂j

∂ ~f
· (∂n ~f)− 2Hm(j) +∇S ·

[
∂j

∂ ~f
· ( ¯̄IP − ¯̄σ)

]
= ∂j

∂ ~f
· (∂n ~f)− 2Hm(j) +∇S ·

[
∂j

∂ ~f
· ( ¯̄IP − ¯̄σ)

]
+ 2Hm

(
∂j

∂ ~f
− ∂j

∂ ~f

)
· ~f

= ∇ ·
[
∂j

∂ ~f
· ( ¯̄IP − ¯̄σ)

]
− (( ¯̄IP − ¯̄σ) · ~n) · ∂n ∂j∂ ~f + 2Hm

(
∂j

∂ ~f
· ~f − j

)
.

(3.92)

Where ~f = (¯̄IP− ¯̄σ)·~n has been substituted and the expansion for ∇·[~q · ~n] has been used to simplify

at the last line. The additional term 2Hm

(
∂j

∂ ~f
· ~f − j

)
contributes only to the surface sensitivity,
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and is eliminated when j = ∂j

∂ ~f
· ~f . Otherwise the expansion of this variation can proceed exactly as

for the projected-force objective, leading to:

δJ =

∫
S

∂j

∂ ~f
· ( ¯̄IδP − δ ¯̄σ) · ~nds

+

∫
S

{
∂j

∂ ~f
· [~qρ~v − ∂t(ρ~v)] +∇ ∂j

∂ ~f
: ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n

∂j

∂ ~f

}
δSds

+

∫
S

{
2Hm(~f · ∂j

∂ ~f
− j)

}
δSds.

(3.93)

Expansion of Variation for General Heat Flux-Based Functionals

For a more general heat-flux based functional,

j = j(∂nT ), (3.94)

with derivatives noted in Table 3.4, we once again substitute terms into Equation 3.62:

δJ =

∫
S

(
∂j

∂(∂nT )

(
∂2
nT
)
− 2Hmj

)
δS ds+

∫
S

∂j

∂(∂nT )
(δ (∂nT )) ds

+

∫
S

− ∂j

∂(∂nT )
∇T · ∇S(δS)ds

=

∫
S

(
∂j

∂(∂nT )

(
∂2
nT
)
− 2Hmj

)
δS ds+

∫
S

∂j

∂(∂nT )
(δ (∂nT )) ds

−
∫
S

∇S ·
(

∂j

∂(∂nT )
∇TδS

)
−∇S · (c∇T ) δS ds

=

∫
S

(
∂j

∂(∂nT )

(
∂2
nT
)
− 2Hmj +∇S ·

(
∂j

∂(∂nT )
∇T
))

δS ds+

∫
S

∂j

∂(∂nT )
(δ (∂nT )) ds

=

∫
S

(
∂j

∂(∂nT )

(
∂2
nT
)
− 2Hm

∂j

∂(∂nT )
∂nT +∇S ·

(
∂j

∂(∂nT )
∇T
))

δS ds

+

∫
S

2Hm

(
∂j

∂(∂nT )
∂nT − j

)
δSds+

∫
S

∂j

∂(∂nT )
(δ (∂nT )) ds.

(3.95)

Applying the same identities as with previous expansions leads to a simplified form:

δJ =

∫
S

(
∇ ·
(

∂j

∂(∂nT )
∇T
)

+ 2Hm

(
∂j

∂(∂nT )
∂nT − j

))
δS ds+

∫
S

∂j

∂(∂nT )
(δ (∂nT )) ds. (3.96)
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Expansion of Variation for a General Temperature-Based Functional

For a general temperature-based functional where the only non-zero partial derivative is ∂j
∂T ,

δJ =

∫
S

(
∂j

∂T
∂nT − 2Hm

)
δSds+

∫
S

(
∂j

∂T
δT

)
ds. (3.97)

Expansion of Variation for a General Outflow-Based Functional

For a generalized outflow-based functional,

J =

∫
Γ

j(V )ds

δJ =

∫
Γ

∂j

∂V
δV ds+

∫
δΓ

j(V )ds

=

∫
Γ

∂j

∂V
δV ds,

(3.98)

where in the last line the variation of the outflow surface shape is neglected. This applies an

assumption that the outflow boundary will remain undeformed, which is a reasonable assumption

for many applications such as an engine flowpath where the combustor shape may already be frozen.

3.2.2 Summary of Functional Variations

Section 3.2.1 has detailed the expansion of a number of functional variations, including force-based,

heat-flux based, and outflow-based functionals. Combining terms together,

δJ =

∫
Γe

(
∂j

∂ρ
δρ+

∂j

∂~v
· δ~v +

∂j

∂P
δP

)
ds

+

∫
S

(
∂j

∂ ~f
· ( ¯̄IδP − δ ¯̄σ) · ~n+

∂j

∂(∂nT )
(δ (∂nT )) +

∂j

∂T
δT

)
ds

+

∫
S

{
∂j

∂ ~f
· [~qρ~v] +∇ ∂j

∂ ~f
: ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n

∂j

∂ ~f

}
δSds

+

∫
S

{
∇ ·
(

∂j

∂(∂nT )
∇T
)

+
∂j

∂T
∂nT

}
δS ds+

∫
S

{
2Hm

(
~f · ∂j
∂ ~f

+
∂j

∂(∂nT )
∂nT − j

)}
δSds.

(3.99)

Hm is eliminated when the functional is such that ~f · ∂j
∂ ~f

+ ∂j
∂(∂nT )∂nT − j = 0, which is true

for projected forces and linear functions of heat flux. Adjoint functionals are usually chosen such

that Hm is eliminated due to the difficulties that arise when it is necessary to calculate the mean

curvature.
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3.2.3 Forming Generalized Adjoint Boundary Conditions & Surface Sen-

sitivity

This section follows a similar pattern as Section 3.1.3, with the significant difference that in this

section, a generalized form of the functional is used and terms of the surface sensitivity are separated

into components arising from the boundary conditions and functionals respectively.

Taking the combination of the terms from δJ shown in Equation 3.99, the relevant linearized

boundary condition from Table 3.2, and the adjoint boundary terms from Equation 3.38, produces

the boundary conditions that Ψ should satisfy to eliminate dependence on δU . This section will start

with the boundary conditions and sensitivity for an adiabatic boundary, followed by an isothermal

boundary, an inviscid wall, and finally outflow boundaries. The terms derived in this section are

summarized in Table 3.5 and 3.6.

Adjoint Boundary Conditions for An Adiabatic Boundary

Equation 3.80 incorporated the linearized adiabatic and no-slip boundary conditions into Equa-

tion 3.38. Combining this with the surface terms from the expression for δJ in Equation 3.99, in

order to eliminate dependence on δP and δ ¯̄σ:

~ϕ =
∂j

∂ ~f
− ψρE~v. (3.100)

The remaining terms depend on δS and δT , since terms of δ(∂nT ) have been eliminated by the appli-

cation of the boundary condition. The terms of δT can be eliminated by canceling the contribution

from δJ with the contribution from δR:

∂nψρE =
1

cpµ2
tot

∂j

∂T
. (3.101)

All the variations of δU have now been eliminated from the adiabatic boundary, and the remaining

nonzero terms contribute to the surface sensitivity. It is assumed that the functional should have

no terms of heat flux at an adiabatic boundary.
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Adjoint Boundary Conditions for An Isothermal Boundary

At an isothermal boundary, a fixed temperature has been applied. Factoring the linearized isothermal

boundary condition from Table 3.2, 3.38 becomes:

δJ = δJ +

∫
Ω

(. . .)dΩ

−
∫
S

ϑ(−∂n(~v − ~uΩ)δS · ~n) + (~ϕ+ ψρE~v)( ¯̄IδP − δ ¯̄σ) · ~n ds

+

∫
S

ψρE(−∂n(~v − ~uΩ)δS) · ¯̄σ · ~n+ ψρEµ
2
totcp∂n(δT ) ds

−
∫
S

~n ·
(

¯̄Σϕ + ¯̄ΣψρE
)
· (−∂n(~v − ~uΩ)δS) + µ2

totcp∂n(ψρE)(−∂n(T )δS) ds.

(3.102)

Dependence on the force terms can be eliminated once again by Equation 3.100. This time, δT has

been eliminated by application of the boundary conditions, and we eliminate the remaining ∂n(δT )

by:

ψρE = − ∂j

∂(∂nT )

1

cpµ2
tot

. (3.103)

Adjoint Boundary Conditions for Flow Tangency (Inviscid Wall) Boundaries

For the inviscid case, terms of µ disappear and the remaining variations depend only on δP . As

shown by Arian & Salas,62 functions of density can also be used, when the relationships between P

and ρ are included. For the inviscid case, dependence on δP is eliminated by:

~n · ~ϕ =
∂j

∂ ~f
− ψρEvn, (3.104)

where vn is only nonzero for a moving mesh because at the wall vnr = ~n · (~v − ~uΩ) = 0.

Adjoint Boundary Conditions at the Outflow

At an outflow boundary with viscous effects neglected, and an assumption of zero deformation of

the outflow plane,

∂j

∂V
δV −ΨT ~Ac · ~nMδV = 0, (3.105)

where the objective is defined in terms of the primitive variables V at the outflow,

J =

∫
Γe

j(V )ds. (3.106)

When the flow is subsonic, a single characteristic is entering the flow solution. This means that
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wherever the flow is subsonic, the terms of δV are not independent, and one of adjoint variables will

be determined from the volume adjoint solution. The proceeding sections will detail the boundary

conditions for a pressure-based boundary on a static mesh (~uΩ = 0), on a moving mesh, and a

characteristic-value based boundary on a static mesh. For a supersonic boundary, the conditions are

equivalent because all characteristics exit the flow solution, or enter the adjoint solution.

Generalized Outflow Boundary Conditions with Fixed Back Pressure

For a fixed back pressure and subsonic flow, δP = 0. This means that for subsonic flow, we will have

one more variable than equations and one of the adjoint variables will depend on the volume solution.

For supersonic flow δP is arbitrary and we will have the same number of equations as variables,

meaning that all adjoint values will be specified at the boundary for supersonic flow. Expanding

Equation 3.105,


∂j
∂ρ
∂j
∂~v
∂j
∂P


T 

δρ

δ~v

δP

−


ψρvn + ~v · ~ϕvn + ψρEvn

(
~v2

2

)
ρ(~v · ~ϕ)~n+ ρvn~ϕ+ ρψρ~n+ ψρE

(
ρvn~v + ρ( c2

γ−1 + ~v2

2 )~n
)

~ϕ · ~n+ ψρE(vn
γ
γ−1 )


T 

δρ

δ~v

δP

 . (3.107)

Eliminating the dependence on the variations δρ and δ~v leads to:

∂j

∂ρ
−
(
ψρvn + ~v · ~ϕvn + ψρEvn

(
~v2

2

))
= 0

∂j

∂~v
−
(
~n

(
ρ(~v · ~ϕ) + ρψρ + ψρEρ

(
c2

γ − 1
+
~v2

2

))
+ ~ϕ (ρvn) + ~v (ψρEρvn)

)
= ~0.

(3.108)

Solving the first line of Equation 3.108 for ψρ:

ψρ =

(
∂j

∂ρ
− ~v · ~ϕvn − ψρEvn

(
~v2

2

))
1

vn
. (3.109)

Plugging this quantity into the second line of Equation 3.108,

~0 =
∂j

∂~v
− ~n

ρ(~v · ~ϕ) + ρ

(
∂j
∂ρ − ~v · ~ϕvn − ψρEvn

(
~v2

2

))
vn

+ ψρEρ

(
c2

γ − 1
+
~v2

2

)
− ~ϕ (ρvn)− ~v (ψρEρvn)

~0 =
∂j

∂~v
−
(
~n

(
ρ

vn

∂j

∂ρ
+ ψρEρ

(
c2

γ − 1

))
+ ~ϕ (ρvn) + ~v (ψρEρvn)

)
~ϕ(ρvn) =

∂j

∂~v
−
(
~n

(
ρ

vn

∂j

∂ρ
+ ψρEρ

(
c2

γ − 1

))
+ ~v (ψρEρvn)

)
~ϕ =

∂j

∂~v

1

ρvn
− ~n∂j

∂ρ

1

v2
n

+ ψρE

(
−~n c2

vn(γ − 1)
− ~v
)
.

(3.110)
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Plugging this result for ~ϕ into Equation 3.109:

ψρ =

(
∂j

∂ρ
− ~v ·

(
∂j

∂~v

1

ρvn
− ~n∂j

∂ρ

1

v2
n

+ ψρE

(
−~n c2

vn(γ − 1)
− ~v
))

vn − ψρEvn
(
~v2

2

))
1

vn

ψρ = −
(
∂j

∂~v
· ~v 1

ρvn

)
+

(
∂j

∂ρ

2

vn

)
+ ψρE

(
2c2 + ~v2(γ − 1)

2(γ − 1)

)
.

(3.111)

The boundary condition at the outlet in terms of the energy adjoint variable reduces to:

{
ψρ

~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
+

 −
(
∂j
∂~v · ~v

1
ρvn

)
+
(
∂j
∂ρ

2
vn

)(
∂j
∂~v

1
ρvn
− ~n ∂j∂ρ

1
v2
n

)  . (3.112)

The remaining adjoint variable ψρE is interpolated from the volume solution, often by taking the

value at the nearest node in the volume (0th order interpolation). For supersonic flow, δP is unknown,

introducing an additional equation that can be solved to find the value of ψρE |M>1:

ψρE,Me>1 =
γ − 1

v2
n − c2

(
∂j

∂ρ

1

vn
+
∂j

∂P
vn −

∂j

∂~v
· ~n1

ρ

)
. (3.113)

Generalized Outflow-Based Functional With A Moving Mesh

For a moving mesh with nonzero ~uΩ, the equation that must be satisfied is:
∂j
∂ρ
∂j
∂~v
∂j
∂P


T 

δρ

δ~v

δP

− ψT


vnr ρ~nT 0

(vnr)~v ρ
[

¯̄Ivnr + ~v ⊗ ~n
]

~n

φ
a0

(vnr) ρ(vnr)~v
T + ρH~nT vn + 1

a0
(vnr)

 δV = 0. (3.114)

Following the same procedure as used for a stationary mesh,

ψρ =
1

vnr

(
∂j

∂ρ
− vnr~v · ~ϕ− ψρEvnr

φ

a0

)
=

1

vnr

∂j

∂ρ
− ~v · ~ϕ− ψρE

|~v|2

2
,

(3.115)

leading to:

δ~v ·
(
∂j

∂~v
− ρ~nψρ − ρvnr ~ϕ− ρ~n(~ϕ · ~v)− (ρvnr~v + ρH~n)ψρE

)
= δ~v ·

(
∂j

∂~v
− ρ~n

(
1

vnr

∂j

∂ρ
− ~v · ~ϕ− ψρE

|~v|2

2

)
− ρvnr ~ϕ− ρ~n(~ϕ · ~v)− (ρvnr~v + ρH~n)ψρE

)
= δ~v ·

(
∂j

∂~v
− ρ~n

(
1

vnr

∂j

∂ρ
− ψρE

|~v|2

2

)
− ρvnr ~ϕ− (ρvnr~v + ρH~n)ψρE

)
.

(3.116)
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In order to eliminate dependence on δ~v,

~ϕ =
1

ρvnr

(
∂j

∂~v
− ρ~n

vnr

∂j

∂ρ
+ ψρE

(
|~v|2

2
ρ~n− (ρvnr~v + ρH~n)

))
=

1

ρvnr

∂j

∂~v
− ~n

v2
nr

∂j

∂ρ
+ ψρE

(
|~v|2

2

~n

vnr
− ~v −H ~n

vnr

)
=

1

ρvnr

∂j

∂~v
− ~n

v2
nr

∂j

∂ρ
+ ψρE

(
−c2

(γ − 1)vnr
~n− ~v

)
.

(3.117)

Expanding the expression for ψρ:

ψρ =
1

vnr

∂j

∂ρ
− ~v ·

(
1

ρvnr

∂j

∂~v
− ~n

v2
nr

∂j

∂ρ

)
+ ψρE

(
−|~v|

2

2
+

c2vn
(γ − 1)vnr

+ |~v|2
)

=
vnr + vn
v2
nr

∂j

∂ρ
− 1

ρvnr
~v · ∂j

∂~v
+ ψρE

(
|~v|2

2
+

c2vn
(γ − 1)vnr

)
.

(3.118)

Summarizing,

{
ψρ

~ϕ

}
= ψρE

{
2c2vn+~v2vnr(γ−1)

2(γ−1)vnr

−~n c2

vnr(γ−1) − ~v

}
+

−
(
∂j
∂~v · ~v

1
ρvnr

)
+
(
∂j
∂ρ

vnr+vn
v2
nr

)(
∂j
∂~v

1
ρvnr

− ~n ∂j∂ρ
1
v2
nr

)  . (3.119)

The final energy term, found when Me > 1 making δP arbitrary, is:

0 =
∂j

∂P
− ~n · ~ϕ− ψρE(vn +

1

a0
vnr)

=
∂j

∂P
− ~n ·

(
1

ρvnr

∂j

∂~v
− ~n

v2
nr

∂j

∂ρ
+ ψρE

(
−c2

(γ − 1)vnr
~n− ~v

))
− ψρE(vn +

1

a0
vnr)

=
∂j

∂P
− ~n

ρvnr
· ∂j
∂~v

+
1

v2
nr

∂j

∂ρ
+ ψρE

(
−vn −

vnr
γ − 1

+
c2

(γ − 1)vnr
+ vn

)
=

∂j

∂P
− ~n

ρvnr
· ∂j
∂~v

+
1

v2
nr

∂j

∂ρ
+ ψρE

(
c2 − v2

nr

(γ − 1)vnr

)
.

(3.120)

Solving for the energy term,

ψρE,Me>1 =
γ − 1

v2
nr − c2

(
∂j

∂ρ

1

vnr
+
∂j

∂P
vnr −

∂j

∂~v
· ~n1

ρ

)
. (3.121)

When the mesh is stationary vn = vnr, and this reduces to Equation 3.112 through 3.113.

Generalized Outflow-Based Boundary Conditions with Fixed Characteristic Variable

Although the fixed pressure outflow boundary is used in this work, and is the boundary condition

currently available in SU2, the alternative characteristic-based condition can be derived in the same

way and will be presented here. The significance of the characteristic variables is that they result
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from the diagonalization of the Jacobians. This allows us to derive the adjoint boundary conditions

consistent with Riemann conditions in the direct flow problem. Because the supersonic case results

in all characteristics exiting in the direct problem, and all entering in the adjoint problem, the

resulting values of the adjoint variables will be the same. The difference is only relevant for the

subsonic case and inside the boundary layer of viscous problems. Transforming Equation 3.105 to

be in terms of characteristic variables W :

0 = ΨT ~Ac · ~nMLδW − ∂j

∂U

T

MLδW = ΨT ~Ac · ~nMLδW − ∂j

∂V

T

LδW

= δw1

(
−∂j
∂ρ

+
1

2
vn
(
2ψρ + ~v2ψρe + 2~v · ~ϕ

))
+δw2

(
∂j

∂~v
· ~n+ vnρ(~ϕ× ~n+ ψρe~v × ~n)

)
+δw3

(
−2

4c

(
c
∂j

∂~v
· ~n+ c2

∂j

∂P
ρ+

∂j

∂ρ
ρ

)
+

ρ

4c

(
ψρe

(
2c3γ

γ − 1
+ 2c2(

vnγ

γ − 1
) + 2cv2

n

)
+ (vn + c)

(
2c(ϕn) + 2ψρ + ~v2ψρe + 2~v · ~ϕ

)))
+δw4

(
−2

4c

(
−c(∂j

∂~v
· ~n) + c2

∂j

∂P
ρ+

∂j

∂ρ
ρ

)
+
ρ

4c

(
ψρe

(
−2c3γ

γ − 1
+

2c2vnγ

γ − 1
− 2cv2

n

)
+ (vn − c)

(
2ψρ − 2cϕn + ~v2ψρe + 2~v · ~ϕ

)))
.

(3.122)

For the subsonic case, δw4 = 0 because that characteristic variable is associated with the negative

characteristic speed u−c from the direct problem, and so it is positive and exiting the volume in the

adjoint problem. The remaining characteristics are entering the volume in the adjoint problem, and

so their values are arbitrary. Setting the coefficients for the variation of the first three characteristics

to 0 and solving for three of the adjoint variables:

{
ψρ

~ϕ

}
= ψρe

{
cvn
γ−1 + ~v2

2

−~v − ~n c
γ−1

}
+


1

c+vn

(
∂j
∂ρ

c+2vn
vn
− cvn ∂j∂P −

∂j
∂~v ·~v
ρ − c(~v×~n)·( ∂j∂~v×~n)

ρvn

)
~n

c+vn

(
∂j
∂P c−

∂j
∂ρ

1
vn
− ∂j

∂~v · ~n
c
vnρ

)
+ ∂j

∂~v
1
ρvn

 . (3.123)

Applying the expansion of the dot product of the cross products with the normal vector, expanded

in Equation A.6,

{
ψρ

~ϕ

}
= ψρe

{
cvn
γ−1 + ~v2

2

−~v − ~n c
γ−1

}
+


1

c+vn

(
∂j
∂ρ

c+2vn
vn
− cvn ∂j∂P −

∂j
∂~v ·~v
ρ − c((~v· ∂j∂~v )−vn(~n· ∂j∂~v ))

ρvn

)
~n

c+vn

(
∂j
∂P c−

∂j
∂ρ

1
vn
− ∂j

∂~v · ~n
c
vnρ

)
+ ∂j

∂~v
1
ρvn

 . (3.124)
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{
ψρ

~ϕ

}
= ψρe

{
cvn
γ−1 + ~v2

2

−~v − ~n c
γ−1

}
+


∂j
∂~v · ~v

(
−1
ρ

)
+ 1

c+vn

(
∂j
∂ρ

c+2vn
vn
− cvn ∂j∂P +

c(~n· ∂j∂~v )
ρ

)
~n

c+vn

(
∂j
∂P c−

∂j
∂ρ

1
vn
− ∂j

∂~v · ~n
c
vnρ

)
+ ∂j

∂~v
1
ρvn

 . (3.125)

For the supersonic case, all of the characteristics of the adjoint problem are entering the volume,

and so the value of its variation δw4 is now arbitrary. This means that in order to solve for the

adjoint variables the coefficient on this term must be set to zero, which provides an equation we can

now solve for the remaining adjoint variable, ψρe:

ψρe,M>1 =
γ − 1

v2
n − c2

(
∂j

∂ρ

1

vn
+
∂j

∂P
vn −

∂j

∂~v
· ~n1

ρ

)
. (3.126)

Note that the result for the supersonic case is identical regardless of the direct problem boundary

condition because for supersonic flow all characteristics for the adjoint problem are entering the

volume. The supersonic solution for either boundary condition reduces to:


ψρ

~ϕ

ψρe


M>1

=


(
∂j
∂ρ

)
2v2
n+~v2(γ−1)
vn(v2

n−c2) +
(
∂j
∂~v · ~n

)
−(2c2−~v2(γ−1))

(v2
n−c2)ρ +

(
∂j
∂~v · ~v

)
−1
ρvn

+
(
∂j
∂P

)
−vn(2c2+~v2(γ−1))

2(c2−v2
n)(

∂j
∂ρ

)
−~n−~v(γ−1)
v2
n−c2

+
(
∂j
∂~v · ~n

)
~nc2+~vvn(γ−1)
vn(v2

n−c2)ρ +
(
∂j
∂~v

)
1
ρvn

+
(
∂j
∂P

)
~nc2+~vvn(γ−1)

c2−v2
n(

∂j
∂ρ

)
γ−1

vn(v2
n−c2) +

(
∂j
∂~v · ~n

)
1−γ

ρ(v2
n−c2) +

(
∂j
∂P

)
vn(γ−1)
v2
n−c2

. (3.127)

Equation 3.112- 3.127 constitute the generalized outflow boundary conditions for the continuous

adjoint method. As these equations utilize ∂j/∂V , the formulation is independent the choice of

j, and the gradient information can be provided numerically by an external script, or replaced by

analytical expressions for a specific objective. For example, in this work the gradients are provided

by an external script that models the flow downstream of the isolator.

3.2.4 Surface Sensitivity

All arbitrary variations of δU have now been eliminated from the equations - by identifying terms

that are not arbitrary due to the conditions imposed in the direct problem, and by setting values

of Ψ such that the remaining terms are eliminated through the solution of the PDE and boundary

conditions derived in previous sections. The only terms remaining are terms depended on δS, and

this section will expand and simplify those terms to form the surface sensitivity, ∂J
∂S .

Surface Sensitivity Resulting from Linearized Direct Problem Boundary Conditions

Note that the surface terms of the adjoint formulation, before expansion of δJ , shown in Equa-

tion 3.38, do not explicitly contain terms of δS. During the derivation of the boundary conditions

in Section 3.2.3, the application of the linearized boundary conditions introduce terms of δS. The

reader is directed to Table 3.2 to review the linearized boundary conditions. Since terms from the
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Table 3.5: Sensitivity Contributions from Direct Problem Boundary Conditions

Boundary Type Contribution to Surface Sensitivity

Flow Tangency {ϑ∇ · (~v − ~uΩ) +∇(ϑ) · (~v − ~uΩ)}
No-Slip

{
~n ·
(
ϑ(∂n(~v − ~uΩ)) + ψρE (−∂n(~v − ~uΩ) · ¯̄σ) +

(
¯̄Σϕ + ¯̄ΣψρE

)
· (∂n(~v − ~uΩ))

)}
Adiabatic Wall

{
−µ2

totcp∇S(ψρE) · ∇S(T )− ψρE(P (∇ · ~v)− ¯̄σ : ∇~v + (~qρ~v · ~v − qρE)
}

Isothermal Wall
{
−µ2

totcp∂n(ψρE)∂n(T )
}

Table 3.6: Sensitivity Contributions from Functional Variations

Functional Contribution to Surface Sensitivity

Generalized
force-based

{
∂j

∂ ~f
· [~qρ~v − ∂t(ρ~v)] +∇ ∂j

∂ ~f
: ( ¯̄IP − ¯̄σ)− ( ¯̄IP − ¯̄σ) · ~n · ∂n ∂j∂ ~f

}
+
{
2Hm(~f · ∂j

∂ ~f
− j(~f))

}
Generalized
heat flux
(isothermal)

{
∇ ·
(

∂j
∂(∂nT )∇T

)
+ 2Hm

(
∂j

∂(∂nT )∂nT − j(∂nT )
)}

Generalized
temperature
(adiabatic)

{
∂j
∂T ∂nT − 2Hmj(T )

}

functional have been left as arbitrary expressions, we can easily separate the contribution to the

surface sensitivity from the boundary conditions and functionals respectively. Setting j = 0 and ap-

plying the adjoint boundary conditions for each solid wall boundary type results in the expressions

shown in Table 3.5.

Contributions to Surface Sensitivity From Functionals

Surface-based objectives also contribute terms to the surface sensitivity. The details can be found in

the expansion of the various functionals, in Table 3.4, and generalized functionals in Equation 3.99.

The contribution to the surface sensitivity from functionals are shown in Table 3.6. Note that

the heat-flux and temperature-based functionals are only provided for isothermal and adiabatic

conditions respectively.

3.2.5 Summary of Adjoint Equations

The boundary conditions and expressions for surface sensitivity derived in previous sections will

be summarized here for easy reference and comparison. Table 3.7 shows the equations for the

generalized functional, under the limitations that the functional should have ∂j
∂(∂n(T )) for an adiabatic

wall. Note that at inlets and outlets the local Mach number determines how many of the adjoint

variables are specified by the boundary conditions. This is due to the characteristic directions of

the solution. To construct the adjoint equations for some particular objective, one takes the volume
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Table 3.7: Adjoint Boundary Conditions for Generalized Functionals

Boundary
Condition

Adjoint Boundary Condition (Stationary Domain)

Flow tan-
gency

~ϕ · ~n = ∂j

∂ ~f
· ~n− ψρE~v · ~n(

~ϕ · ~n = ∂j

∂ ~f
· ~n
)

Adiabatic
wall

~ϕ = ∂j

∂ ~f
− ψρE~v

∂n(ψρE) = 1
cpµ2

tot

∂j
∂T

(
~ϕ = ∂j

∂ ~f

∂n(ψρE) = 1
cpµ2

tot

∂j
∂T

)

Isothermal
wall

~ϕ = ∂j

∂ ~f
− ψρE~v

ψρE = − ∂j
∂(∂nT )

1
cpµ2

tot

(
~ϕ = ∂j

∂ ~f

ψρE = − ∂j
∂(∂nT )

1
cpµ2

tot

)

Pressure-
based Out-
flow (inviscid
& viscous
neglecting
δµ)

{
ψρ
~ϕ

}
= ψρE

{
2c2vn+~v2vnr(γ−1)

2(γ−1)vnr

−~n c2

vnr(γ−1) − ~v

}
+

 −
(
∂j
∂~v · ~v

1
ρvnr

)
+
(
∂j
∂ρ

vnr+vn
v2
nr

)(
∂j
∂~v

1
ρvnr

− ~n ∂j∂ρ
1
v2
nr

) 
ψρE,Me>1 = γ−1

v2
nr−c2

(
∂j
∂ρ

1
vnr

+ ∂j
∂P vnr −

∂j
∂~v · ~n

1
ρ

)
{
ψρ
~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
+

 −
(
∂j
∂~v · ~v

1
ρvn

)
+
(
∂j
∂ρ

2
vn

)(
∂j
∂~v

1
ρvn
− ~n ∂j∂ρ

1
v2
n

) 
ψρE,Me>1 = γ−1

v2
n−c2

(
∂j
∂ρ

1
vn

+ ∂j
∂P vn −

∂j
∂~v · ~n

1
ρ

)


Inlet ψρE,M<1 = −~ϕ · ~n (γ−1)
γ~v·~n−~uΩ·~n

(
ψρE,M<1 = −~ϕ · ~n (γ−1)

γ~v·~n

)

term shown in Equation 3.39, find the partial derivatives of the functional, and inserts those partial

derivatives into the the appropriate boundary conditions from Table 3.7. After solving the PDE

defined by these equations, one finds the surface sensitivity by summing the appropriate terms from

Table 3.5 and Table 3.6, which may also depend on the partial derivatives. At this point, we have

the adjoint formulation for any number of functionals - assuming that the partial derivative values

can be provided. Following sections will expand on how those terms can be provided for outflow

boundaries.

Implementation of Boundary Conditions

The outflow boundary conditions are imposed as weak boundary conditions. Rather than directly

setting the values of the variables (as in a strong boundary condition), corresponding flux is imposed.

The values will satisfy the boundary conditions at convergence.
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3.3 Exploiting the Generalized Adjoint Method to Address

Previously-Inaccessible Functionals

With the introduction of the generalized form, stated in terms of partial derivatives of the functional,

it is now possible to find the adjoint solution for arbitrary functions defined outside the computational

volume. This arbitrary function is not limited to being an analytical function, or to being a particular

level of fidelity. As long as the required partial derivative quantities can be produced, the adjoint

solution can be found - although it is possible to result in boundary values that will produce a

numerically challenging solution that will not converge easily. This means that the range of functions

that can be addressed by the continuous adjoint method now includes empirical functions, ”black

box“ functions for which an explicit derivative is not available, and any other model where the

appropriate partial derivatives can be produced.

In contrast, established adjoint methods depend on every model used to find the functional

being contained in the adjoint formulation - whether using continuous or discrete methodologies, as

discussed in Section 2.3.3.

The generalized form also facilitates an understanding of what functionals can be addressed

by the adjoint method. Only those functionals with defined partial derivatives that can be used

to cancel terms within the adjoint formulation can be addressed. Previously, this limitation also

implicitly limited the admissible functions to those that are defined as simple, integral, functions on

the boundaries of the computational volume. In other words, limited to functions where the partial

derivatives can be expressed as a function of the flow state on the relevant boundary.

This generalized form has many potential applications. In Chapter 5 and Chapter 6, this method-

ology is applied to a multi-fidelity flowpath where the surface sensitivity on a scramjet inlet is desired

for functions defined based on a low fidelity model of the combustor and nozzle of the engine. In

this case, the partial derivatives are based on perturbing one-dimensional inputs to the low-fidelity

model combined with the Jacobian that transforms between one-dimensionalized quantities and the

local values on the outflow of the CFD volume.

This methodology could also be applied to experimental results—if it is known experimentally

how quickly some QOI changes with respect to the outflow quantities, this information can be

introduced to the adjoint solution to find which portions of the upstream geometry may effect the

QOI. It could also be applied to situations where the external model is a higher-fidelity simulation.

For example, many highly complex simulations of combustors exist, some of which include the adjoint

formulation. Either by using the adjoint result of the higher-fidelity simulation or by perturbing the

inputs if the adjoint method is not available, this methodology could be used to find the surface

sensitivity on the lower-fidelity component, thereby reducing the computational cost necessary to

analyze the entire system.



3.3. EXPLOITING THE GENERALIZED ADJOINT METHOD 83

Figure 3.2: Information transfer occurring at station 3; see also Figure 1.1.

In this work, as a one-dimensional model is used to provide the partial derivative terms, the one-

dimensionalization of the flow quantities must be taken into account. There are several established

options for one-dimensionalization, which come with various advantages and disadvantages. For

any averaging technique, some manipulation of the equations is required in order to transfer the

appropriate partial derivative terms to the solution. The interface where the averaged quantities

and partial derivative terms are transferred is illustrated in Figure 3.2, focusing on one portion of

the flowpath shown in Figure 1.1.

A selection of one-dimensionalization techniques are included in this section. The mass flux aver-

aged and area-averaged techniques have been implemented in SU2 within the generalized boundary

condition. Although only one-dimensionalization is addressed in this section, it should be noted

that in order to find the adjoint of a function of any intermediate quantity (such as distortion, or

other methods of one-dimensionalization), the only step needed to derive the appropriate boundary

conditions is the derivation of the Jacobian between the partial derivatives with respect to primitive

variables and the partial derivatives with respect to the intermediate functions. In the illustrative

cases included, those intermediate functions are averaged flow quantities, but any number of other

values could be used.

3.3.1 One-Dimensionalization

When the objective is expressed as a function of averaged outflow values V̄ ,

J = J(V̄ ). (3.128)
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The variation of the objective becomes:

δJ =
∂J

∂V̄

∫
Γ

∂V̄

∂V
δV ds =

∫
Γ

∂J

∂V̄

∂V̄

∂V
δV ds

=

∫
Γ

∂j

∂V
δV ds,

(3.129)

where the term ∂J
∂V̄

is constant over Γ, and the Jacobian ∂V̄
∂V may vary over the boundary depending

on the method of one-dimensionalization chosen. The last line of Equation 3.129 puts these terms

into the same form used in Equation 3.98. In other words,

∂j

∂V
=
∂J

∂V̄

∂V̄

∂V
. (3.130)

The equations for a generalized outflow functional can then be used directly. For each one - dimen-

sionalization method, we need only to produce the Jacobian ∂V̄
∂V .

Area Averaging

Area averaging offers a simple and straight-forward option. For area-averaged quantities,

V̄ =


∫
ρds∫
vnds∫
Pds


1

Ae

∂V̄

∂V
=

1

Ae


1, 0, 0

~0, ~n, ~0

0, 0, 1

 .

(3.131)

Mass Flux Averaging

Mass flux averaging one-dimensionalizes the flow by using a mass flux weighted average of each of

the flow quantities of interest. This method conserves mass flux.

V̄ =

∫
ρvnV ds∫
ρvnds

=

∫
ρvnV ds

ṁ

ρ̄ =

∫
ρ2vn
ṁ

v̄ =

√∫
ρvn|~v|2
ṁ

P̄ =

∫
ρvnP

ṁ
.

(3.132)
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Langley Distortion Method

The Langley distortion method93–95 provides an additional technique for one-dimensionalization

that has benefits in conserving convective flux quantities and leading to quantifications of distortion.

This methodology is based on Conserved Mass/Momentum/Energy (CMME) methods. This is a

class of averaging methodologies that have the property that the flux of mass, momentum, and

energy computed with the averaged quantities is equivalent to the integral flux values. The Langley

distortion method can be summarized as consisting of area averaged pressure, mass flux averaged

total enthalpy, and mass flux averaged mean kinetic energy. The averaged density and velocity can

be found as functions of these quantities using the equation of state.

P̄ =

∫
Pds

A

h̄ =

∫
ρvnhtds

ṁ
=

∫
ρvn

(
P
ρ

γ
γ−1 + 1

2 |~v|
2
)
ds

ṁ

(ρ|~v|2) =

∫
ρ2vn~v

2ds

ṁ

ρ̄ =
P̄ γ
γ−1 + 1

2
¯(ρ|~ |2)v

h̄

v̄ =

√
(ρ|~v|2)

ρ̄
.

(3.134)

This method conserves the fluxes of mass, kinetic energy, and enthalpy. The Jacobian for this

technique can be found similar to the other one-dimensionalization techniques, although its terms

will be more complex. This method of one-dimensionalization is included as it was used for reference

values in some initial optimization cases.
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3.4 Combinations of Functionals

The adjoint equations form a linear PDE system, and as such the principle of superposition can

be applied. In other words, the linear combination of adjoint solutions for multiple objectives

is equivalent to the adjoint solution for a linear combination of those objectives. In the surface

formulation of the adjoint method for objectives defined on the boundaries this translates to a

superposition of the boundary conditions.

In other words,

F(x1 + x2) = F(x1) + F(x2), (3.135)

where F represents the adjoint PDE, and x1 and x2 represent the two sets of boundary conditions

associated with two objectives. This can be accomplished by summing the contribution to boundary

condition values that are dependent on the functional terms.

Referring to Table 3.7, where the adjoint boundary conditions are expanded in terms of partial

derivatives, this can be seen easily since, for some objective J = w1J1 + w2J2:

∂(w1j1(~f) + w2j2(~f)

∂ ~f
= w1

∂j1

∂ ~f
+ w2

∂j2

∂ ~f
. (3.136)

In order to implement this methodology within SU2, modifications were made to the code struc-

ture to (1) allow lists of objectives where previously a single quantity was allowed, (2) progressively

sum terms in the formation of the adjoint boundary conditions, and (3) store a combined objective in

the output of the direct problem. Although this methodology, and its implementation are relatively

simple, the result is useful to many problems. In the literature, multiple objectives have sometimes

been treated either with the discrete adjoint method96 or by deriving the boundary conditions for a

single combination of objectives.97

The difference in this implementation lies in its generality, being applicable to any combination

of objectives where each individual objective can be addressed by the adjoint method, and in its

flexibility. This method is flexible in that it can address sums of more than two objectives, objectives

defined on multiple surfaces, and more complex functions of these objectives. All of this is done

while producing gradients or surface sensitivities at the approximate cost of finding the sensitivity

of a single function. This is achieved mainly because, from the perspective of the numerical solution

of the adjoint PDE, a combination of objectives has been converted into a single functional.

More complex functions can be addressed by exploiting the chain rule. For example, if a quadratic

penalty function is introduced in order to address a constraint:

min
x
J = J1 + P (J2)

min
x
J = J1 + (max(J2 − J2,lim, 0.0)2),

(3.137)
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the gradient used during the optimization can be found by:

δJ = δJ1 + (2 max(J2 − J2,lim, 0.0)) δJ2, (3.138)

where the weighting value w2 in Equation 3.137 is now replaced by the partial derivative w2 = ∂P
∂J2

.

This means that the implementation of the multi-objective adjoint formulation does not need to be

changed in order to address more complex function - one only needs to modify the application of

the weighting values. This is implemented through the python scripts associated with SU2.
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Chapter 4

Methodology Details

This chapter discusses the implementation of the methodology used in this work. Section 4.1 dis-

cusses Computational Fluid Dynamics methodology including a review of numerical methods based

on existing literature in Section 4.1.2, along with the implementation of methods developed in this

work including generalized outflow-based functionals in Section 4.1.3 and Section 4.1.4. Models

of combustion and expansion implemented for this work and based on literature are discussed in

Section 4.2. Design variables used for optimization problems are discussed in Section 4.3.

4.1 Computational Fluid Dynamics Implementation

The open-source CFD suite SU2, developed in the Aerospace Design Lab at Stanford University, was

used to generate flow solutions and the adjoint solution. SU2 uses the Finite Volume Method (FVM)

to solve partial differential equations on unstructured meshes. Further information is available

in.59,63 In the Reynolds-Averaged-Navier-Stokes (RANS) equations, a turbulence model is used

to account for the Reynolds stresses. The one-equation Spalart-Allmaras86 and two-equation SST

k-omega87 turbulence models are available. The continuous adjoint equations are solved in a similar

fashion, re-using methods implemented to solve partial differential equations and the information

generated by the flow solver.

A new boundary condition and other modifications were implemented in this work in order

to produce the continuous adjoint solution for generalized outflow-based objective functions. The

boundary conditions are discussed at length in Chapter 3, and further implementation details are

discussed in later sections. Here CFD is described in a general manner, and some details of the

implementation of CFD in SU2. Section 4.1.1 discusses the volume discretization used by SU2,

followed by Section 4.1.2 that discusses a selection of numerical methods that can be applied to this

type of problem. Section 4.1.3 and Section 4.1.4 discuss implementation specific to the developments

in this work within the SU2 framework. A number of options were tested during the simulations

89
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Figure 4.1: Dual grid control volume, image credit: Sanchez.98

completed in this work. The JST 2nd order method, discussed in Section 4.1.2, was found through

trial and error to operate the best from the perspective of reliably converging numerical solutions

without a need to modify options such as limiter settings between designs in the optimization

process. The SST turbulence model was used, with settings drawn from previous simulations of

similar geometries.

4.1.1 Discretization

SU2 uses a vertex-based finite volume method (FVM) discretization with a median-dual scheme.

In this scheme, the control volumes are constructed by connecting the midpoints and centroids of

all of the edges and faces of the cells of the initial, or primal, grid that share a specific node.63 A

median-dual control volume is illustrated in Figure 4.1. This is an edge-based structure, where the

fluxes are computed over the edges defined in the primal grid.

To transform the governing equations onto the discretized domain, the governing PDE is inte-

grated over a control volume, and the divergence theorem is applied in order o arrive at a semi-

discretized form. For the RANS equations previously given in Equation 2.34,∫
Ωi

∂U

∂t
dΩ +

∑
j∈N(i)

(F̃ cij + F̃ νkij )∆Sij −Q|Ωi| =
∫

Ωi

∂U

∂t
dΩ +Ri(U) = 0, (4.1)

where N(i) is the set of neighboring nodes connected to node i, |Ωi| is the volume of the dual

control volume, ∆Sij is the area of face associated with the edge than runs between node i and node



4.1. COMPUTATIONAL FLUID DYNAMICS IMPLEMENTATION 91

j, and Ri(U) is the numerical residual at node i. The approximate flux terms F̃ij are numerical

approximations projected in the normal direction along the edge ij, and evaluated at the midpoint

of the edge. Q is a source term, and U is the vector of state variables. The approximation of

the convective and viscous fluxes is determined by the numerical scheme chosen. Some of these

schemes will be discussed in Section 4.1.2. The solution procedure loops over the edges in the

mesh, calculating the numerical fluxes, and then numerically integrates the quantities to produce

the residual Ri(U) at each node point.

Gradients of the flow variables are required at the cell faces in order to compute the terms

needed for the viscous fluxes, and for second order approximations. These are computed using either

Green-Gauss or weighted least-squares. In SU2, several numerical schemes have been implemented,63

including Jameson-Schmidt-Turkel (JST),99 Roe,100 and Lax-Friedrich.101 Section 4.1.2 will discuss

a selection of numerical methods.

4.1.2 Numerical Methods

This section will contain an overview and discussion of numerical schemes used to solve the governing

equations of fluid flow on a discretized domain. This is included to provide the necessary background

for the CFD methods used in this work. The reader is referred to the literature for further detail

on the development of numerical methods,84,99–102 and on their implementation in SU2.59,60,63,103

The governing equations of fluid flow were introduced in Section 2.3.2.

There are many methods available in the discretization of the PDE governing fluid flow. Flux-

splitting,100,102,104 limiters,105 local time-stepping, and multi-grid106–108 methods were developed

to address issues of stability, shock-capturing, and convergence behavior of the numerical PDE

solutions. Some of these methods will be discussed here, and more thorough information is available

in the sources cited.

The notation used in describing numerical schemes employs subscripts that indicate the space

discretization, and superscripts that indicate the solution time. Each numerical scheme is generally

providing a solution for the state variables at the next time step, Un+1
i , in terms of the solution at the

adjacent points and the properties of the discretization: Uni , U
n
i+1, U

n
i−1, f

n
i , f

n
i+1, f

n
i−1,∆t, and ∆x.

The subscript i indicates the current spatial grid point, n indicates the current time, U is the vector

of state variables, f is the flux vector at the indicated point, ∆x is the local spatial grid spacing,

and ∆t is the local time step.

Courant Friedrichs-Lewy109 number, CFL =
∥∥a∆t

∆x

∥∥, is a parameter that is used to control the

speed with which a numerical solution converges, with limitations related to the stability of the

numerical method chosen. In the definition of the CFL number, a is the local convection speed,

which is also the spectral radius of the convective Jacobian. This term arises from stability analysis

of the numerical methods, and becomes a convenient parameter to modify when attempting to

control the stability and convergence speed of the numerical solutions.
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Popular and widely studies schemes of second-order accuracy with a combined space-time dis-

cretization are the Lax-Wendroff family of centered schemes.84 These schemes produce oscillations

around discontinuities, which motivate the use of limiters. The introduction of the Lax-Wendroff

method in 1960101 enabled many future schemes and was an important step in being able to

solve both the Euler and Navier-Stokes equations.84 Prior to discussing Lax-Wendroff second-order

schemes, the first-order Lax-Friedrich scheme will be presented.

Local Time-Stepping

For steady solutions, where time accuracy is not required, it is possible to accelerate convergence by

using local time steps. The benefit of local time-stepping is that areas of the domain that have a

smooth, stable solution can progress quickly by locally increasing the time step, while areas of the

domain that require a smaller time step remain stable. The time step varies as function of the local

propagation speed u+ c.

Lax-Friedrichs Scheme

The Lax-Friedrichs scheme is a first-order scheme that stabilizes the explicit central scheme resulting

from taking the central difference of the first derivative of the flux term. The explicit central scheme

is unstable, and the one-dimensional Lax-Friedrichs scheme stabilizes it by replacing Uni with the

average of the two adjacent points:

Un+1
i =

Uni+1 + Uni−1

2
− τ

2
(fni+1 − fni−1), (4.2)

where τ = ∆t
∆x . This scheme effectively stabilizes the procedure by adding a term proportional to the

second derivative, providing dissipation. The Lax-Friedrichs scheme is conditionally stable, with:

σ =
∆t

∆x
|u+ c| ≤ 1, (4.3)

where σ is the CFL number, and u + c is the spectral radius, or maximum characteristic value, of

the Jacobian Ac.

Lax-Wendroff Family of Schemes

Implicit methods have unconditional linear stability, allowing faster solution times as the CFL num-

ber can now be increased without limit. Nonlinear stability, and accuracy must still be considered,

and in practice leads to a limit on the CFL number. The family of Lax-Wendroff implicit schemes

can be stated as:

[1 + ασδ̄ +
1

2
(βσ2 + γ)δ2]∆Uni = −σδ̄Uni +

1

2
(1− 2α)σ2δ2Uni , (4.4)
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where α, β, and γ are the coefficients that are varied to arrive at the various schemes. This form of

the Lax-Wendroff family of schemes can be found in Hirsch84 Chapter 17.4.2. The CFL number is

indicated by σ, and δ is a difference operator, where δ2 indicates the central second difference, δ̄ is

the average between a forward and backwards difference, and δ is a central difference. The implicit

methods combine time and space discretizations, by contrast to the explicit schemes that introduce

dissipation in order to stabilize the schemes. Lerat110 is credited with developing implicit schemes

of the Lax-Wendroff type. The family of schemes described with Equation 4.4 can be discussed in

terms of the values of the real coefficients α, β, and γ, as well as associated limitations on the CFL

number σ based on stability analysis.

MacCormack

The MacCormack predictor-corrector scheme is a popular member of the Lax-Wendroff family of

schemes, which utilizes operator splitting. Operator splitting speeds up matrix solutions and trans-

forms complex problems into a sequence of simpler problems. This methodology also results in

greater accuracy. MacCormack and Paullay,102 used a finite difference operator with second order

accuracy for inviscid flows with shock waves. Their methodology uses a multi-step process, referred

to as a “predictor-corrector scheme”. They also introduce the use of a local CFL number for greater

efficiency when a local region requires a stricter CFL condition, and so a smaller step size. The

scheme combines first-order forward difference and a first-order backward difference, each of which

are individually unstable for some circumstances, but are stable in combination. The details of this

method can be found in Section 17.2.2 of Hirsch.84

JST

The JST method, developed by Jameson, Schmidt, and Turkel,99 is a finite volume, central scheme

with independent time integration that uses multi-stage Runge-Kutta time stepping. This scheme

was developed for inviscid, transonic flow, and also operates well at other conditions. The JST

scheme introduces dissipative terms, and offers greater stability without the need for splitting. Dis-

sipative terms are constructed from a blend of second and fourth order differences that can be tuned

with coefficient values, and depend on the local gradient of pressure. The one-dimensional version

of this method can be shown to be stable for CFL numbers up to 2.99 Further discussion of this

scheme, and the higher-order dissipation terms can be found in Section 17.3.3 of Hirsch.84

Boundary Conditions

The boundary conditions are divided into physical boundary conditions, which arise from the physical

definition of the problem, and numerical conditions, which apply to the remaining variables that

have not been specified by the physical conditions and must be determined from the numerical

solution. The boundary conditions should be applied in a way that is compatible with the accuracy
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and stability of the numerical scheme applied to the volume of the domain. The number of physical

variables specified at the boundary depends on the propagation of information from the boundary

towards the interior of the solution. The numerical boundary conditions must be compatible with

the specified physical variables as well as with the discretized equations. Specific equations that are

applied at different types of boundaries (solid walls, outflow, and inflow boundaries) were discussed

in Section 3.1.4.

Boundary conditions determined by the direction(s) of propagation within the solution are re-

ferred to as characteristic boundary conditions. The characteristic variables or Riemann invariants

are found from the diagonalization of the convective Jacobian, and represent the quantities that are

invariant along the characteristic directions of the solution. The number of characteristic directions

pointing inwards, flowing into the volume of the solution, determines the number of physical bound-

ary conditions that will be used. The application of compatibility relationships can also be used.

Extrapolation can be used to form the numerical boundary conditions.

4.1.3 Implementation of Generalized Outflow-Based Functionals

Derivations of generalized functionals have been provided in Section 3.2. For the purposes of this

work, the characteristic-based with fixed pressure outflow boundary, assuming a stationary domain

(~uΩ), was implemented. Implementation of further generalized functionals are left for future work.

This section summarizes the modifications made to SU2 that were necessary to implement the adjoint

boundary conditions for a generalized functional based on one-dimensionalized outflow properties.

The methodology used was based on inputting a vector of coefficients to the adjoint solver.

These coefficients are the partial derivatives with respect to averaged outflow quantities. Area aver-

aging and mass-flux averaging Jacobians were implemented within the outflow boundary condition.

Output of one-dimensionalized outflow quantities was also added to the operation of SU2.

Modifications were also made to the python scripts used with SU2 such that these coefficients

could be automatically computed with a python script during optimization routines. The script must

have a default name (“downstream function.py”), and include functions “downstream function( con-

fig, state )” and “downstream gradient( config, state )” that respectively return a scalar value of

the functional and a vector of the gradients with respect to the one-dimensionalized primitive vari-

ables. The variables “config” and “state” are used to store information from the flow solution and

configuration file, and are generated by the python scripts that have been developed with SU2.

One-dimensionalized quantities are stored in the “state” variable.

4.1.4 Implementation of Multi-Objective Functionals

Several modifications were required to implement multiple objectives. These included modifications

to the data structures within SU2 to allow listing of multiple objective functions, as well as loops

over this list where previously a single value had been used. Modifications were also required within
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the expressions of boundary conditions and sensitivity computation. A scaling factor is applied

to force-based functionals to convert between the dimensional projected force and non-dimensional

force coefficients. This was previously applied after solving for the adjoint variables using boundary

conditions based on the dimensional quantities. For the multi-objective formulation to work properly

all scaling factors must be applied prior to calculating the adjoint variables.

4.2 Models of Combustion & Expansion

This section will describe the models used to simulate the flowpath downstream of the isolator. So

far, the objective function has been treated entirely as a black box. In theory that black box could

contain any level of fidelity, as long as the appropriate gradient terms required by Equation 3.123

and 3.126 are accessible. In this work, a relatively low fidelity model has been used to compute

the installed thrust, while still incorporating information about maximum combustor pressure and

a relationship between the capture area and the external drag of the vehicle. This choice of model

allows the application of the methodology developed in Section 3.2 to objectives that are relevant to

the design problem of a hypersonic engine and that were not previously accessible to the continuous

adjoint method, while keeping the computational cost lower. No modification to the methodology

described in Chapter 3 would be required to apply these methods with more advanced models - for

example models including finite rate or non-equilibrium chemistry, flamelet models, more detailed

geometry of the combustion and expansion components, and other details and phenomena that are

outside the scope of this work.

Figure 4.2 illustrates the flow of information during the optimization loop. The design variables

~x are input into both the direct CFD solver and into the external function, which requires the

flow solution to provide the gradients needed for the adjoint formulation and the evaluation of the

objective function defined in the external function. Because this external function is implemented

as a Python script, it makes it possible to obtain the adjoint formulation for new objective functions

without recompiling the SU2 C++ code. The gradients required for the boundary condition are

computed via finite difference within the python script, and passed into the configuration information

for the adjoint simulation.

Area averages or mass-flux weighted averages over the outflow of the isolator were used to link the

CFD model to the one-dimensional or control volume models at station 3 shown in Figure 1.1 and

Figure 3.2. An estimate of the affect on drag of changes in geometry is included, in order to ensure

that we consider only design changes where the increased engine efficiency outweighs increases in

external drag. This is particularly important for the design problem addressed, since it is expected

that reductions in capture area might increase efficiency but also increase the wave drag. Increasing

the ratio between the nozzle exit area and the capture area increases drag as this leads to a greater

external surface area and structural weight. The capture area may change as the inlet geometry
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Figure 4.2: Flow chart showing relation of external script and CFD.

is modified, which affects the external drag. Estimates for drag are calculated from equations for

conceptual design,111 and include lift-induced drag based on estimated additional weight of the

structure due to the engine length and areas, volume wave drag assuming a the area of a truncated

cone based on entrance and nozzle areas, and friction drag. These estimates neglect contributions

from the larger vehicle geometry and drag sources such as control surface gaps and other features

that are outside the scope of this work. The estimated drag described here will be referred to as

Dest. More detailed evaluation of the drag is important for design, but outside the scope of this

work.

At station 3 of the flowpath through the engine, the air enters a combustion chamber. For this

work we will assume that the fuel and air are sufficiently mixed, and use a 1st order model for the

combustion and expansion processes. One method of combustion analysis is to treat the flow as a

one-dimensional channel with heat addition. This follows analysis from Shapiro,112 and has been

used in previous work by Kline32 and by Smart21,22 as well as Heiser & Pratt.80 This method uses

the conservation of mass, momentum, and energy along with the definition of Mach number and the

equation of state for the gas. Shapiro’s analysis includes the derivatives of the ratio of specific heats

γ and the gas constant R, however these will be neglected here.

Following the analysis of Shapiro,112 these equations are derived starting with the equation of
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state,

p = ρRT

log p = log ρ+ logR+ log T

dp

p
=
dρ

ρ
+
dT

T
.

(4.5)

From the definition of Mach number,

dM2

M2
=
dv2

v2
− dT

T
(4.6)

Mass, momentum, and energy conservation give us:

dv

v
= −dρ

ρ
− dA

A

dp

p
+
γM2

2

4Cfdx

D
+
γM2

2

dv2

v2
= 0

dT

T
+
γ − 1

2
M2 dv

2

v2
=

(
1 +

γ − 1

2
M2

)
dTt
Tt

(4.7)

Skin friction has been taken into account in the momentum equation with τw = Cfρv
2 1

2 and wetted

area dAw = 4Adx/D, where D is the hydraulic diameter. Although in a real combustor additional

terms would be required to account for mass addition, for simplicity we will assume that the mass is

added immediately at the beginning of the combustor. The resulting ordinary differential equation

governing the change in Mach number with known area change and total temperature distribution

is:

dM

dx
= M

(
1 + γb−1

2 M2

1−M2

){
−
(

1

A

dA

dx

)
+

1 + γbM
2

2

(
1

Tt

dTt
dx

)}
(4.8)

The area change and the total temperature are now needed in order to find the Mach number

distribution. Note that a singularity exists at M = 1.0, which in the implementation used has been

circumvented by taking a more approximate relation when the Mach number is within a tolerance.

The area change is known from the geometry of the duct, which is specified. The temperature

change is determined by a mixing profile and heat transfer with the wall of the channel dQ. The

skin friction coefficient Cf is assumed to be 0.002. With hpr as the enthalpy of the combustion

products, f as the fuel fraction, and ηb as the combustion efficiency:

dTt = dHt/cp =
1

cp
(hprfηbdτ − dQ) (4.9)
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Figure 4.3: Example output from combustion model & expansion model. Conditions match initial
geometry and Mach 7 flow.

Where the function τ is:

τ(x) =

{
θχ

1 + (θ − 1)χ

}
χ =

x− x3

x4 − x3

(4.10)

This profile is defined by an assumed shape parameter θ, and assumed burner efficiency, ηb. Following

the values used in Heiser & Pratt,80 ηb = 0.8 and θ=5.The ratio of specific heats, γb, is determined

from the temperature and tabulated values calculated using the method of element potentials113

with 9 species. The nozzle of the vehicle is modeled using the same method, with dτ = 0. The

outputs of this model provide the quantities necessary to calculate the stream thrust as well as the

pressure, Mach, and temperature profiles along the combustor and nozzle.

4.2.1 Gas Properties

As gas temperatures increase, the assumption of constant specific heats breaks down. Chemical

reactions may occur, and additional changes to the thermodynamic properties of the gas result

from the addition of fuel and the combustion process. In order to account for these phenomena,

the method of element potentials was used to construct thermochemical tables in the same format

as JANAF tables, for a 6-species mixture of Nitrogen and Oxygen and for a 9-species mixture of

Nitrogen, Oxygen, and Hydrogen. These tables were calculated at a reference pressure of 1e5 Pa.

By calculating the tables beforehand, the computational cost of updating the specfic heat and gas

constant of the fluid is reduced. The assumption applied by this method is that the gas has reached

chemical equilibrium at every point.
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Figure 4.4: Two-dimensional inlet deformed by FFD technique. Initial geometry in black, deformed
geometry in red.

4.3 Design Variables

A Free-Form Deformation114 (FFD) box technique is used to achieve smooth shape deformations in

both the verification cases in Chapter 5 and the optimization problems presented in Chapter 6. The

FFD strategy has become a popular geometry parameterization technique115,116 due to the ability

to define a wide range of smooth deformations with simple parameters. An initial box surrounding

the object to be redesigned (in this work, the compression ramp and cowl lip of a hypersonic inlet)

is parameterized as a Bézier solid, parameterized by Bernstein polynomials Bi:

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)Bmj (v)Bnk (w), (4.11)

where l, m, and n are the orders of the Bernstein polynomials, with one polynomial needed for each

of the three dimensions. The surface of the deformed object is transformed into the parametric

coordinates u, v, w ∈ [0, 1]. Control points are defined on the surface of the box in terms of the

indices i, j, and k and the direction of deformation. When the control points are modified the

box enclosing the geometry is deformed, all the points inside the box inherit a smooth deformation

defined by the mapping in Equation 4.11. An example of FFD control point deformation appears

in Figure 4.4.

The FFD strategy provides the displacement of the boundaries of the computational volume,

and the remaining volume vertices are deformed using a classical sprint method. A stiffness matrix

is defined based on a choice of constant stiffness, stiffness inversely proportional to wall distance in

order to maintain boundary layer integrity in the mesh, or stiffness inversely proportional to the cell

volume in order to preserve areas of higher mesh refinement. Mesh deformations are then computed

by iteratively solving for the deformations that produce force equilibrium.
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4.4 Third-Party Software

In addition to the simulation suite SU2,63 which was developed in the Aerospace Design Lab at

Stanford University and on which the author is a developer, several additional software packages

were used in the course of this research. Of particular note is the optimization algorithm SNOPT

developed by Gill, Murray, and Saunders.82 This routine is accessed through the interface PyOpt.117

Both in the application of optimization routines and in physical models used for combustion and

expansion, Python118 was used. The generation of computational grids was accomplished using

the meshing software Pointwise, and visualization of results including plots of surface sensitivities,

gradient comparisons, and flow fields was accomplished using Tecplot.



Chapter 5

Verification

5.1 Verification Test Case

The verification geometry is a 7.5◦ ramp 40 mm downstream of the inflow of the domain. The flow

conditions are Mach 6.0, 470◦ K total temperature, and 1× 107 per meter Reynolds number.

For this problem we assume a symmetry plane on the upper boundary, and the objectives will

be defined on the right-hand plane of the volume shown in Figure 5.1. This case matches geometry

and flow conditions presented in literature.119 The FFD box used is also shown in Figure 5.1. The

Figure 5.1: Geometry used for verification. Design variables are numbered at the associated FFD
control point.

design variables are the 7 control points labelled 0-6. A sample deformation, with exaggerated scale

for visualization purposes, is shown in Figure 5.2.

101
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Figure 5.2: Exagerated deformation of the 0th variable, with flow solution.
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Figure 5.3: Gradient of area averaged static pressure.

5.2 Verification of Continuous and Discrete Adjoint Gradi-

ents for Static Pressure

Figure 5.3 and Table 5.1 compare the gradient calculated for area-averaged static pressure using

finite difference and adjoint methods. For this function,

J =

∫
Γe
Pds∫

Γe
ds

∂j

∂V
=

{
0, ~0,

1

Ae

}
.

(5.1)

From Figure 5.3 the gradients match well over all the design variables, with the largest absolute

error appearing in the 0th variable, closest to the sharp leading edge of the ramp. Discrepancies

between the continuous adjoint and finite difference are discussed in Section 5.6.
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Table 5.1: Gradient results for area average static pressure.

Var. Finite Differ-
ence (∆x =
1× 10−5)

Continuous
Adjoint

% Error rela-
tive to Finite
Difference

Discrete Ad-
joint

% Error rela-
tive to Finite
Difference

0 3.44 ×103 3.14 ×103 -8.75 % 3.44 ×103 0.04 %
1 2.16 ×103 2.10 ×103 -2.49 % 2.16 ×103 0.04 %
2 1.08 ×103 1.09 ×103 0.77 % 1.08 ×103 0.03 %
3 4.46 ×102 4.62 ×102 3.55 % 4.45 ×102 -0.14 %
4 1.51 ×102 1.64 ×102 8.49 % 1.50 ×102 -0.52 %
5 4.06 ×101 4.69 ×101 15.38 % 3.93 ×101 -3.34 %
6 9.12 ×100 1.07 ×101 17.58 % 7.80 ×100 -14.43 %
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Figure 5.4: Gradient of area-averaged total pressure at the outflow of the computational volume.

5.3 Verification of Continuous and Discrete Adjoint Gradi-

ents for Total Pressure

With area averaged total pressure as the objective function,

J =

∫
Γe
P
(
1 + γ−1

2 M2
) γ
γ−1 ds∫

Γe
ds

=

∫
Γe
P
(

1 + γ−1
2

~v2ρ
γP

) γ
γ−1

ds∫
Γe
ds

∂j

∂V
=

{
γ − 1

2

~v2

γP
,

(γ − 1)ρ

γP
~v, −γ − 1

2

~v2ρ

γP 2
+

(
1 +

γ − 1

2
M2

) γ−1
γ−1

}
d

Ae

, (5.2)

where as a shorthand d = P
(
1 + γ−1

2 M2
) 1
γ−1 . Figure 5.4 and Table 5.2 compare the gradient

calculated for area-averaged total pressure. Once again the largest absolute error is in the 0th

variable close to the ramp leading edge. This function, which depends on density and velocity in

addition to pressure, seems to have slightly higher errors than the gradient of static pressure alone.



104 CHAPTER 5. VERIFICATION

Table 5.2: Gradient results for area-average total pressure

Var. Finite Differ-
ence (∆x =
1× 10−8)

Continuous
Adjoint

% Error rela-
tive to Finite
Difference

Discrete Ad-
joint

% Error rela-
tive to Finite
Difference

0 -1.27 ×107 -1.17 ×107 -7.90 % -1.27 ×107 -0.01 %
1 -7.99 ×106 -7.91 ×106 -1.00 % -7.99 ×106 -0.02 %
2 -4.04 ×106 -4.35 ×106 7.73 % -4.04 ×106 -0.08 %
3 -1.67 ×106 -1.97 ×106 17.85 % -1.67 ×106 -0.33 %
4 -5.71 ×105 -7.30 ×105 27.94 % -5.62 ×105 -1.51 %
5 -1.63 ×105 -2.11 ×105 28.91 % -1.53 ×105 -6.37 %
6 -4.69 ×104 -4.45 ×104 -5.08 % -3.82 ×104 -18.54 %
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Figure 5.5: Gradient of specific installed thrust computed in an external script.

5.4 Verification of Continuous Adjoint Gradients for a Gen-

eralized Objective: Area-Average Based

Figure 5.5 and Table 5.3 compare the gradient calculated for an external function, the specific

installed thrust as described in Section 4.2,

J =
Fun −Dest

ṁ
(5.3)

Both direct and adjoint problems were converged to 9 orders of magnitude reduction in the

density residual. The largest absolute error in the gradient occurs towards the leading edge of the

ramp angle, close to a sharp edge in the solid wall geometry. A further discussion of sources of

error in the continuous adjoint is included in Section 5.6. Despite the discrepancies between the

continuous adjoint and finite difference results, these results indicate that the continuous adjoint

will provide gradients with the correct sign, and proportional magnitude, to appropriately guide a

gradient-based optimization process.
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Table 5.3: Gradient results for specific installed thrust using the generalized adjoint method.

Var. Finite Difference
(∆x = 1× 10−5)

Continuous Adjoint % Error relative to
Finite Difference

0 5.38 ×10−1 4.08 ×10−1 -24.07 %
1 3.58 ×10−1 2.64 ×10−1 -26.44 %
2 1.57 ×10−1 1.08 ×10−1 -31.13 %
3 3.99 ×10−2 2.19 ×10−2 -45.03 %
4 1.41 ×10−3 -4.87 ×10−3 -445.56 %
5 -4.24 ×10−3 -7.89 ×10−3 86.02 %
6 -5.17 ×10−3 -7.02 ×10−3 35.68 %

Table 5.4: Gradient results for the sum of total pressure on the outflow of the CFD volume and
drag coefficient on the surface of a ramp.

Var. ∂CD
∂xi

∂P̄t
∂xi

∂(CD×105+P̄t×10−5)
∂xi

(simultaneous)

∂CD×105

∂xi
+ P̄t×10−5

∂xi
(separate)

0 -1.51140586 ×10−5 -1.48721592 ×107 -1.50232998 ×102 -1.50232998 ×102

1 -4.18860614 ×10−6 -9.36202300 ×106 -9.40390906 ×101 -9.40390906 ×101

2 -1.37971476 ×10−6 -4.39568841 ×106 -4.40948556 ×101 -4.40948556 ×101

3 -4.61739113 ×10−7 -1.58315833 ×106 -1.58777572 ×101 -1.58777572 ×101

4 9.50142780 ×10−8 -4.31543419 ×105 -4.30593276 ×100 -4.30593276 ×100

5 5.42320259 ×10−7 -8.02000234 ×104 -7.47768208 ×10−1 -7.47768208 ×10−1

6 1.14402343 ×10−6 -2.82232556 ×103 8.61790879 ×10−2 8.61790874 ×10−2

5.5 Verification of Multiple Objective Gradients

In order to test the implementation of multiple objective boundary conditions, which superimpose

the weighted boundary conditions for the individual objectives in order to obtain the combined

sensitivity at the same cost as a single objective, we observe the gradients produced by the combined

method, and when the gradients are computed separately. The two objectives are the total pressure

averaged over the outflow boundary, and the drag coefficient on the solid ramp surface. Since the

gradients are of significantly different magnitude, weights of 1 × 10−5 and 1 × 105 are applied to

the total pressure and drag coefficient respectively. The results are tabulated in Table 5.4, and

illustrate that the gradient calculated simultaneously by superimposing boundary conditions and

the sum of the gradients computed separately are identical, out to the 9th digit that differs only

on the 6th variable. The combined adjoint method is of about the same computational cost as a

single-objective evaluation.
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Figure 5.6: Pressure distributions for a 7.5◦ ramp in Mach 6.0 flow, with various values for the JST
1st, 2nd, and 4th order artificial dissipation coefficients.

5.6 Discussion of Discrepancies

All numerical simulations have some level of error—discretization, cancellation, and truncation are

common sources of error, and are often dealt with by increasing the resolution of the mesh, decreasing

step size in the finite difference method, or introducing higher-order methods. This section will

discuss the sources of error that may have led to the discrepancies in gradient evaluations seen in

this chapter.

In supersonic flow, the presence of shocks presents problems for the continuous adjoint method,

since these discontinuous changes in flow quantities result in the solution no longer being continuously

differentiable. For the direct flow problem, accurately capturing the shock and limiting numerical

oscillations of the solution in the neighborhood of the shock are achieved through the use of limiters

that apply first-order numerical methods in the neighborhood of the shock, or in the case of the JST

method introduce artificial dissipation near large gradients of pressure. To illustrate the effect of,

and need for, these methods, the pressure distribution over the ramp case described in Section 5.1 is

shown for the 2nd order JST method in Figure 5.6. In this plot, two pressure contours are shown with

different values used for the artificial dissipation coefficients. Although the shocks are numerically

continuous, avoiding the issues of a discontinuous solution, they may be the source of some error in

the adjoint solution, due to either a lack of convergence of the residuals near the shock in the direct

solution and/or due to reduced solution accuracy from increasing the level of artificial dissipation.

In addition to flow discontinuities, geometry discontinuities should also be considered. The

continuous adjoint method is derived with the assumption that the boundaries are continuously

differentiable, in other words class C1. However, this is often not the case, and sharp edges may

exist on the solid walls and at in internal flow problems at the junctions between inflow or outflow

boundaries and solid walls. Since these points are often coincident with shocks, as is the case with

the ramp case, the effect of sharp edges is illustrated in Figure 5.7(a) and Figure 5.7(b) for a subsonic

bump-in-channel example in Mach 0.5 flow. The surface sensitivity of mass flow rate at the outflow
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(b) Sensivity of mass flow rate for Mach 0.5 bump-in-channel.

of the volume can be seen in Figure 5.7(b) to diverge close to the sharp edges of the geometry that

exist at the edges of the bump. At these points the accuracy of the continuous adjoint degrades due

to cancellation error introduced near values approaching infinity. In practice, neglecting sensitivity

values near sharp edges in the geometry is an effective method of reducing these errors, and this is

the method used in SU2, with an optional parameter that controls the distance from a sharp edge

where the sensitivity will be neglected.

The effect of neglecting these surface sensitivities in the neighborhood of a shock is seen in

Figure 5.7, where sensitivities near the sharp ramp leading edge have been neglected. Although the

inaccuracies introduced by values approaching infinity have been removed from the surface sensitivity

plot, information about the numerical solution near the shock has been lost. In practice, coefficients

controlling sharp edge removal are tuned for the specific case. In the cases in this chapter, the sharp

edge removal coefficient setting ranged between 0.1 and 0.35.

The error in the continuous adjoint may also be attributed to neglecting the effects of volume

mesh deformation in the continuous problem. Kavvadias, Papoutsis-Kiachagias and Gianakoglou120

including terms of the volume mesh deformation into the surface formulation of the continuous
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Figure 5.7: Surface sensitivity of specific installed thrust, with sharp edge removal coefficient of 0.1
for a 7.5◦ ramp in Mach 6 flow.

adjoint has been successful in achieving results closer to the finite difference, and further discuss the

sources of inaccuracy for the surface formulation of the continuous adjoint.



Chapter 6

Results

6.1 Design Problem Description

Section 2.2.2 discussed potential quantities of interest to a scramjet design problem. Some quantities

of interest, such as the total pressure ratio over the inlet, were accessible using methods established

prior to this work. Others, such as the full engine thrust or the maximum pressure in the combustor,

were either not accessible or would have required significant increases in computational cost. A

selection of quantities will be investigated in this section: total pressure ratio over the inlet Ptr,

maximum pressure in the combustor/nozzle system Pmax, total temperature ratio over the engine

flowpath τe = τ10

τ0
, and specific installed thrust Fun−Dest

ṁ . The installed specific thrust incorporates

the uninstalled stream thrust Fun, an estimate of external drag that depends on the capture area

and geometry parameters of the combustor and nozzle, and the mass flow rate ṁ through the engine.

Models used to compute the thrust, estimated external drag, and other quantities downstream of the

hypersonic inlet are described in Section 4.2. The integrated heat flux, IHF , will also be considered.

With the exception of Ptr and IHF , the quantities of interest investigated in this section could not

previously be addressed by the continuous adjoint method. By coupling lower-fidelity methods to

the higher-fidelity CFD and continuous adjoint methods, the sensitivity of the remaining quantities

of interest can be addressed.

In order to start from reasonable performance, and to demonstrate the ability of methods in this

work to improve on already highly-designed inlet geometries, a REST-class inlet geometry will be

used. Scramjet design techniques are introduced in Section 1.2 and Section 2.2.1.

109
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Figure 6.1: REST inlet cut along symmetry plane.

6.2 Two-Dimensional Design Problem

The initial geometry, shown in Figure 6.1 is a Rectangular-to-Elliptical-Shape-Transition (REST)

scramjet inlet that was designed in the Hypersonic Airbreathing Propulsion Branch at NASA Lang-

ley. The associated study is detailed by Ferlemann & Gollan.25,36 This is “case 17” from a parametric

study25 that examined the performance of inlets designed using the REST method with varying pa-

rameters such as lip angle the cross-sectional shapes of the geometry. The REST geometry will be

used as a starting point on top of which we will apply high-fidelity gradient-based optimization. A

two-dimensional version of this geometry generated by taking a symmetry-plane slice will also be

used. REST-class inlets are described further in Section 2.2.1. The design conditions for this inlet

were freestream conditions of M0 = 7, q0 = 82.833 kPa (1730 psf) with a desired compression ratio

of 37.55. These conditions correspond to ≈ 30 km altitude. The Reynolds number is ≈ 5× 106 m.

The meshes were generated using the Pointwise mesh generation software. These meshes are

unstructured, using “t-rex” meshing to create anisotropic cells near the wall. The two-dimensional

viscous mesh has approximately 400, 000 vertices, mesh spacing at the wall of 1 × 10−6 m with a

growth rate of 1.05 in order to obtain a y+ value of less than 1 along the wall surfaces, as shown in

Figure 6.2. The mesh size of approximately 400, 000 vertices was chosen following a mesh refinement

study using structured meshes.

6.2.1 Initial Design Point Performance

Flow Description

In order to confirm that SU2 is able to appropriately simulate this inlet, the results can be compared

to an alternate simulation tool. Figure 6.3 compares surface heat flux and pressure at the surface

of the two-dimensional symmetry plane of the REST-class inlet, using two different CFD software.

Both cases used the same structured mesh of approximately 1.45 million points and elements, with
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an HLLC solver and the SST turbulence model. The mesh spacing normal to the wall is 5 × 10−7

m with a stretching ratio of 1.05, the ratio that defines how quickly the mesh spacing grows going

outwards from the wall. Surface values were indistinguishable using a mesh spacing of 5 × 10−6

m. VULCAN121 is a CFD software developed in the Hypersonic Airbreathing Propulsion Branch at

NASA Langley, and is particularly designed for hypersonic flow simulation. Based on these results,

a wall spacing of 5 × 10−6 meters was used in later results. An unstructured mesh with similar

boundary layer refinement has fewer nodes.

Check of Assumptions

This section will review the modeling assumptions and provide a rough check of their appropriateness

for this case. This includes assumption of ideal gas in the inlet but not the combustor, equilibrium

flow, etc. An ideal gas assumption is applied for the flow through the inlet. This assumption breaks

down at around 800 ◦K. Figure 6.4 illustrates the points in the flow where the temperature exceeds

800 ◦K, where this assumption would lead to potential inaccuracies. In this figure, it is clear that

the boundary layer exceeds this limit over large portions of the surface. Since the boundary layer

affects the shock structures, and has a large impact on the heat flux into the surface, this would

need to be addressed for better accuracy. A potential solution would be to introduce a wall function

with real gas effects to model the boundary layer. Use of wall functions would also decrease the

mesh size required. This is outside the scope of this work.

Another assumption applied is that gas dissociation is negligible. This is checked by plotting

the points where temperature exceeds 2000 ◦K, a rule of thumb limit where Nitrogen is expected to

dissociate. This is shown in Figure 6.5, where only a small area at the stagnation point of the cowl

lip experiences temperatures above this limit. The assumption of no gas dissociation is therefore

reasonable under these circumstances.
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Figure 6.3: Comparison between VULCAN and SU2 results.

Combustor & Nozzle Geometry

The initial geometry is expected to have already high performance. In order to choose appropriate

combustor and nozzle dimensions, a small optimization study with J = −Fun−Destṁ was performed

using an initial flow solution. Four design parameters, the combustor length, nozzle length, combus-

tor exit area, and nozzle exit area were varied to increase the specific installed thrust. The resulting

geometric parameters are a combustor length of 0.9 m, a nozzle length of 2.51 m, combustor exit

area A4 = 0.073 m, and nozzle exit area of A10 = 0.394 m. These values result in area ratios of
A0

A10
= 3.06 and A4

A3
= 1.79.
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Figure 6.4: Contours of temperature with T > 800 ◦K highlighted.

6.2.2 Sensitivity Comparison

Prior to observing the optimization results, it is informative to compare the surface sensitivity

between the different objectives. Figure 6.6 compares the surface sensitivity for each of the objectives.

Our definition of surface sensitivity is the partial derivative of a given quantity of interest with respect

to an infinitesimal change in the surface shape in the normal direction, at any point on the surface.

Over much of the ramp, the sensitivities are similar, however differences appear near the nose of the

compression ramp, the nose of the cowl, and in the isolator in the neighborhood of shock reflections.

The total pressure and thrust objectives have similar trends throughout, with some differences in

relative magnitude: thrust seems to have a greater sensitivity to the nose geometry than to the

cowl geometry, while the total pressure has approximately the same sensitivity to the shape of these

two locations. Although sensitivity signs match at the nose, when considering the penalty on total

temperature the sign changes within the isolator and at the cowl nose, indicating a location where

changes to the total temperature would overpower an increase to thrust. When the objective with

or without a penalty disagree on the sign of the sensitivity this means that a design change that

increases the thrust will bring the design closer to thermal choking, or to exceeding the structural

limits of the combustor. Areas where the sensitivities share the same sign indicate areas where a

design change can be made that increases the thrust without increasing the risk of thermal unstart.

Modifying the weighting value placed on the penalty function may alter this relationship. The

relative signs of the sensitivity in the isolator indicate that a complex relationship exists between

the different objective functions at shock reflection points, which are aligned with the peaks in

sensitivity in this area. Based on these sensitivities, we might expect that the total pressure and
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Figure 6.5: Contours of temperature with T > 800◦K highlighted.

installed thrust will be loosely correlated, and that there will be an inverse relationship with Pmax.

This plot also shows that while an increase in τe should increase the thrust, for some geometry

variations the thrust can be increased without increasing τe significantly.

When comparing the −Ptr and Pmax-penalized sensitivity contours, it is intuitively expected that

these quantities should have opposing signs, since an increase of total pressure should be associated

with an increase of pressure in the combustor. This is the case over the majority of the geometry,

with exceptions at the cowl and some areas on the interior lower wall downstream of the cowl lip,

up until the shock reflection point occurring partway down the isolator (at ≈ x = 1.1).

In a practical setting, this sensitivity information could be used both to make improvements to

the design (as demonstrated in the optimization studies included in Section 6.2.3 - Section 6.3),

and to augment designer intuition about which areas of the geometry are most critical and about

what relationships exist between the different quantities of interest. In this example, an engineer

might want to increase the thrust but knows that they are close to a limit τe—using this sensitivity

information, they would first make modifications to the nose of the inlet knowing that modifications

to this region are less likely to detrimentally affect τe. These sensitivities can also be used to choose

an appropriate model—if there were no regions where the Pt and the specific installed thrust were

perfectly aligned, a designer might choose not to include the more complicated model required to

evaluate the thrust. In this case, where differences are seen between total pressure and specific

installed thrust, it would be expected to see a difference in the optimization results, which will

be seen in Section 6.2.3. An engineer attempting to explain discrepancies between CFD and wind

tunnel results might first investigate the regions near the nose, the cowl lip, and the shock reflection

points in the isolator since these high-sensitivity areas are locations where small errors in the physical
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Figure 6.6: Surface sensitivity on the ramp and cowl surfaces. Sensitivities are scaled by the
integrated norm of surface sensitivity to aid comparison, and smoothed by a moving average.

geometry would have a large effect on performance. During CFD simulations, high-sensitivity regions

can also be used to inform mesh refinement, increasing the accuracy of the simulation while limiting

the increase in computational cost.

6.2.3 Single-objective Design Results

In this section, the results of maximizing total pressure recovery Ptr will be compared to using the

generalized outflow boundary conditions presented in Section 3.2.1 to maximize the specific installed

thrust, which depends on an external model of the combustor and nozzle. A penalty on the total

temperature ratio τe is then added, followed by a penalty on the maximum pressure in the combustor

Pmax. These results were evaluated at Mach 7, dynamic pressure of 82.83 kPa.

Each of these functions were used with the pyOpt SNOPT optimization routine,82,117,118 using

the methodology discussed in this work with the continuous adjoint method to produce gradients.

Relative changes in performance metrics are shown in Table 6.1. All optimization problems are
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Table 6.1: Relative Performance of Optimization Results

Objective Function Fun−Dest
ṁ Pt3 ṁ τe Pmax

J = −Pt3 -0.57% +1.86% +0.29% -0.08% +1.32%

J = −Fun−Destṁ +17.08% +6.54% +1.09% +0.07% +0.06%

J = −Fun−Destṁ +
1× 102(max(τe − τlim, 0))2 +24.47% -2.54% +2.22% -0.20% +1.72%

J = −Fun−Destṁ +

1× 102
(

max
(
τe−τlim
τlim

, 0
))4

+

1× 105
(

max
(
Pmax−Plim

Plim
, 0
))4

-10.00% +0.45% -0.92% +0.10% -0.94%

unconstrained with the exception of bounds on the design variables:

minimize J(~x)

with respect to ~x ∈ Rn

subject to −0.02 ≤ xi ≤ 0.02, i = 1, ..., n

. (6.1)

In some cases a constraint is introduced as a penalty function, which is included in the objective

function J , as listed in Table 6.1.

Figure 6.7: Design variable numbers for two-dimensional cases.

The design variables are Free-Form Deformation box points, illustrated in Figure 6.7. Compar-

ing the performance metric results, it becomes clear that although total pressure increase may be

correlated with increased thrust in some cases and in the surface sensitivity at the initial point, it

is not a guarantee that an increase in Ptr will always lead to an increase in specific installed thrust.

This is due to the fact that the thrust is related not just to the inlet efficiency (indicated by a high
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Pt3/Pt0), but also to ṁ and combustor efficiency. Pmax always increased when not controlled by a

penalty function, which would increase the required structural weight of the combustor. The most

complex case, imposing penalties on both the total temperature ratio and maximum pressure, and

choosing limits such that these constraints would be active at the initial point leads to a design that

has lower thrust, but succeeds in lowering Pmax and τe. The installed thrust is still positive in this

case.

Figure 6.8 compares the geometry changes corresponding to the results in Table 6.1. We can

see that there are subtle differences in the geometry depending on which objective is chosen. The

maximum difference, taken as max(
√

∆x2 + ∆y2) over the entire surface geometry, is O
(
1× 10−3

)
m for each of the optimization cases, which is larger than manufacturing tolerances, although still

presenting potential difficulties for manufacturing these engines as the resulting change in perfor-

mance is O(10)%. As an example of manufacturing tolerances, some machining services122 offer

tolerances of ten thousandths of an inch, or 2× 10−5 m, and tighter tolerances are possible.
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Figure 6.8: Optimizer results comparing varying objective functions.

These results reflect the need for high-fidelity tools that can discern between these slightly differ-

ent geometries as performance changes on the order of 10% as seen in Table 6.1 may not be shown

by lower fidelity methods, especially due to the influence of viscous effects. A lower fidelity mesh, or

the use of an inviscid model, would likely either not reveal the performance difference of such small

changes, or predict them inaccurately. In order to further investigate the performance differences
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Figure 6.9: Exaggerated deformations associated with the specific installed thrust and τe penalty
cases of Table 6.1.

Table 6.2: Relative Performance of Optimization Results - Additional Iterations

Objective Function Fun−Dest
ṁ Pt3 ṁ τe Pmax

J = −Fun−Destṁ 26.73% -2.52% 2.15% -0.18% 2.83%

J = −Fun−Destṁ +
1× 102(max(τe − τlim, 0))2 27.77% -5.79% 2.64% -0.30% 3.11%

of these geometries, an evaluation of an empirical correlation for unstart developed by Sullins72 is

included in Section 6.2.3.

Constraining the total temperature ratio (τe) with a penalty function and weighting factor of 10

as shown in Table 6.1 initially led to an increase in thrust greater than that when optimizing for

the thrust alone, however on closer inspection this was due to the un-penalized case terminating

prematurely and the penalty having only a small effect on the result. The associated geometry

changes relative to the initial geometry are exaggerated in Figure 6.9, which shows that the resulting

geometries from the 2nd and 3rd rows of Table 6.1 are similar to each other, with slight differences

in the change to the ramp shape and cowl location. Additional design iterations for each of these

two cases were run, starting from the final geometry associated with the results of Table 6.1, and

using an updated version of the simulation code that is discussed in Appendix B.1. It can be seen in

Table 6.2 and Figure 6.10 that these two cases approach each other after additional design iterations,

which indicates that the presence of the penalty has not had a large effect on the outcome. A larger

weight on the τe penalty would likely result in a lower thrust as well as lower τe, similar to what is

seen when a heavily weighted penalty is applied to the value of Pmax in the last row of Table 6.1.

Empirically-Based Unstart Prediction

It is informative to observe whether the resulting inlet designs are relatively more or less likely to

experience unstart. Although detailed prediction of unstart is outside the scope of this work, we

can use empirical correlations to observe the relative capability of each of the inlets designed in this
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Figure 6.10: Exaggerated deformations associated with additional design iterations for the two cases
shown inTable 6.2.

Table 6.3: Estimate of maximum backpressure that could be contained by the isolator.

Optimization Case P2 [Pa] M2 Reθ [m] P3 estimate

Initial Geometry 1.8327 ×104 4.1672 4.3208 ×104 1.2660 ×105

Pt3 1.8210 ×104 4.2654 4.5976 ×104 1.2785 ×105

Dest−Fun
ṁ 1.8496 ×104 4.1197 4.2245 ×104 1.2716 ×105

Dest−Fun
ṁ + penalty on τe 1.9236 ×104 4.0782 4.4838 ×104 1.3044 ×105

Dest−Fun
ṁ + penalty on τe & Pmax 1.8004 ×104 4.2015 4.2588 ×104 1.2525 ×105

section. Sullins72 provides a correlation for the pressure rise through rectangular ducts, which is

discussed further in Section 2.1.2. Equation 2.4 predicts the pressure rise that would occur over a

back-pressured isolator of a given length. The quantities in this correlation were not used directly

in the objective functions, and the inlet was assumed to be un-back-pressured. The resulting P3,

shown in Table 6.3, represents the maximum back pressure that one would expect the isolator to

contain.

To check the back pressure that might occur, the combustor-nozzle model from Section 4.2 was

run in reverse, using the freestream pressure and the exit Mach number achieved from the forward

flow on the intial geometry as the initial conditions. The pressure at station 3 predicted through

this method on the initial design is 2.7885 × 104 Pa, an order of magnitude less than pressure rise

that could be contained by the isolator. In other words, it is reasonable to assume that the bulk

flow would be supersonic throughout.

A lower P3 estimate corresponds to reduced ability to prevent unstart, and by this measure only

the case with a heavy penalty on the maximum pressure in the combustor has resulted in a larger

risk of unstart. The thermal penalty would be expected to reduce the risk of unstart, and while

this represents a different mechanism for unstart, the associated case has the lowest τe and also

resulted in the largest P3 estimate. In other words, the τe-penalized case has the least chance of

exceeding both the Rayleigh and Korkegi limits. Further observing the changes in τe in Table 6.1
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and comparing to the resulting P3 in Table 6.3 reveals that the largest increase in τe (greatest risk of

thermal unstart) is also associated with the smallest P3 estimate. Both of the remaining two cases

raise the P3 estimate relative to the initial point, to a greater extent for the case that reduces τe.

Further study would be required to expand on a correlation between these two different mechanisms

of unstart, which are described in more detail in Section 2.1.2. Explicitly including this estimate of

the inlet’s ability to reject pressure disturbances would be reasonable to include in future studies,

although further development would be required to include values from the volume solution rather

than the outflow.

6.2.4 Multi-objective Design Results: Low Fidelity Mesh

This optimization study will exercise the new implemented capability of addressing multiple ob-

jectives. This could be accomplished by evaluating the gradients separately, however due to the

linear nature of the adjoint formulation, it is possible to find the gradient of a linear combination

of objectives with a single adjoint evaluation, by superimposing the relevant boundary conditions.

The flow conditions for this study are slightly different than the other cases. Following an investi-

gation aimed at improving the performance of REST-class inlets through manual design changes by

Gollan,36 which utilize an array of engines installed on a planar vehicle, the flow conditions used are

associated with the conditions downstream of a shock on a forebody angled at 6◦ with free-stream

Mach of 8, and dynamic pressure of 48 kPa. The conditions downstream of this shock are used as

the inflow conditions to the CFD volume.

The objective function is:

J = w1

∫
S

−k∇T · ~nds+ w2
Dest − Fun

ṁ
, (6.2)

where k is the thermal conductivity at ~n is the normal vector on the surface. The weighting values,

w1 and w2, are varied to control whether the design favors heat flux over thrust or vice versa. The

heat flux is integrated over the solid walls included in the CFD volume, including the compression

ramp, inner and outer surfaces of the cowl, and the interior surface of the isolator.

Figure 6.11 illustrates the results of varying the objective weights, showing the integrated heat

flux and specific installed thrust values as well as the resulting geometries at a selection of points.

The results are also summarized in Table 6.4. When w2 = 0, a single-objective problem to reduce

heat flux only, it is possible to significantly reduce the heat flux, however the installed thrust is

significantly reduced as well. Comparing the results for w1 = 0 and a small ratio of w2/w1, a

relatively small change in the heat flux results in a relatively large change in installed thrust.

It is expected that as the surface heat flux decreases, the boundary layers should thicken and

overall reduce the thrust produced by the engine. These results are consistent with that concept- it

is possible to reduce the heat flux, and for some cases the thrust is still greater than drag, however
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Figure 6.11: Results of varying w1 and w2 in J = w1

∫
S
−k∇T · ~nds+ w2

Dest−Fun
ṁ .

Table 6.4: Summary of Multi-Objective Results With Lower-Fidelity Mesh

w1/w2

∫
S
−k∇T · ~nds [J/s] Fun−Dest

ṁ [m/s]

0 / 1 865088.1104629348 33.9911764662
1 / 0.5 844393.606078 13.6214411258
1 / 0.05 802825.778907 -59.5060821488
1 / 0.005 776151.528706 -200.799249389

1 / 0 700704.1 -420.506072727

as the heat flux is reduced further the thrust produced by the engine is no longer able to overcome

the drag. The engine performance also suffers from decreasing the capture area. Qualitatively,

designs with less heat flux have a more blunted nose, forming an expansion region and causing

the leading shock to miss the cowl lip by a wide margin. These results trace a Pareto frontier,

illustrating trade-offs between two objectives. More detail on Pareto frontiers and their application

in multi-disciplinary and multi-objective design application is provided by Huang.123

6.2.5 Multi-objective Design Results: High Fidelity Mesh

The low-fidelity case in Section 6.2.4 provides interesting trends in geometry changes, demonstrates

the multi-objective capabilities and a trade-off between heat flux and thrust. The low-fidelity results

demonstrate that this method of gradient evaluation is able to be used successfully with a multi-

objective optimization problem, and that there is a trade-off between the heat flux and the thrust of
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Table 6.5: Summary of Multi-Objective Results on Higher-Fidelity Mesh J = w1

∫
S
−k∇T · ~nds +

w2
Dest−Fun

ṁ

w1/w2

∫
S
−k∇T · ~nds [J/s] Fun−Dest

ṁ [m/s]

0.5/0.5 1046154.38 31.342070619
0.95/0.05 1010273.52 22.020443739

0.995/0.005 983619.63 27.5286437628

the vehicle. However, at the lower-fidelity level of simulation the heat flux is not captured accurately.

The higher fidelity mesh will now be used to check that similar trends result at higher accuracy,

although a smaller number of cases will be used. The same objective function and flow conditions

are used. Figure 6.12 illustrates the results of varying the objective weights, showing the percent
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Figure 6.12: Results of varying w1 and w2 in J = w1

∫
S
−k∇T · ~nds+ w2

Dest−Fun
ṁ .

change in integrated heat flux and specific installed thrust values. Resulting geometries at a selection

of points are shown in Figure 6.13. The results are also summarized in Table 6.5. As mentioned

in Section 6.2.4, it is expected that as the surface heat flux decreases the thrust should decrease as

well. These results are generally consistent with that observation, showing a trade-off where more

heavily weighting the thrust results in designs where the thrust is higher but the heat flux has also

undesirably increased. It should also be noted that, possibly due to choosing an off-design flow

condition, it is possible to simultaneously improve the heat flux and the thrust relative to the initial

point. This was not shown by the lower fidelity results in Section 6.2.4, where the heat flux was

under-predicted.

At higher fidelity, smaller deformations have resulted as compared to the lower fidelity results.

This is partially due to grid deformation limitations; taking a smaller step size results in more easily
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Figure 6.13: Geometry changes with different objective weights in Equation 6.2

deforming the larger mesh, and also results in the optimizer settling on a solution closer to the initial

point. In addition, the finer mesh, with higher accuracy, more closely matches the high performance

of the initial geometry. Despite the small deformations, the trend is similar—the ramp of the inlet

deforms down making the ramp more convex as the weight on the heat flux is increased, and a

trade-off between heat flux and thrust can be seen. The cowl is deflected downwards to increase ṁ

and bring the cowl lip closer to the new location of the leading shock.

6.2.6 Two-Dimensional Optimization With Heat Flux Penalty

Although modifying weights to produce the Pareto front shown in Section 6.2.5 illustrates interest-

ing trends, a more practical case from a design perspective is to constrain some quantities while

minimizing another. In the methodology implemented in this work, using a penalty on a functional

rather than a weighted sum of functionals is in fact very similar. By using a penalty function, the

constrained problem can proceed similarly to a weighted sum, with the computation of the gradients

being done efficiently as described in Section 3.4.

The optimization problem used in this two-dimensional case, starts from the same geometry

as used in previous cases. The model for the specific installed thrust, τe, and Pmax is also the

same, however the input values are now the mass flux averaged quantities rather than area averaged
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Table 6.6: Penalty settings for two-dimensional optimization problem.

Quantity Upper Limit Weighting Value Initial Point

IHF 6.16× 105 1× 10−4 Active: ≈ 0.5% above limit
Pmax 1.2× 105 1× 10−4 Inactive
τe 2.055 1× 104 Inactive

quantities. To state the optimizer goals:

min
x
J(~x) = −Fun −Dest

ṁ

subject to: ~xl ≤ ~x ≤ ~xu,

IHF ≤ IHFlim,

Pmax ≤ Plim,

τe ≤ τlim.

(6.3)

IHF =
∫
k∇Tds is the integrated heat flux (per meter) over the wetted surfaces included in the

CFD volume. The limits in the integrated heat flux, the maximum pressure in the combustor (Pmax),

and the engine total temperature ratio (τe) are applied as quadratic penalty functions, resulting in

a new objective function J ′ and NLP:

min
x
J ′(~x) = −Fun −Dest

ṁ
+ 10−4 (max(IHF − IHFlim, 0.0))

2

+ 10−4 (max(Pmax − Plim, 0.0))
2

+ 104 (max(τe − τlim, 0.0))
2

subject to: ~xl ≤ ~x ≤ ~xu.

(6.4)

Constraint limits and weighting values are taken from the initial point design, with each of the limits

chosen to be close to the initial value and the weights chosen such that a 10% deviation from the

limit would result in a value of the penalty function of ≈ O(10). This results in the values shown in

Table 6.6.

The design variables in this case are FFD box control points, as in Section 6.2.5 and Section 6.2.3.

However, the box has been modified with fewer degrees of freedom and larger coverage of the

geometry. These design variables are shown in Figure 6.14.

The SNOPT82 algorithm using PyOpt117 was used. After running the optimization with an

initial, small, major step size limit of 1×10−4 for 7 major steps, moderate improvement was seen. As

the optimization process was proceeding well at this point, the case was restarted from the final design

for an additional 5 major iterations, with a larger major step size limit of 1×10−3. The results shown

concatenate the results, and the values in Table 6.7 show the final results. Figure 6.15 illustrates the
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Figure 6.14: Design Variables for 2D Optimization with Heat Flux Constraint.

Table 6.7: Change in Performance Metrics for 2D Optimization with Heat Flux Penalty

J ′ Fun−Dest
ṁ Pt3 ṁ IHF − IHFlim τe Pmax

−148.94% +0.178% −0.718% +0.534% −85.68% −0.054% +0.186%

percent change in the augmented objective function J ′. Figure 6.16 illustrates the percent changes in

the components of this function, the specific installed thrust (J) and the difference of the integrated

heat flux and its limit (IHF − IHFlim). The integrated heat flux in the final design is within 0.07%

of the desired limit, while the specific installed thrust has slightly improved. Figure 6.17 illustrates

the change in geometry associated with this optimization case. As the geometry changes are small,

Figure 6.18 shows the same geometry change, with the difference exaggerated by a factor of 25. In

this exaggerated plot, it can be seen more easily that, similar to the low-fidelity multi-objective case

in Section 6.2.5, the ramp bulges outwards in order to reduce the integrated heat flux.

6.3 Three-Dimensional Optimization With Heat Flux Penalty

This section will discuss an optimization problem similar to Section 6.2.6, with a three-dimensional

inlet. The optimization problem used in the three-dimensional case is:

min
x
J(~x) = −Fun −Dest

ṁ

subject to: ~xl ≤ ~x ≤ ~xu,

IHF ≤ IHFlim,

Pmax ≤ Plim,

τe ≤ τlim.

(6.5)

IHF =
∫
k∇Tds is the integrated heat flux over the wetted surfaces included in the CFD volume.

The limits in the integrated heat flux, the maximum pressure in the combustor (Pmax), and the

engine total temperature ratio (τe) are applied as quadratic penalty functions, resulting in a new
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Figure 6.15: Optimization of 2D Geometry For Equation 6.4

Table 6.8: Penalty settings for three-dimensional optimization problem.

.

Quantity Upper Limit Weighting Value Initial Point

IHF 1.35× 105 1× 10−5 Active: ≈ 0.5% above limit
Pmax 1.45× 105 1× 10−5 Inactive
τe 2.055 1× 105 Inactive

objective function:

min
x
J ′(~x) = −Fun −Dest

ṁ
+ 10−5 (max(IHF − IHFlim, 0.0))

2

+ 10−5 (max(Pmax − Plim, 0.0))
2

+ 105 (max(τe − τlim, 0.0))
2

subject to: ~xl ≤ ~x ≤ ~xu.

(6.6)

Constraint limits and weighting values are taken from the initial point design, with each of the limits

chosen to be close to the initial value and the weights chosen such that a 10% deviation from the

limit would result in a value of the penalty function of ≈ O(1000). This results in the values shown

in Table 6.8.

The design variables in the three-dimensional case are once again defined by Free-Form Defor-

mation box points, which are discussed further in Section 4.3. The control points used in this case
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Figure 6.16: Optimization of 2D Geometry For Equation 6.4

are shown in Figure 6.19.

Similar to the two-dimensional case, an initial step is performed to optimize the geometry pa-

rameters in the combustor and nozzle, which are described simply by lengths and entrance/exit

areas. The areas follow a linear distribution between the end points. The resulting parameters are

0.476m long combustor with exit area 0.0204m2, and a 3.876m long nozzle with 0.1128m2 exit

area. This is an extremely long nozzle; an internal expansion nozzle has been used in this model to

be consistent with the one-dimensional channel flow assumptions, however better performance may

be possible with an external expansion ramp.

The model of the combustor-nozzle component was updated to correct for an over-expanded

nozzle by calculating the properties after an adiabatic compression process; this was necessary as

otherwise the optimization of the nozzle and combustor geometry in an initial step resulted in an

over-expanded nozzle that would be less efficient in reality. The baseline mass of the vehicle and the

material weight used in estimating the added mass from the engine shell (used in estimating drag

by accounting for lift-induced drag) were reduced due to the initial design failing to produce thrust

greater than drag, even after a separate optimization of the combustor and nozzle dimensions. The

updated baseline mass is 500 kg, and the material weight is 144 kg
m3 , matching the density of LI-900

TPS tiles, which were the lower-density tiles used over a large portion of the Space Shuttle surface

area.124 This is an optimistic estimate of the weight, and although this was necessary to arrive at an

initial point with positive thrust for the initial inlet geometry, lower-drag and higher-thrust designs
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Figure 6.17: Geometry changes associated with results of Section 6.2.6.

may be possible, for example through using a different area distribution or a more sophisticated

outer mold line, or an expansion ramp that would allow a shorter length. Such improvements are

outside the scope of this work, however it should be noted that these, and other improvements to

the external model could be added without changes to the adjoint formulation. Since during the

main shape optimization process only the inlet shape is changed, the effects on the optimization are

limited to the effect of a changing capture area, which changes the external drag estimation slightly.

Applying the selected constraints via a quadratic penalty functions allows the use of the multi-

objective adjoint method with the weighting value wi replaced by the product of the partial derivative

of the constraint and the weighting value, as described in Section 3.4. The major iteration history of

this optimization, using the SNOPT82 algorithm and PyOpt,117 is shown in Figure 6.20. This plot

shows the percent change in selected quantities relative to the initial point value, and shows that

the optimizer has succeeded in reducing the sum of the installed thrust and the penalty function on

the integrated heat flux. This quantity has been reduced by 17.9%. The installed thrust function

has improved by 4.10%, which by itself is a significant change in this quantity of interest. The

integrated heat flux has approached the constraint value by 33.9% relative to the initial different

between the heat flux and its constraint. Investigating the quantities not included in the optimization
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Figure 6.18: Exaggerated deformation associated with 2D optimization with a penalty on heat flux.

Figure 6.19: Design Variables for 3D Optimization

process is also interesting. The total pressure, a quantity that is traditionally maximized to increase

inlet performance, has decreased by a small percentage. Although this metric of inlet performance

decreases, the effect is outweighed by the increased thrust achieved. The uninstalled thrust, Fun

increased slightly, by 0.1%, and similarly small improvements in Fun were seen in the two-dimensional

optimization problems with similar objective functions. The increase in uninstalled thrust is possible

in part due to the small size of the thrust margin Fun − Dest relative to the magnitude of the

uninstalled thrust.

The black line in Figure 6.20 indicates that the optimizer has not yet reached a limit—the value

of the augmented objective is still decreasing. The limiting factor in this optimization problem was

Table 6.9: Change in Performance Metrics During 3D Optimization

J ′ Fun−Dest
ṁ Pt3 ṁ IHF − IHFlim τe Pmax

−17.9% +4.10% −0.194% +0.206% −33.9% −2.1× 10−3% +0.108%
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Figure 6.20: Optimization of 3D Geometry For Equation 6.6

the grid deformation, and it is likely that further improvement is possible. Issues with grid defor-

mation resulted in a need to take relatively small steps and that resulted in a failed simulation that

terminated the optimization process. Some literature suggests alternatives to the spring-analogy

method used for grid deformation, for example radial basis functions.125 Due to the need for bound-

ary layer refinement, an alternative would be to use wall functions to model the boundary layer

behavior close to the wall, which lessens the requirement for y+ ≈ 1, and would likely result in a

more easily-deformed mesh. Improvements to mesh deformation are outside the scope of this work,

and despite these issues the optmization process has still shown significant improvement in the ob-

jective and in the constraint value. In addition, these results identify design changes that could be

considered via other methods of scramjet design, such as parametric design techniques that utilize

automated meshing.36

Figure 6.21 illustrates the deformation of the geometry. Slices in the x-direction with exaggerated

deformations are included to aid visualization of the geometry changes. A contour plot of the

deformations shows the largest deformations are near the cowl lip and in the corners of the cross-

section partway down the external compression ramp, where the geometry has a rectangular cross-

section with rounded corners. The change the the cowl lip position should have a strong effect

on the mass flow rate, and the changes to the corners of the cross section shape should influence

the cross-flow vortices that develop in these corners. The geometry change along the centerline of

the three-dimensional geometry is qualitatively similar to the geometry change seen for the similar,

two-dimensional, case discussed in Section 6.2.6.

The difference between the initial and optimized geometry is on the order of 0.05 mm at the cowl

lip and corners of the inlet ramp. These geometry changes appear to introduce a rotation to the cross-

sectional geometry, suggesting that parametric studies similar to the studies that produced the initial
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Figure 6.21: Visualization of 3D Optimization Result. Cross-section profile deformation (shown in
blue) is exaggerated by a factor of 100 for ease of visualization.

geometry might include rotation of the cross section as a new parameter. The small magnitude of the

geometry changes are nevertheless larger than aerospace manufacturing tolerances, although a tight

tolerance does increase manufacturing costs and leads to greater concern for in-flight deformation.

The geometry changes at the corners of the inlet ramp may be related to the thick boundary layers

that form in these corners.

The three-dimensional case shown in this section has successfully improved performance of a

complex inlet using RANS simulation of the flow through the inlet, and a quasi one-dimensional

channel flow model of the combustor and nozzle. Using the adjoint of a generalized outflow-based

functional developed in Section 3.2 in combination with the multi-objective adjoint developed in

Section 3.1.6, the gradient evaluations required only a single adjoint evaluation, with a computational

cost approximately equal to a single CFD evaluation, to address the penalized objective function

shown in Equation 6.6.
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Chapter 7

Conclusions & Closing Remarks

7.1 Summary & Contributions

The continuous adjoint method for a generalized outflow-based functional as well as for combinations

of multiple functionals was developed in this dissertation. Generalized functionals on solid surfaces

were also derived, but not implemented. These developments allow the use of the continuous adjoint

method with functionals defined in arbitrary external models, requiring only that the external model

be able to provide the relevant partial derivative values, and allow the use of the continuous adjoint

method with a wide range of combinations of already-implemented functionals including penalty

functions of those functionals. In other words, it is now possible to find the surface sensitivity with

respect to a much larger range and complexity of functions, including but not limited to functions

defined in a multi-fidelity flowpath model.

These methods were used in optimization problems of a particular hypersonic inlet geometry. The

results of evaluating the surface sensitivity for several functionals, and the results of the optimization

problems, demonstrated relationships between different performance metrics. A three-dimensional

optimization problem involving complex geometry, use of the generalized outflow-based functional,

and multiple functionals with a penalty function demonstrated the capabilities of this methodology

to address complex design problems as well as the sensitivity and potential design improvements of

this particular inlet.

Prior to this work, the only way to find the adjoint solution of a full flowpath was to automatically

differentiate a multi-fidelity model, or simulate the entire flowpath with a single model using the

highest fidelity desired. The first of these options allows the use of cheaper low-fidelity tools, but

requires more memory in the adjoint formulation and does not allow modifications to the component

models, or the use of models that are not compatible with automatic differentiation, for example,

legacy codes or third party software where the source code is not available. The second option

of simulating the full flowpath at high fidelity carries a much higher computational cost, to the

133
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point where it may not be feasible to run the simulation, much less an iterative design process.

By contrast, the methods developed in this work allow finding the sensitivities of the outputs of a

multi-fidelity model with the only limitations on the external model being that it must be able to

provide the relevant partial derivative terms—something that can be accomplished easily through

perturbing averaged flow quantity inputs to the external model, regardless of whether the source

code is available for that model.

7.2 Summary of Results

Section 6.2.1 examined assumptions employed in this work, by plotting the areas of the fluid flow

around the inlet geometry that exceeded temperature limits. Neglecting gas dissociation effects

is reasonable, while inclusion of real gas effects may be considered in improving the accuracy of

the flow within the boundary layers. However, since a turbulence model was used in this work,

the use of LES or DES would be likely to have a larger effect on the accurate prediction of the

boundary layer as compared to real gas effects. Section 6.2.2 presented a comparison between

surface sensitivity results using the generalized adjoint functional for several different quantities

of interest. High sensitivity points occurred at the nose, cowl lip, and at shock reflection points

inside the isolator. Contrasting the sensitivities of different quantities showed that while quantities

that are expected to act in opposition to one another (i.e., specific installed thrust and τe) do

have opposing sensitivities in some areas of the geometry, the effect is not uniform over the entire

geometry, and in fact in some areas it may be possible to improve both quantities simultaneously.

This was confirmed by optimization results examined in Section 6.2.3, where both τe and Fun−Dest
ṁ

were improved simultaneously. The results in Section 6.2.3 also showed that an increase in Pt3 does

not always imply an increase in thrust and overall cycle efficiency. Section 6.2.3 demonstrated the use

of the generalized outflow functional implementation to address optimization problems constrained

through a penalty function, and included an examination of unstart capability through an empirical

function used with post-processing of the flow solution on the resulting geometries.

A multi-objective design problem was addressed in Section 6.2.4 and Section 6.2.5, combining

the generalized outflow functional with integrated heat flux over the solid walls of the inlet geometry.

The implementation of a multi-objective adjoint described in Section 3.4 was utilized in these results.

A trade-off between surface heat flux and thrust can be seen, and in some cases it was possible to

improve both the heat flux and thrust relative to the initial point. In order to reduce surface heat

flux, the ramp geometry was bulged outwards and the cowl deflected downwards to increase ṁ and

bring the cowl lip closer to the new location of the leading shock.

Combining the implementation of the multi-objective adjoint with the partial derivative of a

penalty function facilitated further optimization problems to increase specific installed thrust and
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penalize integrated heat flux. A two-dimensional case in Section 6.2.6 met the constraint on the inte-

grated heat flux within 0.07%, and improved the specific installed thrust by 0.178%. Repeating this

same optimization problem with updated constraint values for a more complex and computationally

expensive three-dimensional geometry was able to increase the thrust by 4.1% while reducing surface

heat flux, with small geometry changes on the order of 0.05 mm. These geometry changes appear to

introduce a rotation to the cross-sectional geometry, suggesting that parametric studies similar to

the studies that produced the initial geometry might include rotation of the cross section as a new

parameter.

7.3 Future Work

The developments and simulations included in this work reveal some topics that deserve further

investigation. In deriving the equations for generalized functionals, it can be seen in Section 3.2.1

that for surface-based functionals, only certain functionals allow cancellation of the surface curva-

ture term Hm (See Equation 3.99). Calculating this term introduces algorithmic difficulties and

computational cost, and so those functionals that require it are generally avoided for the continuous

adjoint. Efficient computation of the surface curvature term would be a useful contribution, which

may facilitate a wider range of surface-based functionals. In addition, implementation of generalized

surface functionals may be useful to some applications.

An assumption made in this work was that real gas effects could be neglected on the inlet, and

that RANS would be sufficient to model turbulence. LES, although impractical for optimization

at the current time, would likely provide more accurate results where the necessary computational

resources and time are available, without requiring modifications to the adjoint problem boundary

conditions developed in this work. Section 6.2.1 showed that temperatures rise high enough in

the boundary layer that inclusion of real gas effects could be considered, although this effect is

expected to be less significant than the effect of using a turbulence model. In addition, small grid

cell sizes introduced difficulties in mesh deformation. These issues may be addressed by further

developments in wall functions that use a model of boundary layer behavior near the wall to reduce

the number of boundary cells needed. Inclusion of real gas effects through the entire volume and the

associated computational cost, as developed by Vitale,29 is not necessary as the bulk of the flow is

below the temperature limit. Wall functions considering some hypersonic effects such as developed

by Lofthouse,126 on the other hand, do not include real gas effects. Some combination of the two

methodologies may be useful for situations such as the hypersonic inlet, where real gas effects are

only needed in the boundary layer region, and where reduced mesh refinement would lead to benefits

in mesh deformation.

Further work within the generalized outflow-based functional formulation introduced in this dis-

sertation should include the derivation and implementation of the Jacobians necessary to translate
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between the partial derivatives required by the adjoint formulation and functions defined in terms

of measures of distortion. Measures of flow distortion are of great interest to propulsion design, and

finding the adjoint formulation in terms of such quantities would require only the derivation and

implementation of the necessary Jacobian. The concept of passing partial derivative information

between different physical models in order to compute high-fidelity sensitivities has many applica-

tions. For example, it may be possible to implement the generalized surface-based functionals in

a way that would allow design of thermal protection systems (TPS), where the external gradient

information could come from a model of heat flux through the TPS material. These methods are also

applicable to fluid-structure interactions, as well as other multidisciplinary simulations that require

information transfer between models. The superposition of multiple objectives is likely applicable

to a wide range of models and design problems.

7.4 Concluding Thoughts

The adjoint formulation for generalized functionals has many applications, from easing the process of

deriving and implementing novel functionals, to allowing the evaluation of sensitivities for external

functionals. Previously, some quantities of interest to hypersonic propulsion could not be addressed

directly by the adjoint of the CFD simulation of an inlet geometry. This meant that optimization

studies on inlet geometries were limited to addressing functions merely correlated with increased

propulsion performance, such as total pressure ratio. By contrast, the methodology introduced in

this work allows the direct optimization for outflow-based quantities of interest including installed

thrust and the maximum pressure in the combustor. The multi-objective formulation additionally

allows optimization for more complex problems that incorporate multiple quantities of interest and

penalty functions to address constraints of the problem.

Much contemporary work in adjoints has focused on the discrete adjoint, and specifically the

use of automatic differentiation has become popular in recent years as this capability became more

generally available. Based on experience in using both discrete and continuous adjoint methods and

on working to develop and implement a generalized outflow functional, the author believes the best

option to be a hybrid of approaches. Analytically derived expressions from the continuous adjoint

require less memory and provide information about the relationships between the adjoint variable

values with the flow variable values prior to computations. The discrete adjoint can automatically

account for numerical methods and discretization effects that otherwise become unwieldy in the

continuous form. Moving forward from the developments in this work, it may be possible to ap-

ply similar techniques in introducing externally-provided partial derivative terms into the discrete

adjoint.

Scramjet design has progressed a long way over the past several decades, and yet there is still fur-

ther to go before these engines will be in production for airbreathing access-to-space and hypersonic
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cruise applications. As seen in the results of this work, even advanced designs like the REST-class

inlet are sensitive to small changes in geometry, especially when considering the difference of thrust

and drag rather than uninstalled thrust on its own. Achieving good performance of these engines

in flow fields including shock-boundary layer interactions requires advancements in the techniques

of computing sensitivities, especially when “good performance” includes multiple physical models

and many design constraints. This dissertation has made progress towards computing the sensitivi-

ties for relevant quantities, while further developments in simulation techniques, mesh deformation,

uncertainty quantification, and addressing measures of flow distortion will be useful to continued

advancements in scramjet design.
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Appendix A

Shorthand Terms, Jacobians, &

Expansions

A.1 Abbreviations and Shorthand Terms

This section summarizes a number of shorthand terms, abbreviations, and Jacobians for easy refer-

ence. The following shorthand terms are defined to abbreviate fluid governing equations:

a0 = (γ − 1)

φ = (γ − 1)
~v2

2

H = E +
P

ρ
=

(
~v2

2
+

c2

γ − 1

)
E =

~v2

2
+

c2

γ(γ − 1)
.

(A.1)

In these equations γ is the ratio of specific heats, H is the total enthalpy per unit mass, P is the

fluid static pressure, ρ is the fluid density, c is the local speed of sound, E is the total energy per

unit mass, and ~v is the vector of flow velocity.

The Kronecker delta, δij will also be used, and ~δi is a vector of Kronecker deltas,

δij =

{
1 if i = j

0 if i 6= j
, ~δi =


δi1

δi2

δi3

 . (A.2)

The following shorthand matrices, listed in vector notation and index notation, are used in
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abbreviating viscous terms of the flux Jacobians,

¯̄τ = ∇~vT +
[
∇~vT

]T − 2

3
¯̄I (∇ · ~v) , τij = ∂ivj + ∂jvi −

2

3
δij∂kvk

¯̄η = ∇
(
~vT

ρ

)
+

[
∇
(
~vT

ρ

)]T
− 2

3
¯̄I

(
∇ · ~v

ρ

)
, ηij = ∂i(vj/ρ) + ∂j(vi/ρ)− 2

3
δij∂k(vk/ρ)

¯̄π = ¯̄η − 1

ρ
¯̄τ, πij = vj∂i

(
1

ρ

)
+ vi∂j

(
1

ρ

)
− 2

3
δij

(
vk∂k

(
1

ρ

))
¯̄ξ = ∇

(
1

ρ

)
⊗ ~vT − 2

3
~v ⊗∇

(
1

ρ

)T
, ξij = vj∂i

(
1

ρ

)
− 2

3
vi∂j

(
1

ρ

)
.

(A.3)

A number of identities related to surface variations are used during the derivation of the contin-

uous adjoint in Section 3.1,∫
δS

(·)ds =

∫
S′

(·)ds−
∫
S

(·)ds∫
δS

jds =

∫
S

(∂nj − 2Hmj)δSds

Hm = (κ1 + κ2)/2

∂n(j) = ~n · ∇(j)

δ~n = −∇S(δS),

(A.4)

where Hm is the mean curvature of S and (κ1, κ2) are curvatures in two orthogonal directions on

the surface. The relationship for δ~n holds for small deformations.89 The term ∇S represents the

tangential gradient operator on S.

Within the derivation of the adjoint equation boundary terms, in Section 3.1, several shorthand

terms are introduced. These are repeated here for convenient reference:

ϑ = (ρψρ + ρ~v · ~ϕ+ ρHψρE)

¯̄Σϕ = µ1
tot(∇~ϕ+∇~ϕT − 2

3
¯̄I∇ · ~ϕ)

¯̄ΣψρE = µ1
tot(∇ψρE~v +∇ψρE~vT −

2

3
¯̄I∇ψρE · ~v) .

(A.5)

Within the derivation of the adjoint of a generalized outflow-based functional using characteristic

variables in Section 3.2.3, we need the expansion of the dot product of two cross products with the
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normal unit vector:

(~a× ~n) ·
(
~b× ~n

)
= εijk(ainj)εlmk(blnm)

= (δilδjm − δimδjl)(ainjblnm)

= (aibi)(njnj)− (amnm)(blnl)

=
(
~a ·~b

)
(~n · ~n)− (~a · ~n)

(
~b · ~n

)
(A.6)

Where the permutation symbol εijk is defined as:

εijk =


1 for even permutations (123,231,312)

−1 for odd permutations

0 where two or more indices are equal

(A.7)

A.2 Jacobians & Transformation Matrices

This section expands various forms of the Jacobians and transformation matrices used in the RANS

equations and adjoint equations. The Jacobians express a matrix of the partial derivatives of a set

of functions with respect to a set of variables.

A transformation matrix is needed between two sets of variables, referred to as the vector of

conservative variables U and the vector of primitive variables, V ,

U =


ρ

ρ~v

ρE

 , V =


ρ

~v

P

 , (A.8)

where ρ is the fluid density, ~v is the vector of flow velocity, p is the fluid static pressure, and E

is the total energy per unit mass. A transformation matrix, M , is needed to convert between the

conservative and primitive variables. The transformation matrix between conservative and primitive

variables, M , and its inverse are shown here in vector form:

M =
∂U

∂V
=


1 ~0T 0

~v ¯̄Iρ 0
|~v|2
2 ρ~vT 1

γ−1



M−1 =
∂V

∂U
=


1 ~0T 0

−~v/ρ ¯̄I 1
ρ 0

|~v|2
2 (γ − 1) −~vT (γ − 1) (γ − 1)

 .
(A.9)
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Jacobians

The convective flux Jacobian is:

~Aci =
∂F ci
∂U

=


0 ~δTi 0

−~vvi + ~δiφ
¯̄Ivi + ~v ⊗ ~δi − a0

~δi ⊗ ~v ~δia0

vi (φ−H) ~δTi (H)− a0~v
T vi γvi

 . (A.10)

The viscous stress Jacobian terms are:

Aν1
i =

∂F ν1
i

∂U
=


0 ~0T 0

−¯̄η · ~δi
[

¯̄I(∇ 1
ρ · ~δi +∇ 1

ρ ⊗ ~δi −
2
3
~δi ⊗∇ 1

ρ

]
~0

(¯̄π~v) · ~δi
{

[ ¯̄ζ + 1
ρ

¯̄τ ]~δi + (~v · ∇ 1
ρ )~δi

}T
0

 , (A.11)

where shorthand terms ¯̄η, ¯̄π and ¯̄ζ in the viscous Jacobian are included in Equation Set A.3. The

viscous Jacobian of the heat transfer terms is:

Aν2
i =

∂F ν2
i

∂U
= γ


0 ~0T 0

~0 ¯̄0 ~0
1
a0

∂
∂xi

(
φ
ρ −

p
ρ2

)
− ∂
∂xi

(
~v
ρ

)
∂
∂xi

(
1
ρ

)
 , (A.12)

The Jacobian of the viscous stresses with respect to flow gradients, used in the viscous adjoint

equations, can be expressed compactly using ~δi = {δi1, δi2, δi3}T as:

¯̄Dν1
ij =


0 ~0T 0

−vi~δj + 2
3vj

~δi − ~vδij ~δj ⊗ ~δi − 2
3
~δi ⊗ ~δj + ¯̄Iδij ~0

− 1
3vivj − |~v|

2δij vj~δ
T
i − 2

3vi
~δTj + ~vT δij 0

 . (A.13)
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It is sometimes useful to expand the components of the viscous stress Jacobian:

Dν1
ii =

∂F ν1
i

∂(∂U/∂xi)
=

1

ρ



· · · · ·
−
(
1 + 1

3δi1
)
v1

(
1 + 1

3δi1
)

· · ·
−
(
1 + 1

3δi2
)
v2 ·

(
1 + 1

3δi2
)

· ·
−
(
1 + 1

3δi3
)
v3 · ·

(
1 + 1

3δi3
)

·
−|~v|2 − 1

3v
2
i

(
1 + 1

3δi1
)
v1

(
1 + 1

3δi2
)
v2

(
1 + 1

3δi3
)
v3 ·


,

=
1

ρ


0 ~0T 0

−
(

¯̄I + 1
3

¯̄I~δi

)
~v

(
¯̄I + 1

3
¯̄I~δi

)
~0

−|~v|2 − 1
3v

2
i

[(
¯̄I + 1

3
¯̄I~δi

)
~v
]T

0

 ,

Dν1
ij =

∂F ν1
i

∂(∂U/∂xj)

=
1

ρ



· · · · ·
−viδj1 + 2

3vjδi1 δj1δi1 − 2
3δi1δj1 δj1δi2 − 2

3δi1δj2 δj1δi3 − 2
3δi1δj3 ·

−viδj2 + 2
3vjδi2 δj2δi1 − 2

3δi2δj1 δj2δi2 − 2
3δi2δj2 δj2δi3 − 2

3δi2δj3 ·
−viδj3 + 2

3vjδi3 δj3δi1 − 2
3δi3δj1 δj3δi2 − 2

3δi3δj2 δj3δi3 − 2
3δi3δj3 ·

− 1
3vivj vjδi1 − 2

3viδj1 vjδi2 − 2
3viδj2 vjδi3 − 2

3viδj3 ·


(i 6= j),

=
1

ρ


0 ~0T 0

−vi~δj + 2
3vj

~δi

[
~δj ⊗ ~δi − 2

3
~δi ⊗ ~δj

]
~0

− 1
3vivj vj~δ

T
i − 2

3vi
~δTj 0

 (i 6= j),

(A.14)

The Jacobian of heat transfer components with respect to flow gradients can be expressed as:

Dν2
ii =

∂F ν2
i

∂(∂U/∂xi)
=
γ

ρ



· · · · ·
· · · · ·
· · · · ·
· · · · ·

1
a0

(
φ− p

ρ

)
−v1 −v2 −v3 1


,

=
γ

ρ


0 ~0T 0

~0 ¯̄0 ~0
1
a0

(
φ− p

ρ

)
−~vT 1

 ,

Dν2
ij =

∂F ν2
i

∂(∂U/∂xj)
= 05×5 (i 6= j).

(A.15)
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Compactly,

¯̄Dν2
ij = δij

γ

ρ


0 ~0T 0

~0 ¯̄0 ~0
1
a0

(
φ− P

ρ

)
−~vT 1

 . (A.16)

Diagonalization

Diagonalization of the Euler Jacobian is used to find characteristics of the problem. In two dimen-

sions,

∆ = L−1M−1
(
~A · ~n

)
ML

L =
∂W

∂V
=


1 0 ρ

2c
ρ
2c

0 ny
nx
2

−nx
2

0 −nx ny
2

−ny
2

0 0 ρ
2c

ρ
2c



∆ =


~v · ~n 0 0 0

0 ~v · ~n 0 0

0 0 (~v · ~n+ c) 0

0 0 0 (~v · ~n− c)


W = L−1M−1U.

(A.17)

W is the vector of characteristic variables, which are constant along characteristics of these equations,

and result from the diagonalization of the convective Jacobian that also provides the characteristic

speeds in the resulting eigenvalues shown in the matrix ∆.

Projections & Transformations of Jacobians

The Jacobians projected in the direction of the normal vector ~n are sometimes useful:

~Ac · ~n =


0 ~nT 0

−~v(~v · ~n) + φ~n
[

¯̄I(~v · ~n) + ~v ⊗ ~nT − a0~n⊗ ~vT
]

a0~n

(~v · ~n)(φ−H) H~nT − a0(~v · ~n)~vT γ(~v · ~n)

 , (A.18)

~Aν1 · ~n =


0 ~0T 0

−¯̄η · ~n
[

¯̄I(∇ 1
ρ · ~n) +∇ 1

ρ ⊗ ~n
T − 2

3~n⊗∇
1
ρ

T
]

~0

(̄̄π~v) · ~n
{

[ ¯̄ξT + 1
ρ

¯̄τT ]~n+ (~v · ∇ 1
ρ )~n
}T

0

 =


0 ~0T 0

−¯̄η · ~n ¯̄Cν1 ~0

(̄̄π~v) · ~n ~Cν2T 0

 ,
(A.19)
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~Aν2 · ~n = γ


0 ~0T 0

~0 ¯̄0 ~0
1
a0
~n · ∇

(
φ
ρ −

P
ρ2

)
−(~n · ∇)~v

T

ρ ~n · ∇ 1
ρ

 , (A.20)

where new shorthand terms are:

Cν1
ij = δij

(
nk∂k

(
1

ρ

))
+ nj∂i

(
1

ρ

)
− 2

3
ni∂j

(
1

ρ

)
Cν2
i = ξjinj +

1

ρ
τjinj + vi∂j

(
1

ρ

)
nj .

(A.21)

In order to find the boundary conditions of the direct and adjoint problems, we need to find

the convective and viscous Jacobians projected in the normal direction ~n in terms of the primitive

variables V . In order to express these terms, the transformation matrix M shown in Equation

Set A.9 is used,

(
~Ac · ~n

)
M =


~v · ~n ρ~nT 0

~v(~v · ~n)
[
ρ(~v · ~n) ¯̄I + ρ~v ⊗ ~nT

]
~n

vn
~v2

2 ρ(H~nT + (~v · ~n)~vT ) γ~v·~n
γ−1

 , (A.22)

(
~Aν2 · ~n

)
M = γ


0 ~0T 0

~0 ¯̄0 ~0

−~n · ∇
(

c2

ρ(γ−1)

)
+ ~v2~n · ∇

(
1
ρ

)
ρ~vT

(
~n · ∇ 1

ρ

)
− (~n · ∇)~vT

~n·∇ 1
ρ

γ−1

 .
(A.23)

More compactly:

(
~Aν1 · ~n

)
M =


0 ~0T 0(

¯̄Cν1~v − ¯̄η · ~n
)

ρ ¯̄Cν1 ~0

(¯̄π~v) · ~n+ ~Cν2 · ~v ρ~Cν2T 0

 , (A.24)

(
~Aν2 · ~n

)
M = γ


0 ~0T 0

~0 ¯̄0 ~0

Cν3 ~Cν4T Cν5

 . (A.25)
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A.3 Generalized Adjoint Formulation Quick-Reference

The volume integral that defines the adjoint PDE, and was previously developed in literature is:[
−∇ΨT ·

(
~Ac − ¯̄I5~uΩ − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U

]
= 0 on Ω. (A.26)

Table A.1 and Table A.2 follow existing literature, although the terms of sensitivity are not usually

separated as shown in Table A.2. Table A.3 summarizes the adjoint boundary conditions for general-

ized functionals, which were derived as part of this dissertation. The generalized functional variation,

dependent only on partial derivative terms, and which was derived as part of this dissertation is:

δJ =

∫
Γe

(
∂j

∂ρ
δρ+

∂j

∂~v
· δ~v +

∂j

∂P
δP

)
ds

+

∫
S

(
∂j

∂ ~f
· ( ¯̄Iδp− δ ¯̄σ) · ~n+

∂j

∂(∂nT )
(δ (∂nT )) +

∂j

∂T
δT

)
ds

+

∫
S

{
∂j

∂ ~f
· [~qρ~v] +∇ ∂j

∂ ~f
: ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n

∂j

∂ ~f

}
δSds

+

∫
S

{
∇ ·
(

∂j

∂(∂nT )
∇T
)

+
∂j

∂T
∂nT

}
δS ds+

∫
S

{
2Hm

(
~f · ∂j
∂ ~f

+
∂j

∂(∂nT )
∂nT − j

)}
δSds .

(A.27)

Table A.1: Linearized Boundary Conditions for Fluid Flow

Boundary Type Boundary Condition Linearized Form

Flow Tangency (~v − ~uΩ) · ~n = 0 δ~v · ~n = (~v − ~uΩ) · ∇S(δS)− ∂n(~v − ~uΩ)δS · ~n
No-Slip Wall ~v − ~uΩ = ~0 δ~v = −∂n(~v − ~uΩ)δS
Adiabatic Wall ∂nT = ~n · ∇T = 0 ∂n(δT ) = ∇T · ∇S(δS)− ∂2

n(T )δS
Constant qn Wall ∂nT = ~n · ∇T = qn

cp
∂n(δT ) = ∇T · ∇S(δS)− ∂2

n(T )δS

Isothermal Wall T = Tw δT = −∂n(T )δS
Farfield, Inflow,
Outflow

(W )+ = W∞ (δW )+ = 0.

Subsonic Outflow: 1 value prescribed k − 1 variations arbitrary
prescribed pressure P = Pe δP = 0
Subsonic Inflow: k − 1 values prescribed 1 variation arbitrary
ṁ prescribed ρ~v = ρ0~v0 δρ = δ~v = 0
Supersonic Inflow: k values prescribed no variation arbitrary

δρ = δ~v = δP = 0
Supersonic Out-
flow:

0 values prescribed all variations arbitrary
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Table A.2: Sensitivity Contributions from Direct Problem Boundary Conditions

Boundary Type Contribution to Surface Sensitivity

Flow Tangency {ϑ∇ · (~v − ~uΩ) +∇(ϑ) · (~v − ~uΩ)}
No-Slip

{
~n ·
(
ϑ(∂n(~v − ~uΩ)) + ψρE (−∂n(~v − ~uΩ) · ¯̄σ) +

(
¯̄Σϕ + ¯̄ΣψρE

)
· (∂n(~v − ~uΩ))

)}
Adiabatic Wall

{
−µ2

totcp∇S(ψρE) · ∇S(T )− ψρE(P (∇ · ~v)− ¯̄σ : ∇~v + (~qρ~v · ~v − qρE)
}

Isothermal Wall
{
−µ2

totcp∂n(ψρE)∂n(T )
}

Table A.3: Adjoint Boundary Conditions for Generalized Functionals

Boundary
Condition

Adjoint Boundary Condition (Stationary Domain)

Flow tan-
gency

~ϕ · ~n = ∂j

∂ ~f
· ~n− ψρE~v · ~n(

~ϕ · ~n = ∂j

∂ ~f
· ~n
)

Adiabatic
wall

~ϕ = ∂j

∂ ~f
− ψρE~v

∂n(ψρE) = 1
cpµ2

tot

∂j
∂T

(
~ϕ = ∂j

∂ ~f

∂n(ψρE) = 1
cpµ2

tot

∂j
∂T

)

Isothermal
wall

~ϕ = ∂j

∂ ~f
− ψρE~v

ψρE = − ∂j
∂(∂nT )

1
cpµ2

tot

(
~ϕ = ∂j

∂ ~f

ψρE = − ∂j
∂(∂nT )

1
cpµ2

tot

)

Pressure-
based Out-
flow (inviscid
& viscous
neglecting
δµ)

{
ψρ
~ϕ

}
= ψρE

{
2c2vn+~v2vnr(γ−1)

2(γ−1)vnr

−~n c2

vnr(γ−1) − ~v

}
+

 −
(
∂j
∂~v · ~v

1
ρvnr

)
+
(
∂j
∂ρ

vnr+vn
v2
nr

)(
∂j
∂~v

1
ρvnr

− ~n ∂j∂ρ
1
v2
nr

) 
ψρE,Me>1 = γ−1

v2
nr−c2

(
∂j
∂ρ

1
vnr

+ ∂j
∂P vnr −

∂j
∂~v · ~n

1
ρ

)
{
ψρ
~ϕ

}
= ψρE

{
2c2+~v2(γ−1)

2(γ−1)

−~n c2

vn(γ−1) − ~v

}
+

 −
(
∂j
∂~v · ~v

1
ρvn

)
+
(
∂j
∂ρ

2
vn

)(
∂j
∂~v

1
ρvn
− ~n ∂j∂ρ

1
v2
n

) 
ψρE,Me>1 = γ−1

v2
n−c2

(
∂j
∂ρ

1
vn

+ ∂j
∂P vn −

∂j
∂~v · ~n

1
ρ

)


Inlet ψρE,M<1 = −~ϕ · ~n (γ−1)
γ~v·~n−~uΩ·~n

(
ψρE,M<1 = −~ϕ · ~n (γ−1)

γ~v·~n

)

Table A.4: Sensitivity Contributions from Functional Variations

Functional Contribution to Surface Sensitivity

Generalized
force-based

{
∂j

∂ ~f
· [~qρ~v − ∂t(ρ~v)] +∇ ∂j

∂ ~f
: ( ¯̄Ip− ¯̄σ)− ( ¯̄Ip− ¯̄σ) · ~n · ∂n ∂j∂ ~f

}
+
{

2Hm(~f · ∂j
∂ ~f
− j)

}
Generalized
heat flux
(isothermal)

{
∇ ·
(

∂j
∂(∂nT )∇T

)
+ 2Hm

(
∂j

∂(∂nT )∂nT − j
)}

Generalized
temperature
(adiabatic)

∂j
∂T ∂nT − 2Hmj



Appendix B

Code Reference

B.1 Versions of SU2

At the time of this dissertation, SU2 uses Github for version control. The code and version history

can be accessed at www.github.com/su2code/SU2, along with installation instructions and tutorials

in the wiki included on this site.

The modifications made to this code for the work in this dissertation can be accessed in a forked

repository of this code, under the branch name “version Dissertation”. This code can be viewed at:

https://github.com/hlkline/SU2/tree/version_Dissertation. This is the code version used

for the results produced in Section 6.2.6 and Section 6.3, and includes all of the developments noted

as having been implemented in this dissertation, including: a generalized outflow functional for the

continuous adjoint in terms of either area-averaged or mass-flux averaged quantities, combinations of

objectives in the continuous and discrete adjoint, a wrapper for accessing SNOPT utilities through

the SU2 shape optimization.py script, and the ability to address quadratic penalty functions. Ear-

lier versions of this code were used to produce the results in prior sections, with some differences

such as what quantities are output. This earlier version, which lacks the full functionality of “ver-

sion Dissertation”, can be found in the code branch “version Disseration partial”. This branch was

used for results in Section 6.2.3 through Section 6.2.5.

Some of the functionality described in this work has been added to the develop branch of SU2,

and may be available in future releases, however no guarantee can be made that this functionality

will be maintained.

B.2 Use of Generalized Outflow Function

This section describes the use of the generalized outflow functional and the interface with external

functions. In order to evaluate an external function based on averaged outflow quantities, first the
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SU2 configuration file must be set up to output the averaged outflow quantities. This is accomplished

with the following settings, in addition to the normal SU2 settings required to run the flow and

adjoint simulations:

%

% O u t l e t boundary marker ( s ) (NONE = no marker )

% Format : ( o u t l e t marker , back p r e s s u r e ( s t a t i c ) , . . . )

MARKER OUTLET = ( outflow marker name , 101325 .0)

% Boundary marker ( s ) where one−d i m e n s i o n a l i z e d o u t p u t s w i l l

% be e v a l u a t e d .

MARKER OUT 1D = ( outf low marker name )

% O b j e c t i v e f u n c t i o n in o p t i m i z a t i o n problem

OBJECTIVE FUNCTION = OUTFLOW GENERALIZED

% Kind o f one−d i m e n s i o n a l i z a t i o n used

KIND ONE DIMENSIONALIZATION = AREA

The “outflow marker name” should be replaced with the name of the relevant marker in the

mesh file, and a reasonable back pressure value should be chosen. For supersonic flows, choose a low

pressure. Area-averaging is used by default.

An external file, named “downstream function.py” must be defined in the workspace. This file

name is hard-coded, and modifications to the SU2 python scripts and functions will be required if

a different file name is desired. This external file must include the function definitions for “down-

stream function(config,state)” and “downstream gradient(config,state,step=default)”. These func-

tions are called during pre- and post- processing steps for running the continuous adjoint problem

and evaluating the function value. An example of such a function is included below.

#!/ usr / b in /env python

## \ f i l e downstream funct ion . py

# imports

sys . path . append ( os . env i ron [ ’SU2 RUN ’ ] )

import SU2

def downstream funct ion ( con f i g , s t a t e ) :

d in = [ 0 . 0 ] ∗ nvar

return o b j e c t i v e ( con f i g , s ta te , d in )

def downstream gradient ( con f i g , s ta te , s t ep=1e−3):

# t h i s f u n c t i o n p r o v i d e s 5 g r a d i e n t s whether 2D or 3D

# [ d j / drho , d j /dv1 , d j /dv2 , d j /dv3 or 0 , d j /dP ]
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nvar = 5 # dens i ty , 3 d i r e c t i o n s o f v e l o c i t y , p r e s s u r e

d in = [ 0 . 0 ] ∗ nvar

dJ = [ 0 . 0 ] ∗ nvar

J0 = o b j e c t i v e ( con f i g , s ta te , d in )

# Loop over v a r i a b l e s

for i in range ( nvar ) :

d in = [ 0 . 0 ] ∗ nvar

d in [ i ]= step

dJ [ i ] = ( o b j e c t i v e ( con f i g , s ta te , d in )−J0 )/ step

grad i en t = tuple ( dJ )

return grad i ent

def o b j e c t i v e ( con f i g , s ta te , d in ) :

# Reference v a l u e s from l a s t i t e r a t i o n o f h i s t o r y

rho = s t a t e [ ’HISTORY ’ ] [ ’DIRECT ’ ] [ ’AVG OUTLET DENSITY ’ ] [ − 1 ] ;

V = s t a t e [ ’HISTORY ’ ] [ ’DIRECT ’ ] [ ’AVG OUTLET VELOCITY ’ ] [ − 1 ] ;

P3 = f loat ( s t a t e [ ’HISTORY ’ ] [ ’DIRECT ’ ] [ ’AVG OUTLET PRESSURE ’ ] [ −1 ] )

# Mass f l o w r a t e i s a l s o o f t e n u s e f u l

mdot = f loat ( s t a t e [ ’HISTORY ’ ] [ ’DIRECT ’ ] [ ’MASS FLOW RATE ’ ] [ −1 ] )

rho+=d in [ 0 ]

V +=d in [ 1 ] #For +x o u t f l o w normal d i r e c t i o n

P +=d in [ 4 ]

# A dummy f u n c t i o n

obj = f (P, rho ,V)

return obj

This example demonstrates using a finite difference to evaluate the gradients of the “downstream”

function. The accuracy of these gradients is important to the adjoint solution, and the step size can

be varied proportional to the scale of the input quantities of density, velocity, and pressure as these

quantities may vary widely in their magnitude, and so not produce the same level of accuracy for the

same step size. The gradient values could also be provided analytically, or through other methods.

Once the configuration, mesh, and downstream function.py files have been set up appropriately

in the working directory, either the finite difference or continuous adjoint scripts can be used. Further

information about these scripts is provided with the SU2 tutorials.

$ f i n i t e d i f f e r e n c e . py −f c o n f i g . c f g

$ c on t in uou s ad j o i n t . py −f c o n f i g . c f g
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Note that the actual “downstream” function value will not be included in the normal SU2 output

files, with the exception of the optimization history file. Printed output or redirection to files can

be included in the downstream function.py routines.

B.3 Multi-Objective Gradients

In order to evaluate a weighted sum of gradients, the following settings should be included in the

SU2 configuration file:

% O b j e c t i v e f u n c t i o n in o p t i m i z a t i o n problem

OBJECTIVE FUNCTION = OUTFLOW GENERALIZED, DRAG

% C o e f f i c i e n t s f o r we igh ted sum of o b j e c t i v e s

OBJECTIVE WEIGHT = 1 . 0 , −2.0

% Marker ( s ) o f the s u r f a c e where the f u n c t i o n a l (Cd , Cl , e t c . )

% w i l l be e v a l u a t e d

MARKER MONITORING = ( outflow marker name , wall marker name )

The settings listed in B.2 should also be included if the OUTFLOW GENERALIZED objective is

used. The sample as shown would evaluate the gradient of 1.0× f(P̄ , ρ̄, v̄)− 2.0× CD.

B.4 Multi-Objective and Penalized Optimization

This section describes the configuration settings and other steps needed to run a multi-objective

optimization problem or a constrained optimization problem using a penalty function. The steps

to set up the downstream function file and configuration file described in B.2 should be completed

first, and the user should check that the gradients are successfully evaluated before proceeding. The

settings listed in B.2 should also be included if the OUTFLOW GENERALIZED objective is used,

and for any optimization problem the design variables and other optimizer parameters should be

set.

For a weighted sum of objectives, a list of objective components are separated by semicolons.

% Marker ( s ) o f the s u r f a c e where the f u n c t i o n a l (Cd , Cl , e t c . )

% w i l l be e v a l u a t e d

MARKER MONITORING = ( wall marker name , outf low marker name )

% Optimizat ion o b j e c t i v e f u n c t i o n wi th s c a l i n g f a c t o r

% ex= O b j e c t i v e ∗ Sca le

OPT OBJECTIVE=LIFT∗−1.0E4 ;OUTFLOW GENERALIZED∗0 .01

%

% Optimizat ion c o n s t r a i n t f u n c t i o n s wi th s c a l i n g f a c t o r s ,
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% s epa ra te d by semico lons

% ex= ( O b j e c t i v e = Value ) ∗ Scale , use ’> ’ , ’< ’ , ’= ’

OPT CONSTRAINT= NONE

%

% Maximum number o f i t e r a t i o n s

OPT ITERATIONS= 100

%

. . .

To apply a quadratic penalty, the objective component is listed in the format of a constraint.

% Marker ( s ) o f the s u r f a c e where the f u n c t i o n a l (Cd , Cl , e t c . )

% w i l l be e v a l u a t e d

MARKER MONITORING = ( wall marker name , outf low marker name )

% Optimizat ion o b j e c t i v e f u n c t i o n wi th s c a l i n g f a c t o r

% ex= O b j e c t i v e ∗ Sca le

OPT OBJECTIVE=LIFT∗−1.0E4 ; (OUTFLOW GENERALIZED>5.0)∗0.01

% When us ing m u l t i p l e o b j e c t i v e s , choose whether to e v a l u a t e

% the g r a d i e n t s s e q u e n t i a l l y or as a s i n g l e , combined g r a d i e n t .

OPT COMBINE OBJECTIVE = YES

During the optimization process when OPT COMBINE OBJECTIVE is set to “YES”, the gradients

will be evaluated as a weighted sum, with the weight option shown in B.3 automatically set to the

partial derivative of the penalty function with respect to the functional. If this option is not provided

or set to “NO”, the gradients will be evaluated one by one, which may be preferable if a component

of the objective function is also used in OPT CONSTRAINT (for example, if 2 functionals are

combined in the objective and the same 2 are also in constraints, combining the gradient will require

3 adjoint evaluations while separate evaluation will only require 2). In order to use some penalty

function other than the quadratic penalty, the file SU2 PY/SU2/eval/design.py in the SU2 source

code directory should be modified, and the code recompiled.
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