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Preface

In engineering, the reliability of a design is a primary quantity of interest that encompasses both

performance and safety requirements. Standard engineering systems such as aircraft, cars, buildings,

and bridges are all subject to the whims of nature and their users and as such require a high degree

of reliability, with potentially disastrous consequences otherwise. Traditional approaches for design

build in margin by using safety factors or conservative material properties. However such methods

are at best limited in scope and at worst ad hoc and may lead to overly conservative designs with

decreased performance as well as under conservative designs with insufficient reliability. In reliability-

based design optimization (RBDO) the uncertainties in a design’s operating environment, material

properties etc. are directly taken into account to generate a design that achieves a desired reliability

target. However the solution of RBDO problems, particularly in complex high-dimensional appli-

cations (10–100 variables) such as those often found in aerospace engineering, remains challenging

due to the need to estimate small probabilities of failure while performing a nonlinear optimization

with quantities of interest that are typically expensive to evaluate (hours to days).

In this thesis, new methods for reliability-based design optimization are presented. In particular

the Adaptive Kriging Inverse Reliability Analysis (AKIRA) algorithm and a multifidelity sequential

RBDO algorithm are introduced and demonstrated on a complex multidisciplinary supersonic nozzle

design problem. AKIRA adaptively refines kriging models of the design problem’s quantities of

interest while estimating failure levels for a prescribed system probability of failure. The algorithm

demonstrates competitive performance with other reliability analysis algorithms while also benefiting

from the solution of the inverse reliability analysis problem during RBDO. The proposed sequential

RBDO algorithm mitigates the cost of solving the RBDO problem by decoupling the optimization

and reliability analyses, thereby reducing its solution to a series of deterministic optimizations.

The method is motivated by anchored decomposition for function approximation, has guaranteed

convergence inherited from trust region methods, and is shown in certain cases to be a generalization

of existing sequential RBDO methods. It also derives enhanced efficiency by incorporating lower-

fidelity models when available. The final demonstration of the proposed algorithms on an industrial-

type problem, the supersonic nozzle, shows that the solution of RBDO problems for complex realistic

engineering applications is well within reach.
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Chapter 1

Introduction

This dissertation concerns the subject of reliability, a topic which in various forms seems to have

occupied human beings from the earliest of times. Perhaps the literary greats, the likes of Shake-

speare, Shelley, Keats, Dickinson and others, were most vividly aware of the concept of reliability

and how the world through time, death, or human folly somehow always manages to thwart the ideal

of absolute reliance on someone or something1. Whether it be “nature’s changing course untrimm’d”

[116] or “thou, O uncontrollable!” in reference to the West Wind [120] (perhaps early references to

aleatory uncertainty), the concept of reliability or lack thereof has drawn much interest. Indeed,

leave it to a poet to endow the English language with the word reliability in the first place. Coleridge

penned the word in a letter concerning his friend Robert Southey in 1816 [113].

The human desire to control reliability then is perhaps unsurprising and the remainder of this

dissertation discusses this problem from the point of view of engineering design. In engineering, the

profession that deals with the application of scientific knowledge to the solution of practical problems

[78], the concept of reliability is particularly important as one typically desires a solution that

reliably remains a valid solution to a particular problem. Problems of design are poignant since an

engineering design must reliably meet performance and safety requirements. Noteworthy examples

include aircraft, cars, skyscrapers, and bridges, all of which have disastrous consequences when

designed with insufficient reliability. Thus the consideration of reliability in engineering design, or its

complement failure, is important when formulating and solving such design problems. Such problems

can be formulated mathematically, and the reliability of a design can be rigorously guaranteed when

characterized appropriately. This dissertation proposes new methods for the formulation and solution

of these so-called reliability-based design optimization (RBDO) problems and demonstrates them on

applications from structural and aerospace engineering.

Why do engineers need to consider reliability in the first place? Paraphrasing the eloquent words

of countless poets, uncertainties are an everpresent trait of reality. The strength of steel is not just

1The only exceptions appear to be God, death, and as Americans fondly say, taxes.
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a single number conveniently written in the appendix of a textbook nor is the air temperature at

30,000 feet above sea level a constant governed by the 1970 Standard Atmosphere model. Material

properties will vary by location and batch and weather conditions will vary with time and place;

they are inherently uncertain. Such uncertainties are often called aleatory, from the Latin word alea

meaning rolling of the dice. Another class of uncertainties also exists, epistemic uncertainties coming

from the Greek word επιστηµη (episteme) meaning knowledge. Therefore an epistemic uncertainty

is one characterized by lack of knowledge and thus theoretically could be reduced (unlike aleatory

uncertainties) given enough time, money, or investigation. A classical example in engineering design

is model-form uncertainty, i.e. the choice of model fidelity which could always be increased to

yield more accurate design analysis with greater computational expense. The prescription of an

uncertainty as epistemic or aleatory has been argued to depend on the situation and context of a

given problem [76]. This dissertation however only considers aleatory uncertainties.

As a result, the mere presence of uncertainty in a design’s operating environment and the ma-

terials it is constructed from, among others, motivates the consideration of reliability in design

problems. Traditional methods for engineering design build margin into a design to boost its relia-

bility — common methods include safety factors, partial safety factors, and basis values — however

such methods do not directly control a design’s reliability and often operate in a deterministic fashion

without considering uncertainty. The amount of margin built into a design by traditional methods

is often unknown and as such can lead to both overly conservative designs with decreased perfor-

mance as well as under conservative designs with insufficient reliability. Furthermore the presence

of uncertainties means that the optimal design on paper is never the optimal design in practice be-

cause the uncertainties were never directly taken into account. Indeed the representation of reality

distilled into the formulation of a deterministic design problem is frozen in a particular state and

thus remains ignorant of the neverending fluctuations present in reality.

In this dissertation uncertainties are modeled with the mathematical theory of probability for

use in design optimization, however the characterization of uncertainties is not a primary concern

of this dissertation. Rather the focus is on algorithm development for reliability-based design opti-

mization (RBDO) once uncertainties have been identified. Uncertainties are modeled with analytic

distributions and are assumed to be independent with the recognition that more complex distribu-

tions and correlations between uncertainties can be handled with appropriate transformations with

a few caveats [110, 79] or alternate methods. Such caveats include the nontrivial possibility that

the transformation does not exist or that the transformation leads to a more nonlinear problem.

However the treatment of more involved probabilistic modeling in RBDO problems, including the

characterization of uncertainties in the estimated parameters of probability distributions, is left for

future dissertations.

Provided the uncertainties have been properly characterized for a given design, the task at hand

then is to solve a design problem that takes into account the reliability requirements of the design
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CHAPTER 1. INTRODUCTION

given the input uncertainties. Figure 1.1 illustrates the basic problem of reliability-based design

optimization (RBDO). Solving RBDO problems is challenging for several reasons:

1. The presence of uncertainties requires probabilistic analysis, i.e. the calculations of means,

variances, and especially small probabilities of failure which are computationally expensive.

2. The dimension of the problem may be high, i.e. a large number of uncertainties and design

variables may be present.

3. The quantities of interest in the problem are often nonlinear.

4. The quantities of interest in the problem are often computationally expensive to evaluate.

Figure 1.1: Schematic of reliability-based design optimization (RBDO). A design problem is char-
acterized by design variables x and random parameters y which lead to random system responses,
or limit states, g(x, y). The goal is to design the system by choosing x such that the limit states
reliably meet performance targets, i.e. g(x, y) can only fail a small percentage p̄f of the time which
can be written as P [g(x, y) ≤ z̄] ≤ p̄f where z̄ is the limit state level at which failure occurs. The
RBDO algorithm solves an optimization problem while calculating the reliability of the limit states
as necessary. An optimal design x∗ is returned for which the limit states reliably meet performance
targets.

For example, chapter 5 of this dissertation presents the RBDO of a supersonic nozzle system

(see Figure 1.2). A nozzle is the aft end of an aircraft engine that is responsible for generating the

thrust force that propels an aircraft forward. Since the nozzle channels the hot engine exhaust, it is

subject to high temperatures and pressures. Naturally there are a variety of failure modes: failure

due to excessive temperature or stress, as well as failure to generate enough thrust. In addition, a

variety of uncertainties (up to 40 or more) are present in the nozzle system and include material

properties, temperatures and pressures etc. As a nozzle designer, the goal is to modify the shape

of the nozzle so that failure only occurs a small percentage of the time (say once every one million

critical climb segments during flight) while ensuring that the nozzle is cost-effective. However to
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design the nozzle one must simulate the nozzle, and the accurate analysis of the nozzle system

requires the modeling of the aerodynamics, heat transfer, and structure of the nozzle. A single

coupled analysis may take eight hours of compute time on an average laptop2. Thus the nozzle

problem embodies each of the challenging aspects listed above for a realistic industrial-strength

RBDO problem. Chapter 5 not only demonstrates the algorithms described in this dissertation on

the nozzle problem, it also compares them to a standard deterministic design method and shows

that solving the RBDO problem is both tractable and more effective at controlling reliability.

Figure 1.2: Schematic for the supersonic nozzle design problem. The problem requires the determi-
nation of the optimal shape of the innermost nozzle wall (component 1), as well as the thicknesses
of each wall layer (components 1–4) and the air gap, the thicknesses of the stringers (components
5), and the location and thicknesses of the baffles (components 6–10). Wall layer and stringer thick-
nesses are allowed to vary along the length of the nozzle. Since the exhaust gases exiting the nozzle
are at high pressure and temperature, assessing reliability with respect to thermal and structural
failure is critical. In addition, the thrust force of the nozzle must reliably meet or exceed a certain
performance requirement. Reliability of the nozzle is affected by uncertainties in the environment
such as inlet pressures and temperatures, as well as the variability of material properties. Chapter 5
contains a full description of the nozzle problem and shows results for reliable nozzle designs.

Existing methods for solving RBDO problems have focused on increasing the efficiency of the

solution process through several means; the sole goal in each case is to reduce the number of function

evaluations needed to obtain a solution. One common tactic for reducing the cost of RBDO problems

is to use efficient methods for reliability analysis, that is the calculation of small probabilities of

failure, by focusing on the region of failure for the design. Chapter 2 introduces the concept of

reliability and reviews methods for efficient calculation of probabilities of failure. Another common

tactic is to reformulate the design problem or solve a series of approximate design problems which are

easier to solve. Chapter 4 introduces and reviews several classes of RBDO problem-solving methods.

Finally another tactic for simplifying high-dimensional problems is to employ dimension reduction

techniques. The use of dimension reduction is not extensively covered in this dissertation, however

one method for motivating dimension reduction, Sobol’ sensitivity indices, is used and is described

23D RANS aerodynamic analysis and FEM thermal and structural analyses on 4 cores.
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in detail in Appendix E.

The remainder of this dissertation reviews the existing state of the art in reliability-based design

optimization and presents improvements to reliability analysis and the solution of RBDO problems.

The focus is on enabling RBDO for complex, high-dimensional realistic design problems. To this

end, the supersonic nozzle problem presented and solved in chapter 5 is the motivating problem and

final demonstration of the techniques developed in this dissertation. These techniques include a new

algorithm called the Adaptive Kriging Inverse Reliability Analysis (AKIRA) proposed in chapter 3

and an efficient sequential RBDO method derived from a new angle using anchored decomposition

in chapter 4. The additional infusion of lower-fidelity models yields a multifidelity RBDO method

and further enhances efficiency. A detailed description of the contributions of this dissertation is

presented in the next section.

Chapter 2 introduces the mathematical definition of reliability and reviews methods for reliability

analysis. Methods can be broadly separated into four categories: sampling (section 2.2), most

probable point (MPP, section 2.3), response surface (section 2.4), and hybrid methods which combine

aspects of the first three (section 2.5). To date most RBDO problems have been solved using MPP-

based methods, which determine the point that contributes the most to the failure probability of

the design and uses information at that point to characterize the design and make decisions for

improving it [77, 128, 8, 41, 3, 40, 5, 4, 14, 117, 67]. The shortcoming of such methods is primarily

the loss of accuracy when multiple MPPs exist or the design is highly nonlinear [115, 128, 117, 83].

Chapter 2 also discusses the differences between the forward reliability analysis and the inverse

reliability analysis problems in section 2.1.5 and why the inverse problem is preferable for use in

RBDO. Finally the calculation of design sensitivities for use in optimization is reviewed in section 2.6.

Chapter 3 proposes a new algorithm for the reliability analysis of an engineering system called

the Adaptive Kriging Inverse Reliability Analysis (AKIRA). AKIRA constructs kriging response

surfaces for the quantities of interest in a RBDO problem (section 3.2) and solves a system-level

inverse reliability analysis for use in RBDO (section 3.4). Since kriging response surfaces contain

a metric estimating their inaccuracy, i.e. the kriging variance, they can be adaptively refined in

regions deemed to be most important for the estimation of failure probability. Section 3.3 presents a

new pointwise heuristic for refinement which is more efficient than other pointwise metrics. Existing

kriging-based reliability analysis methods primarily differ in their method of refinement and are

reviewed in sections 3.1 and 3.3. Section 3.5 reviews the calculation of design sensitivities using

AKIRA and section 3.6 presents a new method based on cokriging for the estimation of design

sensitivities when function evaluations are expensive. Finally, AKIRA is demonstrated in section 3.7

on several common structural test problems and the nozzle problem and is shown to be either more

efficient or more accurate than two well-accepted reliability analysis techniques.

Chapter 4 introduces the field of reliability-based design optimization and proposes a multifi-

delity sequential method using anchored decomposition for efficient RBDO. Traditional methods for
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accounting for uncertainties such as safety factors, partial safety factors, and basis values are first

reviewed in section 4.2. Next each of the three main classes of RBDO methods, double-loop, se-

quential, and unilevel, are reviewed in section 4.3. Section 4.3.1 reviews double-loop methods which

nest a reliability analysis inside of an outer optimization loop [128, 8, 41, 42, 98, 67]. Section 4.3.2

reviews sequential methods which separate the reliability analyses and the optimization so they can

be performed sequentially [132, 111, 40, 4, 14, 140, 5]. As a result sequential methods are typically

more efficient than double-loop methods but require careful management of the sequencing in or-

der to ensure convergence. Section 4.3.3 reviews unilevel methods which decompose the reliability

analysis into a set of conditions which can then be directly added as constraints to an optimization

problem [77, 3, 117].

An overview of trust region methods is then given in section 4.4 as they form the foundation

for convergence of the proposed multifidelity sequential approach. Finally, the proposed sequential

RBDO algorithm is presented in section 4.5. It is motivated by the use of anchored decomposition

and incorporates lower-fidelity models when available for enhanced convergence. It also inherits

the guaranteed convergence properties of trust region methods. The AKIRA algorithm presented in

chapter 3 is embedded within it to solve the inverse reliability analysis. In certain cases the approach

is shown to be the same as other existing sequential RBDO methods. Section 4.6 demonstrates the

approach on two structural RBDO test problems and compares results with those from literature.

Finally chapter 5 demonstrates the proposed multifidelity sequential RBDO method with AKIRA

on the complex, coupled supersonic nozzle problem introduced above. Sections 5.1 and 5.2 introduce

the nozzle system and section 5.3 describes the hierarchy of multifidelity computational models. Sec-

tions 5.4 and 5.5 describe the problem’s parameterization and formal RBDO problem formulations.

Finally section 5.6 summarizes the RBDO approach taken for the nozzle problem and section 5.7

presents the optimal nozzle designs with comparison to a standard deterministic design practice

using safety factors and basis values to build margin into the design. The results demonstrate the

benefits of pursuing the solution of a RBDO problem as well as the tractability of doing so given

well-applied dimension reduction techniques and efficient reliability analysis and optimization meth-

ods. In addition, the results shed light on the design of a nozzle system and highlight the importance

of using high-fidelity models in design.

Chapter 6 adds to an already lengthy dissertation by summarizing the primary contributions as

well as outlining interesting directions for future development in the field of reliability-based design

optimization.

1.1 Contributions

The contributions of this dissertation lie primarily in the field of reliability-based design optimization

(RBDO) which concerns the intersection of the fields of reliability analysis and design optimization:
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1. A new algorithm for inverse reliability analysis for use in RBDO is proposed. The

Adaptive Kriging Inverse Reliability Analysis (AKIRA) algorithm described in chapter 3 is the

first inverse reliability analysis using a kriging-based response surface approach to take multiple

limit states into account. The algorithm demonstrates competitive performance with other

reliability analysis algorithms while benefiting from the solution of the inverse problem during

RBDO. A new heuristic is also proposed for the adaptive updating of kriging models used in

reliability analyses which improves upon other existing pointwise heuristic criteria. Finally,

the efficient calculation of design sensitivities is derived for use with AKIRA, including the

proposal of an adaptive cokriging approximation method when evaluation of such sensitivities

is expensive.

2. The use of the directional simulation method as a reliability analysis technique is

further enhanced for use in RBDO. A method for approximating gradients of probability

of failure via a Riemann sum using directional simulation is proposed in section 2.6.1. In

addition the information obtained from the directional simulation method is used in new ways

— not only to estimate probabilities of failure, but also to provide an approximation of the

limit state surfaces and aid in the adaptive refinement of kriging models and efficient reliability

analysis and gradient calculation during the AKIRA algorithm in sections 3.3.2 and 3.5.

3. A new sequential RBDO algorithm is proposed. The algorithm described in section 4.5

avoids an expensive double-loop procedure by managing anchored decomposition approxima-

tions within a trust region method. The additional expansion of the method to incorporate a

set of bifidelity models further increases efficiency. The algorithm is demonstrated using the

AKIRA algorithm for reliability analysis on a series of academic problems and a more com-

plex nozzle design problem (chaper 5) and is shown to be competitive with existing sequential

RBDO methods. The sequential RBDO algorithm is also shown in certain cases to be a gen-

eralization of existing sequential RBDO methods and to lead to optimal designs which meet

reliability constraints for just an order of magnitude increase in cost compared to a similar

deterministic design optimization.

4. Reliability-based design optimization is applied to a large-scale complex multi-

disciplinary aerospace design problem, namely the design and optimization of a

supersonic nozzle. The coupled aerodynamic, thermal, and structural nozzle system is op-

timized using the proposed AKIRA and sequential RBDO algorithms, thereby demonstrating

the capability of solving industrial-type problems with high-fidelity models in a reasonable

amount of time. The results presented in chapter 5 motivate the benefits of RBDO over stan-

dard practice deterministic design and are informative for engineering judgements concerning

reliable nozzle design.
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1.2. NOTATION

1.2 Notation

A unifying notation is difficult to prescribe due to the convergence of multiple disciplines, each with

its own standard notation, including but not limited to statistics, calculus, and optimization. The

following descriptions are guidelines for the notation in this dissertation; exceptions are made clear

from the context.

General Guidelines

In general scalars are denoted by lowercase Greek letters, e.g. γ. The primary exceptions are the

probability of failure pf and N , which is used to denote the number of samples at various times.

Vectors are denoted by lowercase Roman letters, e.g. x, of which a component is denoted with a

subscript, e.g. xi. Matrices are denoted by uppercase Roman letters, e.g. A, of which a component

is denoted Aij . Scalar quantities of interest may also be denoted by upper case letters, e.g. F for

thrust and T for temperature, however context will make the distinction clear.

For statistical quantities, E[·] is used for expectation, Var(·) and Cov(·, ·) for variance and covari-

ance, and P [·] for probability. In contrast to standard statistical notation, uppercase Roman letters

are not used to denote random variables. A probability distribution function for random variable u

is denoted fu(u) and the cumulative distribution function is Fu(u). A sample of a variable is denoted

with a superscript in parentheses, e.g. u(i) is a sample of the vector u. Estimates are denoted with

a hat notation, e.g. p̂f is the estimate of the probability of failure pf .

Reoccurring Variables and Functions

Several sets of variables and functions reoccur throughout this dissertation. They are listed here:

x ∈ Rn : the vector of deterministic design variables

y ∈ Rp : the vector of random variables/parameters

u ∈ Rp : the vector of standard normal variables obtained via transformation T from y,

u = T (y)

g(x, y) ∈ Rm : the limit state function(s) defining the region of failure

g(x, u) ∈ Rm : the limit state function(s) as a function of u instead of y

ĝ(x, y) : an approximation of the limit state g(x, y)

z(x) ∈ Rm : a level set of the limit state for a given design x, defined by

z(x) = g(x, y)
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z̄ ∈ Rm : the vector of failure thresholds for the limit states, i.e. failure for the ith limit state occurs

when

gi(x, y) ≤ z̄i

m(y) ∈ R : the mean of a kriging model evaluated at point y

s(y) ∈ R : the standard deviation of a kriging model evaluated at point y

Φ(u) : the standard normal cumulative distribution function (CDF)

φ(u) : the standard normal probability distribution function (pdf)

1{Boolean expression}(u) : the indicator function defined as

1{Boolean expression}(u) =

0 if Boolean expression is false

1 if Boolean expression is true
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Chapter 2

Reliability

The reliability of any designed system and its estimation, prediction and enhancement is of utmost

importance to the engineering profession. Engineers would simply not be relied upon if they were

unable to produce reliable designs. Indeed, the interest in the reliability of manmade objects is

not new (medieval guilds required lengthy training periods at least in part to ensure quality prod-

ucts [113]), particularly when the livelihood of human beings is at stake. As a result, a reliable

design is often synonymous with a safe design. However, reliable designs usually encompass more

than safety considerations; they are designs that consistently perform well.

The study of reliability is built upon the mathematics of probability and was initially motivated

by the introduction of mass production [113]. Although probability theory was introduced by Pascal

and Fermat in the 1600s, it was not until the advent of mass production in the late 1800s and early

1900s that probability theory was applied to problem of estimating the reliability of a design. Saleh

and Marais argue that the catalyst leading to the development of reliability engineering was the

vacuum tube which was the primary contributor to failures in electronic equipment in the early

1900s and crucial to wartime strategy in the ensuing decades [113]. Since the more formal advent

of reliability engineering in the 1950s, more specific disciplines arose such as the community of

structural reliability [38]. Finally, the design and engineering of complex multidisciplinary systems

in the 1970s, most notably nuclear power plants and aerospace vehicles, fueled a growing interest

in system reliability [113]. Nevertheless the accurate estimation of system reliabilities when failure

events are rare has proved difficult for complex systems which often require expensive computer

simulations and feature a large number of design variables and uncertainties1.

1Indeed, the research presented in this thesis was primarily funded through the DARPA EQUiPS (Enabling
Quantification of Uncertainty in Physical Systems) program which completed in 2018. The goal of the program was
to address this very difficulty, to “provide a rigorous mathematical framework and advanced tools for propagating and
managing uncertainty in the modeling and design of complex physical and engineering systems,” (DARPA EQUiPS
mission statement, https://www.darpa.mil/program/equips, September 2018) with a particular emphasis on the design
of complex systems such as those found in aerospace applications. The existence and goals of the program highlight
the importance of solving reliability analysis and design problems for realistic high-dimensional applications.
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2.1. INTRODUCTION

This chapter is about reliability analysis or the mathematics behind predicting the reliability

of an engineered system. First the mathematics of reliability analysis are presented in section 2.1

including the commonly used standard normal space and the differences between the forward and

inverse reliability analysis problems. Section 2.2 introduces random sampling methods for relia-

bility analysis, including the technique of directional simulation which is extensively used later in

the AKIRA algorithm presented in chapter 3. Section 2.3, section 2.4, and section 2.5 introduce

most probable point (MPP) methods, response surface methods, and hybrid methods for reliability

analysis. A deeper look at kriging-based response surface methods for reliability analysis is pro-

vided in chapter 3 since the AKIRA algorithm uses kriging response surfaces. Finally section 2.6

presents and derives design sensitivities for probabilities of failure obtained from reliability analyses

in preparation for use with reliability-based design optimization.

2.1 Introduction

The first step in reliability analysis is to identify the system and its subsystems. The second step

is to identify the metrics and their limits from which system and subsystem failure will be gauged.

Finally, models or experiments can be constructed which can be used together with a reliability

analysis method to estimate system or subsystem reliabilities according to the chosen metrics.

Most often, the reliability of the overall system is the primary quantity of interest, which is

naturally affected by the reliability of the system’s subsystems. For example, for the supersonic

nozzle system introduced in chapter 1, engineers may consider a variety of metrics such as maximum

temperature and stress in the nozzle’s wall, fatigue life, and nozzle thrust among others during the

nozzle’s analysis and design. Some quantities are clearly related to the structural failure of the nozzle,

others, such as thrust, are related to performance specifications. For each metric a limit can be

determined, beyond which the nozzle system is considered failed. For example, the nozzle’s material

will have a maximum service temperature and yield strength, and the performance specification will

require a minimum thrust at a given operating condition. Accurate and efficient reliability analysis

methods enable the reliability of such a complex system to be quantified, and ultimately used in

design optimization.

We represent the metrics of a system by g(x, y) ∈ Rm for m metrics, where x ∈ Rn denotes

the system’s n deterministic variables and y ∈ Rp denotes the system’s p random variables. Each

gi(x, y) for i = 1 . . .m is called a limit state. Note that since y is random, each limit state gi(x, y)

is random as well. The limit at which failure occurs is denoted as z̄ ∈ Rm and thus a limit state

gi(x, y) separates a system’s performance space into a failure region Fi and a safe region Si at the

boundary defined by z̄i. The failure and safe regions are defined as

Fi ≡ {(x, y) ∈ Rn ×Rp | gi(x, y) ≤ z̄i},

12



CHAPTER 2. RELIABILITY

Si ≡ {(x, y) ∈ Rn ×Rp | gi(x, y) > z̄i}.

Traditionally, the limit states g(x, y) ∈ R are defined such that the limit state level at which failure

occurs is z̄ = 0.

For simplicity, consider a system with a single limit state g(x, y), i.e. a system that has a single

failure mode. Furthermore let failure occur for a limit state level of z̄. To calculate the reliability of

the system we can first estimate its probability of failure pf . The reliability of the system is then

defined as 1−pf . The probability of failure pf can be written in many equivalent forms each of which

provides a different perspective relevant to its calculation as well as an introduction to notation:

pf (x) ≡ Fg(z̄) (2.1a)

= P [g(x, y) ≤ z̄] (2.1b)

=

∫
g(x,y)≤z̄

fy(y)dy (2.1c)

=

∫
1g(x,y)≤z̄dPy, (2.1d)

where pf (x) remains a function of the deterministic variables x, in other words, the probability

of failure is different for different systems. Fg(z̄) is the cumulative distribution function of g(x, y)

whose definition is given in the following statement. P [·] represents probability. (2.1c) shows the

probability of failure definition as a volume integral over the failure set F , and (2.1d) makes use of

the indicator function 1g(x,y)≤z̄ which by definition is 1 when g(x, y) ≤ z̄ and 0 otherwise.

Despite the convenient definition of the probability of failure pf , unfortunately the analytic

solution of the typically multidimensional integral in (2.1) is in general very difficult, if not impossible

to obtain. The problem is further exacerbated since the shape of the failure region is also typically

unknown a priori. Section 2.1.2 summarizes a variety of methods for estimating pf .

2.1.1 Multiple Limit States

When multiple limit states are present in a system, the specification of the failure region can become

more complicated. There are two common cases: in a series system the failure of one subsystem

leads to a system failure, whereas in a parallel system system failure only occurs once all subsystems

have failed. In both cases a simple expression can be given for the system’s probability of failure. In

a combined system where subsystems interact in both series and parallel there is no such equally neat

mathematical description, although such a description can be given for any system using Boolean

operations on indicator functions [72].

In a series system (i.e. failure of one subsystem results in system failure), the probability of
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failure is

pf (x) = P

[
n⋃
i=1

{(x, y) ∈ Rn ×Rp : gi(x, y) ≤ z̄i}
]

= P [mini {gi(x, y)− z̄i} ≤ 0] .

(2.2)

In a parallel system (i.e. system failure occurs only when all components fail), the probability of

failure is

pf (x) = P

[
n⋂
i=1

{(x, y) ∈ Rn ×Rp : gi(x, y) ≤ z̄i}
]

= P [maxi {gi(x, y)− z̄i} ≤ 0] .

(2.3)

2.1.2 Survey of Reliability Analysis Methods

In general, reliability analysis methods typically fall into one of three classes: sampling methods,

most probable point (MPP) methods, and response surface methods.

In sampling methods, described in more detail in section 2.2, the quantities of interest or limit

states are directly sampled to obtain an estimate of reliability. The simplest approach is simple Monte

Carlo which can be augmented by importance sampling [97, 99] to increase efficiency. Other sampling

methods such as directional simulation [20] and its adaptation for importance sampling [37] as well

as subset simulation [13] are alternative sampling methods that have been applied to reliability

analysis. However, while the approaches above increase the efficiency of obtaining an accurate

reliability estimate they are often still too expensive to be used for systems modeled using expensive

computer codes.

In most probable point methods, described in more detail in section 2.3, the failure point in the

random space which has the highest likelihood of failure is searched for and then used to obtain

an estimate of the reliability. The classical first-order reliability analysis (FORM) and second-

order reliability analysis (SORM) methods are examples of MPP methods [38] where the limit state

separating the safe and failure regions is approximated as a hyperplane or a quadratic surface,

respectively. MPP methods can benefit from analytic sensitivities, provided that sensitivities for

quantities of interest can be efficiently obtained [4, 8], however they are inaccurate, especially for

higher dimensions, when the limit state is not linear or quadratic [115].

Response surface methods have the advantage of providing a cheap estimate of reliability via

sampling or other methods from a response surface model, provided that the model is accurate

in regions that contribute to the reliability estimate. Section 2.4 surveys a few common methods.

Polynomial regression [23, 63], artificial neural networks [23, 63], support vector machines [87], and

kriging [18, 42, 71], among other response surfaces have been investigated in the literature. Adaptive

construction of response surfaces has also been considered and been shown to drastically reduce the

14



CHAPTER 2. RELIABILITY

number of exact quantity of interest simulations compared to sampling methods, particularly for use

with a kriging response surface where an estimate of model inaccuracy is available [71]. In addition,

hybrid methods have also been proposed to mitigate inaccuracies due to incorrect response surfaces

(see section 2.5); for example Li et al’s importance sampling-based approach relies only on exact

data in important regions of the random space and on the response surface elsewhere [81].

2.1.3 The Standard Normal Space

In many reliability analysis methods, the integration for probability of failure in (2.1) is performed

in the standard normal space, which is the space where the problem’s random variables have been

transformed to zero mean, unit variance, uncorrelated random normal variables. This space is often

denoted as the U -space corresponding to the standard normal variables u, in contrast to the original

space of the physically meaningful random variables y.

The primary benefit of performing the integration in the standard normal space is a very conve-

nient interpretation: in the standard normal space, the closest point on the limit state (g(u) = 0)

to the origin is the point of maximum likelihood of failure [115, 121], also referred to as the most

probable point of failure (MPP). Consequently many algorithms for estimating the probability of

failure pf implement iterative techniques for finding the MPP(s) and approximating the limit state

around these points [38].

A variety of transformations have been proposed for transforming correlated non-normal vari-

ables y into standard normal variables u ∼ N (0, 1) such as the Rosenblatt [110] and Nataf [79]

transformations. Ditlevsen and Madsen provide a good overview of different methods [38]. When y

are uncorrelated, the Rosenblatt and Nataf transformations are the same and given by

ui = Φ−1(Fi(yi)), (2.4)

where Φ(·) is the standard normal cumulative distribution function and Fi(·) is the cumulative

distribution function for yi ∼ Yi.

Rosenblatt Transform

The Rosenblatt transform [110] can be used when the joint probability distribution function for

the random variables is specified (a typically rare situation) or when conditional distributions are

specified for the random variables. A set of correlated random variables y ∼ Y can be transformed

to a set of uniform uncorrelated variables z ∼ U(0, 1) in the following manner beginning with the
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marginal distribution of the first variable [110]:

z1 = P [Y1 ≤ y1], (2.5a)

z2 = P [Y2 ≤ y2 | Y1 = y1], (2.5b)

... (2.5c)

zp = P [Yp ≤ yp | Y1 = y1, . . . , Yp−1 = yp−1]. (2.5d)

A transformation from the set of uniform uncorrelated variables z to the standard normal vari-

ables u is easily made with standard normal quantile function u = Φ−1(z). Note that in most

situations the transformation proposed in (2.5) must be performed numerically.

Nataf Transform

The Nataf transform [38, 79] can be used when the marginal distributions for the correlated random

variables y are specified together with a linear correlation matrix R specifying dependencies between

variables defined as

Rij = E

[(
yi − µi
σi

)(
yj − µj
σj

)]
, (2.6)

where µi is the mean of yi and σi is the standard deviation of yi.

First the marginal transformation from (2.4) is applied to y ∼ Y , which yields a set of (still

correlated) variables z ∼ Z. Z is assumed to be a standard normal vector with correlation matrix

R0. A set of standard normal variables is then typically obtained via

u = L>z, (2.7)

where L is the lower triangular Cholesky factor or similar square root for R−1
0 [79]. The normal

correlation matrix R0 must be calculated so as to be consistent with the prescribed correlation

matrix R. The following integral equation is solved to determine the elements R0,ij of R0:

Rij = E

[(
yi − µi
σi

)(
yj − µj
σj

)]
= E

[(
F−1
i (Φ(zi))− µi

σi

)(
F−1
j (Φ(zj))− µj

σj

)]

=
1

σiσj

∫ ∫ (
F−1
i (Φ(zi))− µi

) (
F−1
j (Φ(zj))− µj

)
ϕ2(zi, zj , R0,ij)dzidzj ,

(2.8)

where ϕ2(zi, zj , R0,ij) is the bivariate standard normal probability density function with correlation

R0,ij . The solution of (2.8) is typically obtained numerically (when possible) although approxima-

tions exist [38].
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Figure 2.1: Nonlinearities introduced by the Nataf transformation from the physical y space (left)
to the standard normal space u (right) for two correlated variables y1, y2 ∼ Γ(1) (equivalent to an
exponential distribution) with linear correlation R12 = 0.05. Note how the initially linear limit state
becomes nonlinear. The black dot marks the mean of the random variables in both the physical
space and standard normal space.

Despite the popularity of the method, the Nataf transform may be impossible, for example in

the situations where (2.8) does not have a solution due to large Rij or yields a non-positive definite

correlation matrix R0 [38, 79]. Lebrun and Dutfoy recast the transform in terms of cupola theory

and show the Nataf transformation is equivalent to the choice of a normal cupola for the joint

distribution of y [79]. They highlight some of the limitations of the Nataf transformation including

failure to accurately model tail dependencies when the normal cupola is used as well as lack of a

solution of (2.8) under certain combinations of marginal distributions with the specification of a

linear correlation matrix [79].

2.1.4 The Reliability Index β

The geometric or Hasofer-Lind reliability index β is often used in reliability analysis and RBDO

problems instead of the probability of failure pf . It derives from the structural reliability analysis

literature [38] and measures the minimum distance from the mean to the limit state surface g(x, y) =

z̄ where failure first occurs in the standard normal space:

β = minu{
√
u>u | g(x, u) = z̄}. (2.9)
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When a first-order approximation to the limit state is made (see section 2.3.1) the approximate

failure probability p̂f is related to β by

p̂f = Φ(−β), (2.10)

where Φ(·) is the standard normal CDF. (2.10) is exact for a linear limit state, however it may incur

large errors in p̂f for nonlinear limit states, especially in higher dimensions [115]. A typical target

value of β for design problems is 3 which corresponds to a failure probability pf = 1.35 × 10−3 for

a limit state g(x, u) linear in u.

The generalized reliability index βg was proposed to overcome the shortcomings of the geometric

reliability index and is defined as

βg ≡ Φ−1(pf ), (2.11)

where Φ−1(·) is the inverse standard normal CDF and pf is the failure probability [38]. The use of the

generalized reliability index βg does not imply a normal assumption on the input random variables

y for the limit state g(x, y); rather the inverse standard normal CDF is used a mathematical tool to

extend the concept of the geometric reliability index to more general problems.

2.1.5 Forward vs. Inverse Problems

The forward reliability analysis problem of estimating the probability of failure pf given limit states

g(x, y) and corresponding failure levels z̄ is given by

pf = F (z̄), (2.12)

where F is the cumulative distribution function for random variables y. The direct solution of

the reliability analysis problem via (2.12) is known as the reliability index approach. The solution

of (2.12) is straightforward with sampling methods and other well established techniques such as

FORM. The forward analysis leads to chance constraints in reliability-based design optimization

written as

pf (x) < p̄f , (2.13)

where p̄f is an upper limit on the probability of failure pf (x).

However, in certain cases solving the inverse reliability analysis problem which is called the

performance measure approach is more advantageous. In this method, a response level z = g(x, y)

is calculated for a prescribed probability of failure p̄f instead as

z = F−1(p̄f ; y), (2.14)

where F−1 is the quantile function corresponding to limit state g(x, y) for prescribed probability of
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failure p̄f . The notation makes clear that the quantile function is also dependent on the choice of

random variables y. The inverse reliability analysis leads to quantile constraints in reliability-based

design optimization:

z(x) > z̄, (2.15)

where z̄ is a lower limit on the limit state level z(x).

The use of the inverse problem is preferable over the forward problem in reliability-based design

optimization for several reasons:

Robustness. A solution of the forward reliability analysis from (2.1) for pf can easily yield pf = 0

or pf = 1, i.e. the design either is either always safe or always fails [128]. Such a scenario intro-

duces numerical noise into the optimization, thereby interfering with gradient calculations and

algorithm convergence etc. The problem is further exacerbated when approximate estimates

p̂f of the probability of failure are used as such estimates may not be sufficiently resolved for

extremely small values of pf and will therefore encounter the same situation. On the other

hand, a solution to the inverse problem always exists, both analytically and numerically, for a

prescribed probability of failure pf .

Efficiency. A forward reliability analysis may require a large number of function evaluations to

obtain a converged estimate p̂f , particularly when pf � p̄f , the required reliability target. In

contrast, an inverse reliability analysis explicitly returns limit state levels corresponding to the

desired probability of failure; as a result it may be more efficient when the failure probability

is low [41].

Ease of solution. The inverse reliability analysis is easier to solve for certain types of reliability

analysis methods such as the most probable point methods [3, 128]. In such situations, the use

of the inverse reliability analysis may increase the efficiency and robustness of the reliability

analysis. Note however that the solution of the inverse problem may be substantially more

complicated in other situations, notably the multiple limit state case (see chapter 3).

Suitability for RBDO. Finally, the solution of the inverse problem may be better suited for cer-

tain reliability-based design optimization (RBDO) algorithms. In chapter 4, a new sequential

method for RBDO is introduced which uses anchored decomposition. The use of an inverse

reliability analysis in this sequential method leads to a convenient decoupling of the reliability

and optimization problems which in turn enhances the efficiency of the RBDO method.

Clearly the inverse reliability analysis has several strengths compared with the forward reliability

analysis. The primary difficulty of solving the inverse reliability analysis arises when multiple limit

states are present, in which case (2.14) may have no unique solution if a system-level probability of

failure p̄f is prescribed. For example, a high stress and a low temperature in an aerospace design

problem such as the supersonic nozzle problem introduced earlier may result in the same probability
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of failure as a low stress and a high temperature. Clearly, there may be two (or more) solutions to

the inverse problem.

As a result, the inverse reliability analysis has primarily been applied to problems with a single

limit state or those where multiple limit states can be considered as a single limit state. The use of

the inverse reliability analysis for MPP methods is well-established [3, 128]. Bichon et al make an

extension of the kriging-based response surface method EGRA to the inverse reliability analysis for

a single limit state [17]. Li considers the inverse reliability analysis for both single and multiple limit

states in the context of polynomial response surfaces and FORM [80] and identifies the problem

with non-unique solutions for the inverse problem. To avoid the non-uniqueness issue in the inverse

problem, Li proposes artificially constructing dependencies between the limit states. For example

βi, the reliability index for limit state gi(x, y) (i = 2 . . .m for m limit states) is considered to be

a fixed ratio ki of β1, i.e. βi = kiβ1. In this way, the multiple limit state problem is reduced to a

single limit state problem in terms of β1. Unfortunately when used in RBDO, this method will not

lead to a correct solution if ki are picked incorrectly.

2.2 Random Sampling Methods

The most basic method for the calculation of the probability of failure integral in (2.1) is simple

Monte Carlo, however large numbers of limit state function evaluations are required to estimate

the small probabilities of failure required in reliability analyses. Variance reduction methods such

as Latin Hypercube Sampling (LHS) and especially importance sampling etc. can be very helpful

but may still exceed the available computational budget when limit state functions are expensive

to evaluate as in the case of coupled multiphysics simulations. Here four sampling methods are re-

viewed that have found application in reliability analysis: simple Monte Carlo, importance sampling,

directional simulation, and subset simulation.

2.2.1 Simple Monte Carlo

The simplest and most robust method is simple Monte Carlo which is attractive due to its inde-

pendence of convergence rate from dimension and its applicability for non-smooth functions2. Its

primary limitation lies in its slow convergence rate which necessitates large numbers of samples to

accurately estimate small probabilities of failure. By drawing N independent random samples for y,

an unbiased estimate of pf can be obtained as

p̂f (x) =
1

N

N∑
i=1

1g(x,y)≤z̄(y
(i)), (2.16)

2An excellent introduction to the Monte Carlo method and its many varieties is provided by Owen [96].
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where 1g(x,y)≤z̄ is the indicator function for failure in the domain, i.e. taking the value 1 in the

failure region and 0 otherwise. The variance of the estimator is obtained as

σ2
f (x) = Var

(
1

N

N∑
i=1

1g(x,y)≤z̄(y
(i))

)

=
1

N
Var

(
1g(x,y)≤z̄(y)

)
=

1

N

(
E[12

g(x,y)≤z(y)]− E[1g(x,y)≤z̄(y)]2
)

=
1

N

(
E[1g(x,y)≤z(y)]− E[1g(x,y)≤z̄(y)]2

)
=

1

N
(pf − p2

f )

=
pf
N

(1− pf ),

(2.17)

where we make use of the fact that E[12
g(x,y)≤z̄(y)] = E[1g(x,y)≤z̄(y)]. A plug-in estimate p̂f from

(2.16) is commonly used to substitute for pf in (2.17) to estimate σ2
f . The coefficient of variation of

the estimator can be estimated as

ˆCoV (x) =

√
1− p̂f
Np̂f

, (2.18)

which shows that the coefficient of variation of the estimator (and likewise root mean square error)

converges at the relatively slow rate of
√
N . For example, if a probability of 10−6 is to be estimated

with a target coefficient of variation of 0.1, 108 samples will be required, a number much too large

for expensive multiphysics simulations. On the other hand, the coefficient of variation in (2.18) is

independent of the complexity of g(x, y), which could be discontinuous or highly nonlinear, and is

also independent of the dimension of y, which could be very large.

The central limit theorem can be used to establish a confidence interval for the probability of

failure estimate as

p̂f ± zα/2
√
p̂f (1− p̂f )

N
, (2.19)

where zα/2 is the standard normal variate for a confidence interval 1 − α. For a 95% confidence

interval, zα/2 ≈ 1.96. In the case that p̂f is zero (i.e. the failure region was not sampled), the

confidence interval can be estimated as [0, 3/N] with 95% confidence [96], however in such situations

using importance sampling or other methods is preferable.

2.2.2 Importance Sampling

Importance sampling can be used to adjust a random sampling method so that more samples fall

in the important region of interest. To adapt importance sampling for the probability of failure
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estimate, (2.1) can be rewritten as

pf (x) = P [g(x, y) ≤ z̄]

=

∫
g(x,y)≤z̄

fy(y)dy

=

∫
g(x,y)≤z̄

fy(y)

hy(y)
hy(y)dy,

(2.20)

where hy(y) is the biasing distribution and fy(y)/hy(y) is the likelihood ratio. By sampling from the

biasing distribution and calculating the likelihood ratio, a Monte Carlo estimator based on (2.20)

can be constructed as

p̂f (x) =
1

N

N∑
i=1

1g(x,y)≤z̄(y
(i))

fy(y(i))

hy(y(i))
. (2.21)

The estimator is unbiased and its variance is given by

σ2
f (x) = Var

(
1

N

N∑
i=1

1g(x,y)≤z̄(y
(i))

fy(y(i))

hy(y(i))

)

=
1

N
Var

(
1g(x,y)≤z̄(y)

fy(y)

hy(y)

)
=

1

N

(
Eh

[(
1g(x,y)≤z̄(y)

fy(y)

hy(y)

)2
]
− p2

f

)

=
1

N

(
Eh

[
1g(x,y)≤z̄(y)

f2
y (y)

h2
y(y)

]
− p2

f

)

=
1

N

(∫
g(x,y)≤z̄

f2
y (y)

hy(y)
dy + p2

f

∫
g(x,y)≤z̄

hy(y)dy − 2pf

∫
g(x,y)≤z̄

fy(y)dy

)

=
1

N

(∫
g(x,y)≤z̄

f2
y (y)

hy(y)
+ p2

fhy(y)− 2pffy(y)dy

)

=
1

N

(∫
g(x,y)≤z̄

(fy(y)− pfhy(y))
2

hy(y)
dy

)
,

(2.22)

where Eh[·] denotes expectation with respect to density hy(y). An estimator for the variance can

be obtained using the original samples sampled from the biasing distribution hy(y) as

σ̂2
f =

1

N

N∑
i=1

1g(x,y)≤z̄(y
(i))

(
fy(y(i))

hy(y(i))
− p̂f

)2

. (2.23)

Thus a confidence interval can be constructed as

p̂f ± zα/2
σ̂f√
N
, (2.24)
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where zα/2 is the standard normal variate for a confidence interval 1− α.

The difficulty of importance sampling lies in first determining the important region(s), and

next determining a good biasing distribution for these region(s) [96]. There are several types of

importance sampling which have been employed for reliability estimation including cross-entropy [81]

and choosing a normal distribution for hy(y) centered at the design point(s) [115]. Ang et al consider

a kernel-based adaptive method for importance sampling [10]. A survey of several techniques applied

to reliability analysis can be found in [97] and [99]. Although importance sampling can drastically

decrease the number of samples required for an accurate estimate of pf compared to Monte Carlo, use

of importance sampling alone still typically exceeds the computational budget for reliability analyses

with complex analyses. It is often used as a component of other reliability analysis methods, in

particular response surface methods [19, 26, 37]. Note that a transformation to the standard normal

space is not necessary for the implementation of importance sampling.

2.2.3 Directional Simulation

The method of directional simulation was originally introduced by Deák for the integration of the

multivariate normal distribution [35] and subsequently investigated by Ditlevsen, Bjerager, and oth-

ers for application to reliability analysis [38, 20, 88, 39, 91]. The key idea is to sample random

directions and perform a univariate integration along each direction to obtain the conditional prob-

ability of failure given that direction. An estimator of the total probability of failure p̂f can then be

constructed by combining all simulated directions. Directional simulation is usually performed in the

standard normal space (although it is not limited as such [88]) since doing so affords a closed-form

analytic formula for the conditional probabilities of failure. The univariate integration is typically

approximated by only finding the most probable point of failure for each direction, which is typi-

cally determined via a linesearch. The derivation of directional simulation below primarily follows

Bjerager [20] and is accompanied by Figure 2.2.

Let each u ∈ Rp be a realization of the standard normal random vector U in the standard normal

space expressed as u = Ra where a ∈ Rp is a realization of the random unit vector A constrained

to the surface of the unit sphere Sp(0, 1) ∈ Rp and R2 ∼ χ2
p; both are independent. The probability

of failure pf from (2.1) can then be written as

pf (x) = P [g(x, u) ≤ z̄]
= P [g(x, u) ≤ z̄ | A]P [A]

=

∫
Sp(0,1)

P [g(x,RA) ≤ z̄ | A = a]fa(a)da

=

∫
Sp(0,1)

P [g(x,Ra) ≤ z̄]fa(a)da.

(2.25)

The conditional probability P [g(x,Ra) ≤ z̄] in (2.25) can be approximated assuming that g(x,Ra) ≤

23



2.2. RANDOM SAMPLING METHODS

−2 0 2 4
u1

0

2

4

u
2

u(2)

r2

a(1)
a(2)

Fail

Safe

(a) Limit state g(x, u) = z̄ (solid line) is shown in the
standard normal space separating the safe and fail-
ure regions. Uniform random vectors a(1) and a(2) are
simulated on the unit sphere and define random direc-
tions in the standard normal space. These directions
are then searched along until the limit state is discov-
ered. Here failure first occurs along direction a(2) at a
distance r2 from the origin, but does not occur along
direction a(1).
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(b) The linesearch along a simulated direction may not
always have a unique root as shown in this example
where the limit state defines a band of failure sep-
arating two safe regions. For example, direction a(2)

intersects the limit state g(x, u) = z̄ twice and has two
roots labeled α and β. In such cases, it is important
to at least find the root closest to the origin (α) as this
has a larger impact on the probability of failure pf .

Figure 2.2: Schematic of directional simulation and its limitations.

z̄ on an interval R ∈ [r,∞). By determining the location of the limit state surface at distance r from

the origin along direction a, the conditional probability can thus be written as 1−χ2
p(r

2) where χ2
p(·)

is the chi-squared cumulative distribution function with p degrees of freedom. Thus an unbiased

estimator for pf can be constructed by sampling i.i.d. random directions a:

p̂f (x) =
1

N

N∑
i=1

P [g(x,Ra(i)) ≤ z̄]

=
1

N

N∑
i=1

(
1− χ2

p(r
2
i )
)
.

(2.26)

An estimate for the variance of the estimator is

σ̂2
f (x) =

1

N(N − 1)

N∑
i=1

(
1− χ2

p(r
2
i )− p̂f

)2
. (2.27)

Finally, we note as usual for large N a confidence interval for p̂f can be established as

p̂f ± zα/2σ̂f , (2.28)
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Table 2.1: Comparison of directional simulation when only the root closest to the origin is found (DS)
and simple Monte Carlo (MC) for several problems (Rastrigin with u ∈ R2, cantilever beam with
u ∈ R4, and short column with u ∈ R4) at various limit state levels z. Probabilities of failure are
reported with their coefficient of variation in parentheses. Directional simulation provides excellent
probability of failure estimates in certain cases (see the short column results), and reasonable but
conservative results in other cases, in particular for very nonlinear limit states (see Rastrigin and
cantilever beam results).

Problem z p̂f,MC p̂f,DS

Rastrigin (2D)
-4.0453 10−2 (0.001) 1.900×10−2 (0.01)
-12.8593 10−4 (0.01) 1.394×10−4 (0.01)
-22.2623 10−6 (0.1) 1.386×10−6 (0.01)

Cantilever Beam
[0.00, 0.05]> 0.9765×10−2 (0.02) 2.0722×10−2 (0.01)

[−0.10,−0.01]> 0.9400×10−4 (0.02) 1.6154×10−4 (0.01)

Short Column
0.2156 10−2 (0.001) 1.003×10−2 (0.01)
-0.0802 10−4 (0.01) 0.991×10−4 (0.01)
-0.3796 10−6 (0.1) 0.994×10−6 (0.01)

where zα/2 is the standard normal variate for a confidence interval 1− α.

The primary difficulty with directional simulation lies in the determination of the minimum

distance r from the origin to the limit state surface defined by level z̄ along direction a which is

typically determined by a line search. Efficient rootfinding methods such as Brent’s method [103]

can be used to determine a root once bracketed. For highly nonlinear limit states (for example the

Rastrigin function shown in figure 2.3), the bracketing procedure requires care and may become

expensive if it is to be robust. Univariate optimization methods may be susceptible to local minima,

however efficient global optimization methods [75] or a simple pattern search, albeit more expensive,

can be effective for bracketing and/or rootfinding in such cases.

As the regions of the limit state closest to the origin contribute the most to the probability of

failure, neglecting more distant points on the limit state (if any) at worst leads to a more conservative

estimate of pf . For this reason, directional simulation works well for so-called star-shaped safe

regions [38], as each point on the boundary of such regions is accessible by a ray from the origin and

will contribute to the probability of failure estimate. For spherical limit states, only a single sample

is required to obtain the exact failure probability.

Table 2.1 compares probabilities of failure obtained using simple Monte Carlo and directional

simulation (using only the first root closest to the origin) for three problems and variety of prob-

abilities of failure. Directional simulation performs very well for the short column problem but

gives conservative estimates for the cantilever beam problem and highly nonlinear Rastrigin func-

tion. Figure 2.3 compares the limit state surface identified during a directional simulation procedure

when roots are correctly and incorrectly identified for the highly nonlinear Rastrigin function in 2

dimensions.
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Figure 2.3: The highly nonlinear Rastrigin limit state function in the bivariate standard normal
space is shown. Failure occurs for g(u) ≤ −4.0453 which yields a probability of failure of 1% (Monte
Carlo simulation, CoV = 0.001). The first 1000 points used in the directional simulation integration
are shown as red dots. The insufficient bracketing used in the directional simulation on the left misses
the smaller failure regions closer to the origin and actually underpredicts the failure probability as
0.84% (CoV = 0.01). However when a robust bracketing method is used (shown on the right), the
correct failure regions are identified and directional simulation overpredicts the failure probability
as expected as 1.90% (CoV = 0.01). In this particular example a pattern search with 100 equally
spaced points was found to be sufficient for robust integration of the nonlinear function. Efficiency
could be increased with other univariate global optimization methods. When directional simulation
using a linesearch that finds multiple roots is used (not shown), the estimated failure probability is
1.01% (CoV = 0.01), which matches very well with the Monte Carlo estimate as expected.

Although directional simulation can perform quite well for problems of small dimensions, it suf-

fers a similar fate as Monte Carlo sampling in high-dimensional spaces where many of the sampled

directions do not encounter the limit state. As a result, importance sampling techniques have also

been applied to directional simulation in an effort to increase its convergence rate in higher dimen-

sions. Bjerager considered the effects of a mixed sampling density and derives several sampling

densities for specific cases [20]. Ditlevsen et al also considered directional importance sampling and

derived densities for an approximating halfspace and a convex polyhedral set [37]. Moarefzadeh and

Melchers proposed a directional importance sampling method in the physical y space as opposed

to the standard normal space [88]. They considered using a multivariate normal joint probability

distribution with the same covariance matrix as the original joint pdf for the sampling density. Pa-

paioannou proposed an intuitively appealing adaptive directional importance sampling method that
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centers sampling distributions at important directions from a deterministic point set [99]. Shayan-

far et al considered a cross-entropy adaptive directional importance sampling method that centers

samples around an important direction [119].

2.2.4 Subset Simulation

In the subset simulation method introduced by Au and Beck in 2001 [13], the probability of failure

pf is estimated by a product of larger conditional probabilities which are more easily obtained. Each

conditional probability corresponds to an intermediate failure region and is estimated in sequence

using a Markov chain Monte Carlo simulation technique. In this way the true failure region is

reached after a certain number of steps.

0 2 4
y1

0

2

4

y 2

F1 F2 F3

g(y) = z1

g(y) = z2

g(y) = z̄

Safe

Figure 2.4: Three failure regions F1 through F3 to be used in subset simulation. By sampling for
failure on region F1 first and then estimating the conditional probability of failure on subsequent
more distant failure regions (F2 and then F3), an estimate of the failure probability for failure region
F3 can be obtained corresponding to limit state level z̄.

In particular, consider a sequence of failure regions F1 ⊂ F2 ⊂ · · · ⊂ Fs = F where F ≡
{(x, y) ∈ Rn × Rp | g(x, y) ≤ z̄} is the true failure region we are interested in estimating defined

by limit state(s) g(x, y). Let the event of belonging to a given region Fi be denoted by Fi as well,

i.e. P [(x, y) ∈ Fi] = P [Fi]. Then the definition of conditional probability can be used to separate
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the failure probability as

pf (x) = P [F ] = P [Fs]

= P

[
s⋂
i=1

Fi

]

= P

[
Fs |

s−1⋂
i=1

Fi

]
P

[
s−1⋂
i=1

Fi

]

= P [Fs | Fs−1]P

[
s−1⋂
i=1

Fi

]
= . . .

= P [F1]

s−1∏
i=1

P [Fi+1 | Fi] .

(2.29)

Thus by estimating P [F1] and the conditional probabilities P [Fi+1 | Fi] for i = 1, . . . , s − 1,

an estimate of pf can be constructed. By choosing appropriate failure regions Fi, the estimated

probability of failure for each failure region can be large, around 0.1, and thus easily estimated

however the constructed probability of failure p̂f for the true failure region F can be quite small.

P [F1] can be initially estimated using Monte Carlo sampling and the calculation of the remaining

conditional probabilities can be efficiently performed using a Markov chain Monte Carlo method

based on the Metropolis algorithm [13].

Au and Beck show that the total number of samples required to obtain an estimate p̂f with a

specified coefficient of variation is proportional to |log pf |r where r ≤ 3 [13]. This compares very

favorably to the required number of samples proportional to 1/pf for Monte Carlo simulation.

2.3 MPP Methods

Traditional most probable point (MPP) methods such as the First Order Reliability Method (FORM)

and Second Order Reliability Method (SORM) iteratively approximate the limit state using a first

order or second order Taylor series expansion while searching for the point on the limit state with

maximum likelihood of failure, i.e. the most probable point of failure (MPP) [38]. As a result, MPP

methods rely on the standard normal space and therefore a transformation of variables u = T (y)

as discussed in section 2.1.3. The description of MPP methods is facilitated by the reliability index

β introduced in section 2.1.4. Recall that the geometric reliability index β is the distance ‖u‖2
between the origin and the MPP in the standard normal space [38, 121]. For some applications

multiple MPPs may occur.

Almost all MPP methods rely on approximation of the limit state in the vicinity of the MPP(s).

Thus, despite their widespread use [4, 5, 8, 38, 47, 106, 121, 128], they can suffer from poor accuracy

28



CHAPTER 2. RELIABILITY

0 2 4
u1

0

2

4

u
2

Fail

Safe

Figure 2.5: First order reliability method (FORM). The most probable point (MPP) of failure is
identified by the red dot on the limit state g(x, u) = z̄ (solid black line). The FORM method
approximates the limit state by a hyperplane at the MPP, shown as the dashed blue line.

if multiple MPPs are present or if not all the MPPs are identified. In addition, if the limit state

is not represented well by a linear or quadratic function at the MPP then the failure probability

estimated from FORM or SORM will be inaccurate. Even small discrepancies in the vicinity of the

MPP can cause large inaccuracies in the estimated probability of failure, particularly as the number

of dimensions increases [115].

2.3.1 FORM

In the First Order Reliability Method (FORM), the limit state g(x, u) is approximated using a

hyperplane at the most probable point (MPP). The probability of failure is estimated as

p̂f = Φ(−β), (2.30)

where β is the geometric reliability index defined as the distance of the MPP from the origin in the

standard normal space. When failure occurs at the origin, then β is given by β = ‖uMPP ‖2 instead,

indicating failure at the mean of the random variables.
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When a forward reliability analysis (reliability index approach) is performed, the following opti-

mization problem is solved to determine a MPP:

minimize
u

u>u

s.t. g(x, u) = z̄,
(2.31)

where z̄ is the specified limit state level(s) corresponding to failure.

To perform an inverse reliability analysis (performance measure approach), the following opti-

mization problem is solved instead:

minimize
u

g(x, u)

s.t. u>u = β2,
(2.32)

where the optimal objective value g(x, uMPP ) is the limit state level z̄ corresponding to the prescribed

reliability index β.

Although the FORM traditionally performs the MPP optimization using the exact limit state

function g(x, u), a variety of limit state approximations have also been considered in an effort to

reduce the computational cost associated with solving the optimization problems in 2.31 and 2.32.

These include the Advance Mean Value (AMV) method where the limit state is linearized in either

the physical space g(x, y) or the standard normal space g(x, u) and the AMV+ method where the

limit state linearizations are updated during the optimization [47]. The AMV+ method has shown

the most consistent savings in computational cost for comparable accuracy to traditional FORM.

In addition to applying general optimization algorithms to the problems in (2.31) and (2.32), a

variety of specialized methods have been developed. Such methods exploit the structure of the MPP

search problem and use techniques such as arc searches, local adaptive approximations of the limit

state and steepest descent to find the MPP. Youn et al’s Hybrid Mean Value (HMV) and HMV+

methods [135] and Du et al’s search algorithm [41] are two such examples.

2.4 Response Surface Methods

In response surface methods, the limit state g(x, y) or transformed limit state g(x, u) is approximated

with a response surface from which the probability of failure is estimated via (2.1) usually using

a sampling method such as Monte Carlo or importance sampling. Polynomial regression, kriging,

artificial neural networks (ANN), support vector regression, and other response surfaces have been

used in reliability analysis with varying degrees of success. Several comparative studies have also

been performed [55, 63, 23, 138], however most studies consider academic problems limited to a

handful of random variables.
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Fox uses a design of experiments to construct a quadratic response surface for reliability estima-

tion in a problem with 3 random variables [54]. In a later paper, he compares Monte Carlo, Latin

Hypercube Sampling (LHS), the Advanced Mean Value method (AMV), SORM, and a quadratic

polynomial response surface for reliability estimation [55]. The SORM and quadratic response sur-

face perform reasonably well when compared with Monte Carlo and LHS and the author notes that

AMV and SORM are unable to provide an estimation of their accuracy. Gomes and Awruch com-

pare linear, quadratic, and cubic polynomial response surfaces, ANN, Monte Carlo, and the FORM

method for simple structural problems [63]. They find neural networks may be able to reduce the

number of limit state function evaluations while obtaining comparable reliability estimates as other

methods. Bucher and Most compare polynomial response surfaces, ANN, radial basis functions

(RBF), and moving least squares for reliability analysis of structures with up to 6 random vari-

ables [23]. They find that RBF and ANN converge the fastest in terms of error in p̂f . Kriging [138]

and support vector machines [87] have also been used to construct response surfaces for reliability

estimation.

The primary drawback of response surface methods is possible inaccuracies in the approximated

limit state which affect the calculation of an accurate estimate p̂f . Adaptive refinement techniques

can be used to combat this issue: Li et al adaptively refine the estimate of pf by explicitly replac-

ing all approximate limit state function evaluations by exact evaluations near the limit state [81].

Grooteman does the same but restricts replacement to important regions of the limit state only

while also adaptively refining the response surface [66]. Bichon et al instead adaptively refine an

approximation of the limit state in a large area of the design space prior to performing a reliability

analysis [19].

Normalization

Scaling the sample data (y(i), g(i)) in preparation for fitting a response surface is common practice.

It may also help ameliorate the fitting process for response surfaces and is highly recommended for

kriging and artificial neural network response surfaces. Given a set of samples g(i) corresponding to

(x, y(i)), response surface data can be scaled, for example using a max-min scaling:

g̃(i) =
g(i) −minj(g

(j))

maxj(g(j))−minj(g(j))
.

Data y(i) can be similarly scaled. The scaled data (ỹ(i), g̃(i)) can then be used to construct the

response surface.

2.4.1 Polynomial

Linear regression is a common method for building response surfaces using polynomials with standard

regression techniques. Typically linear or quadratic polynomials are used. A linear polynomial for
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y ∈ Rp requires at least p+ 1 samples and a full quadratic polynomial with cross terms requires at

least (p2 + 3p)/2 + 1 samples for construction. The full quadratic polynomial response surface with

cross terms can be written as

ĝ(y) = a+

p∑
i=1

biyi +

p∑
i=1

ciy
2
i +

p∑
i=1

p∑
j>i

dijyiyj , (2.33)

where coefficients a, bi, ci, and dij can be estimated using ordinary least squares. The set of samples

(y(i), g(i)) used in the regression typically come from a design of experiments, where a factorial,

Box-Muller or other sampling plan such as Latin Hypercube Sampling is implemented. To mitigate

the explosion of number of cross-terms when higher-order polynomials are used it is also common to

invoke the so-called sparsity of effects principle [90]. This principle states that a system is usually

dominated by main effects and low order interactions, thus implying that higher order effects and

interaction terms can be ignored.

A variety of adaptive polynomial response surface techniques have also been considered [24, 63]

where the polynomial response surface is updated with new samples, say for example during a most

probable point search in the standard normal space (see section 2.3.1).

Polynomial Chaos

The polynomial chaos expansion (PCE) is a classical uncertainty quantification method which ap-

proximates a function by a series of mutually orthogonal polynomials [58]. It is, essentially, poly-

nomial regression. Optimal convergence of the PCE is obtained when the orthogonal polynomials

whose weighting functions correspond to the probability density functions of the random variables

in the approximated function are used [134]. A limit state g(y) can be approximated as

ĝ(y) =

t∑
i=1

aiΨi(y), (2.34)

where Ψi(y) is the ith basis function, ai is the ith coefficient, and the expansion is approximate since

it has been truncated to include t terms. The difficulty of efficiently constructing the approximation

in (2.34) lies in the calculation of the coefficients ai. In non-intrusive polynomial chaos the coefficients

ai can be estimated using a pseudo-spectral projection process

ai =
1

〈Ψ2
i (y)〉

∫
Rp

g(y)Ψi(y)w(y)dy, (2.35)

where the inner product 〈Ψi(y)〉 can be calculated a priori and w(y) is the weight function corre-

sponding to polynomial basis Ψi(y) [46]. The multidimensional integral over Rp, the space spanned

by all random variables in y, can be approximated using quadrature, of which several techniques

have been proposed including tensor product quadrature, cubature, and sparse grids [133]. Figure
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2.6 compares a tensor grid with its corresponding sparse grid in two dimensions. For a small number

of variables, full tensor product quadrature works well, but for higher dimensions, full tensor product

quadrature is too expensive and a sparse grid approach is more tractable although less accurate for

non-smooth functions [133].
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(a) Tensor grid.
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(b) Sparse grid.

Figure 2.6: A full tensor product grid using Clenshaw-Curtis quadrature (15 quadrature points
along each variable yi) is compared with its corresponding nested sparse grid. Note the reduction
in number of quadrature points required by the sparse grid leading to more efficient integration and
solution of polynomial coefficients.

The benefits of the generalized polynomial chaos expansion include an analytical estimate of the

mean and variance of g(y) in terms of the coefficients ai and adaptivity and error estimates for the

approximation. Details can be found in Xiu and Karniadakis [134] regarding optimal bases and

calculation of coefficients ai. Once the expansion is constructed, any sampling method can be used

to estimate the probability of failure pf . Note however that although polynomial chaos provides a

general approximation to g(y) including its mean and variance, the approximation ĝ(y) is not tuned

for the tails of the distribution and may lead to inaccurate estimates of probability of failure.

2.4.2 Kriging

Kriging3 is a widely used probabilistic method in geostatistics, engineering and data science for

interpolation, prediction, and function approximation given a limited set of data. In kriging an

initially unknown response g(y) : y ∈ Rp → R is modeled as a random field Z(y) due to lack of

3The name is derived from Daniel Krige for whom G. Matheron named the method in 1963.
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knowledge about the response and is refined as information becomes available. Since the response

is modeled as a random field, both a mean m(y) and variance s2(y) can be calculated for any point

y. Thus a major benefit of using a kriging response surface is the metric s(y) which can be used in

refinement and is often interpreted as a measure of uncertainty in the kriging model (although not

necessarily the true response itself).

One of the central ideas of kriging is to assume a relationship between a set of known data

(y(i), g(y(i))) for i = 1, . . . , N samples and then estimate information at locations where no data is

available. In kriging the relationship is encoded in a correlogram, or under stronger assumptions a

covariance kernel K(y(i), y(j)) which defines the covariance between response values at points y(i)

and y(j). Gaussian process regression refers to kriging under the assumption of a Gaussian random

field and typically under the additional assumption of a known and constant mean of zero. The

following treatment generally follows Chiles and Delfiner (Chapter 3) [29].

A general kriging model can be written as

Z∗(y) =

N∑
i=1

λi(y)Z(y(i)) + λ0(y), (2.36)

where scalars λi define a linear combination of the sample response values Z(y(i)) = g(y(i)) yielding

the random estimator Z∗(y). Note that the weights λi depend on the input data y whereas each

Z(y(i)) does not and is conditioned on an already sampled data pair (y(i), g(y(i))). Here, as is usual,

the ∗ superscript denotes estimated data. (2.36) can be concisely written as

Z∗(y) = λ>Z + λ0, (2.37)

where λ = [λ1 . . . λN ]> and Z = [Z(y(1)) . . . Z(y(N))]>.

The derivation of the system of kriging equations from which the coefficients λi can be calculated

is widely available (see for example [29, 33]) and is not reproduced here. However, it is worth

mentioning that the process in general is to first eliminate the bias of the kriging estimator Z∗(y)

and then minimize the mean square error of the estimator. Thus kriging is often said to give the

Best Linear Unbiased Predictor/Estimator (BLUP/BLUE) for a set of data [29].

Simple Kriging

In simple kriging, the mean for the random function Z(y) is assumed to be known and zero. The

following kriging system is then derived which allows determination of the unknown coefficients λi

at a point y [29, 151-152]:

Kλ = k0, (2.38)
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where K = K(Y, Y ) is the N × N matrix of data-to-data covariances for Y = [y(1) . . . y(N)]>, λ is

the vector of weights specific to point y, and k0 = K(Y, y) is the N × 1 covariance matrix between

the data and y. For example, the covariance matrix K takes the form

K =


k(y(1), y(1)) . . . k(y(1), y(N))

...
...

k(y(N), y(1)) . . . k(y(N), y(N))

 , (2.39)

where k(y(i), y(j)) is the covariance kernel/function giving the covariance between points y(i) and

y(j). The solution of (2.38) is easily implemented via Cholesky decomposition when K is positive

definite.

The mean of the kriging estimator m(y) follows from its definition as

m(y) = E[Z∗] = λ>Z

= k>0 K
−1Z.

(2.40)

The kriging variance s2(y) derives from the minimum mean square error calculation [29] as

s2(y) = Var(Z∗)(y) = K(y, y)− λ>k0

= K(y, y)− k>0 K−1k0.
(2.41)

(2.40) and (2.41) make no assumption on the distribution of the random functions Z(y) but they can

also be derived from a Gaussian process perspective. For simple kriging the expressions above for

mean and variance are the same as those derived using conditional expectation under the assumption

of a Gaussian process [108].

Universal Kriging

In universal kriging, the mean is not assumed to be known. Instead, it is written as a weighted sum

of basis functions as

m(y) = E[Z∗] =

B∑
i=1

aifi(y) = a>f(y), (2.42)

where ai are fixed coefficients for known basis functions fi(y) which can be determined through

weighted least-squares. The universal kriging model can then be written as

Z∗(y) = m(y) +R(y), (2.43)

where m(y) is known as the drift and R(y) is a zero-mean random function known as the residual.

The kriging model variance can be derived through the same process as for simple kriging and leads
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to a slightly larger and also no longer positive definite system of linear equations, with nevertheless

can be readily solved for small to moderate dimensions [29].

Gaussian Process Regression

Gaussian process regression is recovered by taking Z(y) to be a Gaussian random field in simple

kriging. In this case, the simple kriging estimator Z∗(y) is the same as the conditional expec-

tation E[Z(y) | Z(y(1)), . . . , Z(y(N))]. An estimate at point y is therefore normally distributed

as N
(
m(y), s2(y)

)
.

Covariance Kernels

The covariance kernel k(y(i), y(j)) encodes the spatial relationship in the data. In many cases an

assumption of second order stationarity is made which implies that the mean and variance of the

random field are invariant under translation. In this case the covariance kernel is dependent only

on the difference between the two points h = y(i) − y(j) and can be written as k(h). When the

covariance kernel is additionally invariant under rotations and reflections, it is said to be isotropic.

k(y(i), y(j)) is typically parameterized using hyperparameters whose values are chosen to more

accurately reflect the underlying data. A common method of choosing hyperparameters is Bayesian

maximum likelihood estimation [108]. Typically, the following log marginal likelihood optimization

problem is solved to determine the hyperparameters θ:

maximize
θ

log (P [z | Y, θ])

s.t. l ≤ h ≤ u,
(2.44)

where Y = [y(1), . . . , y(N)]> is the array of sampled data and z = [g(y(1)), . . . , g(y(N))]> is the

corresponding vector of obtained responses for N samples.

For a Gaussian process, the log marginal likelihood is

log (P [z | Y, θ]) = −1

2
z>K−1z − 1

2
log|K| − N

2
log2π, (2.45)

where K is the N ×N matrix of data-to-data covariances (see (2.39)) [108]. Since the log marginal

likelihood is usually multimodal, robustly solving the optimization in (2.44) for a global optimum

can be difficult, especially in higher dimensions. Restarting the optimization from multiple initial

guesses for θ is recommended for gradient-based optimizers. Common choices for covariance kernels

such as the widely used radial basis function and Matérn kernels are described in Appendix B.
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2.4.3 Artificial Neural Networks

Artificial neural networks (ANN) draw inspiration from the structure and function of the brain and

can be used to approximate a function via a weighted network of nodes called neurons [68]. A

commonly used variety of artificial neural network known as the multilayer perceptron has been

investigated for use in reliability analysis [63, 23]. A multilayer perceptron network is constructed

of several layers, beginning with an input layer, followed by one or more hidden layers, and then

ending with an output layer. Each layer consists of several neurons, and each neuron is linked with

all neurons in the previous layer. Each neuron applies a transformation to its inputs to generate an

output. The transformation T usually takes the form

T = f

(
n∑
i=0

wiyi

)
, (2.46)

where wi is the weight for corresponding input yi and f is an activation function. For example, the

hyperbolic tangent activation function f(x) = ex−e−x
ex+e−x is commonly used. Neuron weights wi are

determined via back-propagation during which an optimization problem is solved to minimize the

regularized squared error loss
∥∥ĝ(y(i))− g(y(i))

∥∥2

2
given pairs (y(i), g(y(i))) of training data [100, 68].

To obtain an accurate and generalized function approximation, the number of hidden layers

and number of neurons per layer should be tuned (trial-and-error is a popular approach [23]) and

a sufficient amount of training data should be used with a cross-validation method such as k-fold

cross-validation.

2.5 Hybrid Methods

Hybrid methods for reliability analysis combine multiple approaches for reliability analysis. For

example, the methods discussed below combine sampling and response surface methods to efficiently

and accurately estimate probabilities of failure. The key idea is to rely on the response surface when

it is accurate and fall back on random sampling when it is not.

2.5.1 Response Surface Sample Replacement

Li and Xiu draw attention to the fundamental flaw of the response surface approach for reliability

estimation, namely that an inaccurate response surface for the limit state function yields an inac-

curate probability of failure estimate [82]. A particularly poignant demonstration of this flaw is

illustrated by considering the trivial limit state g(y) = 0 for all y, for which failure occurs when

g(y) ≤ 0; thus the probability of failure pf = 1. Now consider the response surface ĝ(y) = 1/N,

N > 0, which approximates g(y) and indeed converges to g(y) as N →∞. However any finite value

of N will yield a response surface that predicts p̂f = 0 [82].
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The key idea of Li and Xiu’s hybrid method is to sample on the response surface ĝ(y) and

replace all samples that appear within a certain threshold of the approximated limit state surface

with exact limit state evaluations g(y). The threshold can neither be too large which would lead to

an inefficient algorithm or too small which could lead to an inaccurate probability of failure estimate.

Determination of the so-called critical threshold value can be determined given an estimate of the

error of the response surface in the Lp norm [82], which in practice is often unavailable. The authors

therefore additionally propose an alternate iterative algorithm based on the same idea but without

the need to estimate the response surface error. The alternative method measures convergence of the

probability of failure estimate p̂f to determine termination. Unfortunately this does not necessarily

circumvent response surface inaccuracies as it depends upon numerical convergence of the response

surface. Li et al extend the method to importance sampling [81]. Application of the response surface

sample replacement method is demonstrated to obtain accurate probabilities of failure around 10−6

and lower using several hundred to 1000 samples. The authors do not consider the cost of building

the response surface or refining the response surface [81].

2.5.2 Adaptive Directional Importance Sampling

Grooteman introduced the Adaptive Directional Importance Sampling (ADIS) method [66] which

is a hybrid response surface reliability analysis approach using directional simulation. ADIS begins

with ordinary directional simulation on the exact limit state function. When enough samples have

accumulated, a response surface is built for the limit state function and subsequent directional

simulations use the response surface instead of the exact limit state function. However, when a

directional simulation using the response surface predicts the limit state to be within a critical radius

βth of the origin, exact limit state function evaluations are performed instead (see Figure 2.7). These

exact evaluations are then used to update the response surface. In this way, ADIS is both adaptive

since the response surface becomes more accurate near important regions of the limit state and

efficient in the sense that exact evaluations are only performed for potentially important regions

which contribute the most to the failure probability pf .

The critical radius βth is updated such that the ratio γ of the portion of p̂f obtained from exact

evaluations to the portion of p̂f obtained from approximate evaluations is greater than a certain

threshold, say 0.4 (see (2.26)). The critical radius is determined as βth = βmin + ∆β where βmin

is the current most probable point (MPP) estimate, i.e. the minimum sampled distance between

the origin and the limit state, and ∆β is an offset initially taken to be 0.1. Convergence of ADIS

is determined by monitoring the estimated maximum relative error of p̂f εrel. Using (2.28), the

maximum relative error is estimated as

εrel = zα/2
σ̂f
p̂f
. (2.47)
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(a) Exact and approximated limit states. (b) Approximate evaluations on limit state and all ex-
act limit state function evaluations.

Figure 2.7: Example of ADIS showing the reliability analysis for a nonlinear limit state in the
standard normal space, u ∈ R2. The response surface for the limit state is an artificial neural
network (ANN). The circle inscribed by radius βmin marks the location of the most probable point
(MPP) and βth marks the radius of the sphere within which exact limit state evaluations will replace
response surface evaluations.

When εrel decreases below a threshold, for example 1.96∗0.1 which corresponds to a 95% confidence

interval for a coefficient of variation less than 0.1, the algorithm is reinitialized and all previous

directional simulations using approximate evaluations are rerun using the updated response surface.

The algorithm is converged when such a reinitialization does not result in any exact limit state

evaluations. Grooteman demonstrates the ADIS algorithm using a polynomial response surface on a

host of test problems showing it can provide fairly accurate probability of failure estimates (1.7% to

15% error) for a variety of test problems with as little as tens to hundreds of function evaluations [66].

2.6 Design Sensitivities

Obtaining design sensitivities from reliability analyses is important for the efficient application of

the reliability-based design optimization (RBDO) methods discussed in chapter 4. In this section

we discuss design sensitivities for both the forward and the inverse reliability analyses.
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2.6.1 Gradient of Probability of Failure

The general case for the probability of failure gradient has already been considered by Uryas’ev [129].

Here we briefly present Uryas’ev’s theorem rendered in the current notation, assuming limit state

levels z̄i = 0 with no loss of generality.

Theorem 1. Assume the following conditions are satisfied:

1. At the point x all limit states gi(x0, y) for i = 1, . . . ,m are active.

2. The failure set F is bounded in a neighborhood of x.

3. The limit state g(x, y) has continuous partial derivatives ∇xg(x, y) and ∇yg(x, y).

4. The density function fy(x, y) has continuous partial derivatives ∇xfy(x, y) and ∇yfy(x, y).

5. A matrix function Hl(x, y) exists where

Hl(x, y)∇yg1:l(x, y) +∇xg1:l(x, y) = 0,

where g1:l(x, y) ≡ [g1(x, y), . . . , gl(x, y)]> for l ≤ m.

6. Hl(x, y) has continuous partial derivative ∇yHl(x, y).

7. The gradient ∇yg(x, y) is non-zero on the limit state boundary ∂F (x) = {y ∈ Rp | g(x, y) = 0}.

8. The vectors ∇yg(x, y) are linearly independent.

Then, the gradient of the probability of failure ∇xpf is

∇xpf (x) =

∫
g(x,y)≤0

[∇xfy(x, y) + divy (fy(x, y)Hl(x, y))] dy

−
m∑

i=l+1

∫
g(x,y)=0

fy(x, y)

‖∇ygi(x, y)‖ [∇xgi(x, y) +Hl(x, y)∇ygi(x, y)] dS.

(2.48)

A technical proof of theorem 1 can be found in [129]. A simpler alternative proof is sketched

in [130]. The solution of the nonlinear system of equations to obtain Hl(x, y) is also discussed in the

above references. Theorem 1 is flexible in the sense that it covers a variety of limit state partitionings

(sets {gi(x, y) ∈ Rm | i = 1, . . . , l} and {gi(x, y) ∈ Rm | i = l + 1, . . . ,m} for a variety of l values)

which result in equivalent but different expressions for the probability of failure gradient as the sum

of a volume integral and/or multiple boundary integrals, assuming that the prerequisite conditions

are satisfied.
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For example, choosing l = 0 removes the matrix function Hl(x, y) from (2.48) and the probability

of failure gradient is

∇xpf (x) =

∫
g(x,y)≤0

∇xfy(x, y)dy −
m∑

i=l+1

∫
g(x,y)=0

fy(x, y)

‖∇ygi(x, y)‖∇xgi(x, y)dS. (2.49)

When the density fy(x, y) = fy(y) and only one limit state g(x, y) is present (2.49) simplifies to

∇xpf (x) = −
∫
g(x,y)=0

fy(y)

‖∇yg(x, y)‖∇xg(x, y)dS. (2.50)

Uryas’ev [129, 130] notes that the surface integral(s) in (2.48) and (2.50) are often difficult to

evaluate numerically, thus it is advantageous to choose l = m if possible, thereby removing the

surface integral and leaving a volume integral which can be easily estimated, for example by Monte

Carlo sampling. In this case

∇xpf (x) =

∫
g(x,y)≤0

[∇xfy(x, y) + divy (fy(x, y)Hm(x, y))] dy. (2.51)

However, it is shown below that for certain reliability analysis methods when the limit state boundary

is known, such as directional simulation, the surface integral in (2.50) can be easily obtained.

Application to FORM

In the First Order Reliability Method (FORM, see section 2.3.1), the limit state g(x, y) is transformed

to the standard normal space and approximated as a hyperplane at the most probable point (MPP)

of failure. Let ĝ(x, u) be the transformed and linearized limit state. Under the assumptions of

FORM, the gradient of the probability of failure is

∇xpf (x) ≈ −
∫
ĝ(x,u)=0

fu(u)

‖∇uĝ(x, u)‖∇xĝ(x, u)dS

= − 1

‖∇uĝ(x, u)‖

∫
ĝ(x,u)=0

fu(u)∇xĝ(x, u)dS,

(2.52)

which follows since the gradient of the linearized limit state is constant. Furthermore assume that

the MPP encompasses all information about the failure of the system. Then letting ∇xĝ(x, u) ≈
∇xĝ(x, uMPP ) yields

∇xpf (x) ≈ −∇xĝ(x, uMPP )

‖∇uĝ(x, u)‖

∫
ĝ(x,u)=0

fu(u)dS, (2.53)

To facilitate the calculation of the integral in (2.53) represent the linearized limit state as the

hyperplane ĝ(x, u) = a(x)>u + b(x) in the standard normal space. Noting that the density kernel

fu(u) is rotationally symmetric, rotate the coordinate system such that the linear limit state is

41



2.6. DESIGN SENSITIVITIES

aligned with one axis. This leads to â = [0, 0, . . . 1]> and b̂ = [0, 0, . . . , β]> with no loss of generality

where β is the geometric reliability index from section 2.1.4. Thus the limit state can be written as

ĝ(u, x) = un + β(x). The integral from (2.53) is derived as∫
ĝ(x,u)=0

fu(u)du =

∫
ĝ(x,u)=0

(2π)−
p
2 e

1
2u
>udu

= (2π)−
p
2

∫
Rp−1

e−
1
2u
>u− 1

2β
2

du

= (2π)−
p
2 (2π)

p−1
2 e−

1
2β

2

=
1√
2π
e−

1
2β

2

= ϕ(β),

(2.54)

where ϕ(β) is the standard normal density. Thus, for a limit state that is linear in the standard

normal space where the most probable point is assumed to contain all design sensitivity information,

the probability of failure gradient is

∇xpf (x) ≈ −∇xĝ(x, uMPP )

‖∇uĝ(x, u)‖ ϕ(β), (2.55)

which is in agreement with the result presented by Allen and Maute [8] which is based on the use of

FORM. The approximation in (2.55) is valid when the limit state is close to linear and the design

sensitivity at the most probable point is representative among the design sensitivities in neighboring

regions on the limit state surface.

Application to Directional Simulation

In directional simulation (see section 2.2.3), the limit state g(x, y) is transformed to the standard

normal space and an estimator of the probability of failure is constructed by simulating random di-

rections and searching along them until failure occurs. Each directional simulation yields a direction

u(i) and a radius r(i) giving the distance from the origin to the limit state along the ith random

direction. In this way an approximation of the limit state surface is mapped out. N simulations can

then be combined into an estimator for the probability of failure pf as shown in (2.26).

When directional simulation is used, the probability of failure gradient can be obtained with

little effort using the existing samples from the directional simulation. Let ui = r(i)u(i) be the point

on the limit state g(x, u) = z̄ corresponding to the ith sample and approximate the integral from
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(2.50) using a Riemann sum over the limit state surface using the N simulations as

∇xpf (x) = −
∫
g(x,u)=z̄

fu(u)

‖∇ug(x, u)‖∇xg(x, u)dS

≈ −
N∑
i=1

fu(ui)

‖∇ug(x, ui)‖
∇xg(x, ui)∆Si.

(2.56)

Given i.i.d. directions u(i), an appropriate area element ∆Si for each simulation, and assuming the

conditions of theorem 1 leading to (2.50) are satisfied, the summation should converge as N → ∞.

The value to which it converges is limited by the restrictions of directional simulation; for a non-

star-shaped limit state, the gradient will be approximate if only a single root is sought during the

linesearch procedure.

The appropriate area element ∆Si for the ith simulation is the fractional surface area of the

hypersphere of radius r(i) with a correction γi accounting for the orientation of the limit state

surface with respect to the origin as shown in Figure 2.8a:

∆Si =
1

N
Sp−1(0, r(i))γi, (2.57)

where Sn(0, r) is the surface area of the n-sphere centered at the origin of radius r given by

Sn(0, r) =
2π

n+1
2

Γ(n+1
2 )

rn. (2.58)

The correction term γi accounts for the tilting of the limit state surface away from the origin.

Here we define γi such that ∆Si is the projection of the fractional hypersphere surface area at ui

onto the plane tangent to the limit state surface at the same point as shown in Figure 2.8b:

γi =

(
u>i ∇ug(x, ui)

‖ui‖ ‖∇ug(x, ui)‖

)−1

. (2.59)

Noting that ‖ui‖ = r(i) and combining (2.56), (2.57), and (2.59), the probability of failure gradient

can be approximated as

∇xpf (x) ≈ − 1

N

N∑
i=1

fu(ui) · ∇xg(x, ui) · Sp−1(0, r(i)) · r(i)

u>i ∇ug(x, ui)
. (2.60)

Figure 2.9 shows the convergence of the Riemann sum in (2.60) for the limit state derivatives in the

standard cantilever beam test problem described later in section 3.7.2.
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Figure 2.8: Riemann sum procedure used to approximate the gradient of the failure probability.

2.6.2 Gradient of Quantile Function

Gradients for the limit state levels z ∈ Rm with respect to deterministic design variables x ∈ Rn
are also desired when an inverse reliability analysis is used in a reliability-based design optimization.

Recall z = z(x) = F−1
g (pf (x)) where F−1

g (·) : R→ R
m is the quantile function for the limit state(s)

g(x, y). The chain rule gives

Dxz = Dx(F−1 ◦ pf )(x0)

=
[
DpfF

−1
]

(pf (x0)) [Dxpf ] (x0)

=
[
Dpf z

]
(x0) [Dxpf ] (x0),

(2.61)
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Figure 2.9: Convergence of the Riemann sum in (2.60) for the derivatives of pf with respect to
the two limit states (stress z1 and displacement z2) in the cantilever beam problem (y ∈ R4, see
section 3.7.2). The relative error in the derivatives is measured with respect to a finite difference
approximation. Note that even a coarse directional simulation (∼100 sampled directions) is able to
provide a reasonable estimate of the derivatives (within 1% error) for this problem at this particular
design point.

where the derivative matrices Dpf z and Dxpf are given by

Dpf z(x0) =


∂z1
∂pf
...

∂zm
∂pf

 , (2.62)

Dxpf (x0) =
[
∂pf
∂x1

· · · ∂pf
∂xn

]
, (2.63)

yielding the derivative matrix

Dxz(x0) =


∂z1
∂pf

∂pf
∂x1

· · · ∂z1
∂pf

∂pf
∂xn

...
...

∂zm
∂pf

∂pf
∂x1

· · · ∂zm
∂pf

∂pf
∂xn

 , (2.64)
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whose entries are succinctly written as

∂zi
∂xj

=
∂zi
∂pf

|z=pf (x0)
∂pf
∂xj
|x=x0

. (2.65)

The partials ∂pf/∂xj were obtained in section 2.6.1. The partials ∂zi/∂pf can be obtained easily if

we assume the probability of failure pf can be written as

pf (z) = p1(z1) + . . .+ pm(zm). (2.66)

In other words, each limit state is responsible for an independent contribution to the total failure

probability pf . Under such an assumption

∂pf
∂zi

=
dpi
dzi

. (2.67)

In this way we can define

∂zi
∂pf

=

(
dpi
dzi

)−1

. (2.68)

In the case that dpf/dzi = 0 such as when the ith limit state does not contribute to the probability of

failure, we define ∂zi/∂pf = 0. Thus, the derivative of the quantile function z(x) is the m× n matrix

whose ijth entry is

∂zi
∂xj

=

(
dpi
dzi

)−1

|z=pf (x0)
∂pf
∂xj
|x=x0 . (2.69)

2.6.3 Gradient Simplification Using x as Hyperparameters

Other authors have considered incorporating the deterministic variables x as hyperparameters for the

random vector y which simplifies the probability of failure gradient calculation [124, 42], possibly

at the expense of increasing the size of the random space. This is the case for example when x

parameterizes the distributions of y such as when geometric uncertainties are considered and x

corresponds to the mean of the geometric dimensions. Under these circumstances y = y(x) and the

probability of failure is given by

pf (x) =

∫
g(x,y)≤z̄

fy(x, y)dy. (2.70)
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Since any deterministic variable x can be considered as a random uniform or normal variable with

very small variance, (2.70) is generally valid. The derivative of the failure probability is

∂pf
∂xi

(x) =
∂

∂xi

∫
g(x,y)≤z̄

fy(x, y)dy

=

∫
g(x,y)≤z̄

∂fy(x, y)

∂xi
dy

=

∫
g(x,y)≤z̄

∂fy(x,y)
∂xi

fy(x, y)
fy(x, y)dy

= Ey

[
1g(x,y)≤z̄

∂fy(x,y)
∂xi

fy(x, y)

]
(2.71)

of which an unbiased estimator exists. Note that the gradient of the probability distribution function

fy(x, y) may be obtained analytically in many circumstances [79].
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Chapter 3

Adaptive Kriging Inverse

Reliability Analysis (AKIRA)

In this chapter a new method is introduced for the solution of the inverse system reliability analysis

problem for multiple limit states while adaptively refining kriging models of the limit state functions.

The Adaptive Kriging Inverse Reliability Analysis (AKIRA) method retains the benefits of an in-

verse reliability analysis method for use in reliability-based design optimization (RBDO) while also

avoiding the limitations of MPP methods and sampling methods for reliability analysis (see chap-

ter 2 for an in-depth discussion). This chapter also introduces a new adaptive refinement heuristic

for kriging-based reliability analysis as well as an adaptive cokriging method for approximating limit

state design sensitivities in cases where they are expensive to obtain.

Section 3.1 introduces the AKIRA algorithm and summarizes existing kriging-based reliability

analysis methods. Details are provided as necessary in subsequent sections as the details of AKIRA

are explained. Section 3.2 reviews the construction of kriging models for system reliability analysis

problems. Section 3.3 surveys kriging model refinement techniques for reliability analysis and intro-

duces a new heuristic for refinement. The new heuristic is simpler and more efficient than similar

pointwise criteria. Section 3.4 formulates the optimization problem for the inverse reliability analysis

— the heart of the AKIRA algorithm — and proposes solution procedures. Next, the estimation

of design sensitivities is discussed for use in RBDO in section 3.5, followed by the proposal of a

new adaptive cokriging method for the estimation of limit state sensitivities in section 3.6. The

method can be used after the termination of AKIRA to estimate sensitivities and is useful in situ-

ations where function evaluations are expensive and/or the most probable point of failure (MPP)

is not representative of the entire limit state’s contributions to the probability of failure. Finally,

section 3.7 demonstrates AKIRA on several problems of academic and engineering interest.
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3.1 Introduction

AKIRA builds upon the work of existing kriging-based methods which solve the forward reliability

analysis problem [18, 42, 44, 26, 71, 72]. In a kriging-based method for reliability analysis kriging

response surfaces are constructed for each limit state and a probability of failure is estimated from

the kriging models, typically via a sampling method, which bypasses the need for many costly

evaluations of the original limit state functions. Kriging response surfaces are typically chosen since

they provide an empirical error estimate, the kriging variance, which can be used as a measure of

uncertainty for the response surface prediction of the underlying limit state. As a result, the use

of adaptive refinement methods are well-suited for kriging response surfaces where the approximate

kriging model is refined only in regions impacting the probability of failure. An additional benefit

of the kriging response surface is its exact interpolation property for sampled data points, unlike a

polynomial regression response surface.

The solution of the inverse reliability analysis problem for multiple limit states is the heart of

the AKIRA method (see section 2.1.5 for a comparison of the forward and inverse reliability analysis

approaches). There are many practical benefits to solving the inverse reliability analysis problem

during a reliability-based design optimization such as: 1) robustness when the probability of failure

pf is estimated to be 0 or 1, and 2) no need to resolve probabilities of failure less than the prescribed

design target p̄f . In addition, the numerical calculation of a limit state may be less robust in off-

design conditions where the probability of failure is less than the target; thus solving the inverse

problem for an a priori prescribed probability of failure p̄f can be more robust in terms of limit

state evaluations.

The inverse reliability analysis problem is cast and solved in AKIRA as a constrained least squares

problem. This formulation ensures a local solution to the inverse problem which is also consistent

with the original limit state levels. Although the solution unfortunately may not necessarily be

unique for multiple limit states, it still exhibits desirable properties for reliability-based design

optimization. The solution of the inverse problem can then be efficiently used in a sequential RBDO

method (see chapter 4).

In this dissertation, directional simulation is used to integrate probabilities of failure over the

kriging models for the limit states, although any sampling method may be used to obtain a proba-

bility of failure estimate. The choice of directional simulation is primarily motivated by the fact that

an outcome of the directional simulation is a set of samples lying exactly on the limit state surface

(see section 2.2.3). The samples can then be used in efficient gradient approximation procedures.

An additional benefit of directional simulation is its enhanced convergence rate compared to Monte

Carlo.
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3.1.1 Survey of Kriging Reliability Analysis Methods

No kriging-based reliability analysis methods known to the author have been directly applied for

the solution of the inverse reliability analysis problem with multiple limit states, although several

have been proposed for the forward reliability analysis problem [18, 42, 44, 26, 71, 72] and the in-

verse reliability analysis problem with a single limit state [17, 95]. Of these, the Efficient Global

Reliability Analysis (EGRA) method was among the first of kriging-based system-level reliability

analysis methods [18]. EGRA proposed the use of an easily calculated Expected Feasibility function

to select the next point to refine the kriging model and was later applied for the inverse reliabil-

ity analysis problem with a single limit state [17]. The Active learning method combining Kriging

and Monte Carlo Simulation (AK-MCS) proposed a different metric for refinement of the kriging

model [44]. Methods using Stepwise Uncertainty Reduction (SUR) were proposed soon thereafter

and were shown to outperform other methods relying on pointwise data alone such as EGRA and

AK-MCS [16, 28]. However methods relying on SUR are more expensive since they solve an opti-

mization problem to determine the optimal one-step lookahead policy for selecting the next point.

A different approach for intelligently refining the kriging model was proposed in the Global Sensi-

tivity Analysis for Surrogates (GSAS) method, where a global sensitivity analysis is used to guide

model refinement [71]. The Efficient Kriging Surrogate modeling Approach (EKSA) also proposed

a solution for forward reliability analysis with multiple limit states by using a composite limit state

based on the singular values of the system responses in addition to individual limit state kriging

models [72].

All kriging-based reliability analysis algorithms share the same general procedure:

1. Perform a space-filling design of experiments (DoE)

2. Construct one or more initial kriging models from the DoE results

3. Select a point or points to update the kriging model(s)

4. Evaluate the point(s) and update the kriging model(s)

5. Estimate the probability of failure from the kriging model(s)

6. Repeat from step 3 until the kriging model(s) and probability of failure estimate are converged

Kriging-based reliability analysis methods differ primarily in how they manage multiple limit

states, how they refine the model(s), and how the probability of failure is estimated. Most methods

have only been described for use with a single limit state. Many refinement methods originally

selected a single “best” point prompting improvements to adaptive refinement algorithms where a

batch of points is selected instead, which allows user simulations to be dispatched in parallel [42,

26]. Such details on the algorithms in the brief summary above are uncovered as necessary in the

remainder of this chapter.
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3.1.2 AKIRA Algorithm Overview

The Adaptive Kriging Inverse Reliability Analysis (AKIRA) contains many of the same features as

a kriging-based forward reliability analysis algorithm but additionally includes a nonlinear optimiza-

tion which is used to solve the inverse reliability analysis problem (see section 2.1.5), i.e. estimate

limit state levels z for a prescribed probability of failure p̄f and limit state failure levels z̄:

minimize
z

φ(z) =
1

2
‖z − z̄‖22

s.t. p̂f (z) = p̄f .

(3.1)

The formulation and solution of the optimization problem in (3.1) is central to the AKIRA

method and is described in detail in section 3.4. The remaining improvements to kriging-based

reliability analysis presented in this chapter and included in AKIRA, namely an alternate adaptive

refinement method for kriging-based reliability analysis as well as the use of directional simulation

and estimation of design sensitivities, can be readily substituted by other existing techniques.
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(a) Initial Monte Carlo samples.
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(b) Limit state approximation after 39 iterations.

Figure 3.1: Illustration of AKIRA for a nonlinear limit state in R2 [21]. Exact limit state contours
are shown as solid lines whereas contours for the kriging approximation are shown as dashed lines.
The initial set of 10 Monte Carlo samples and a sample at the mean u = [0, 0]> is augmented with
39 more samples that refine the kriging model of the limit state at the estimated failure region
boundary corresponding to a prescribed probability of failure p̄f = 10−3. The true failure region is
shown shaded in gray. The most recently added sample is marked with a red triangle. Note how
AKIRA predominantly refines the kriging model in the vicinity of the estimated limit state level
z = −0.3868, but not in regions away from the failure boundary.
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Algorithm 1 gives an overview of AKIRA and the remainder of the chapter provides details on

each part. The limit states g(u) : Rp → R
m use vector notation where g(u) ≡ [g1(u) . . . gm(u)]> and

gi(u) is the ith limit state. The dependence of the limit state on the deterministic design variables

x is dropped since the reliability analysis is performed for fixed x, i.e. a specific design. AKIRA

begins with a standard space-filling design of experiments in the standard normal space (lines 1–3)

from which an initial set of kriging surrogates ĝi(u) are constructed, one for each limit state gi(u)

(line 4). Each kriging model ĝi(u) is associated with a mean mi(u) and a standard deviation si(u).

Vector notation is similarly used for the kriging response surfaces, means, and standard deviations;

for example ĝ(u) ≡ [ĝ1(u) . . . ĝm(u)]>.

An initial estimate is made for the limit state levels z0 given the prescribed probability of failure

p̄f (line 5). Then an iterative loop (line 6) is entered where the kriging models are partially refined at

each iteration assuming limit state levels zk for the kth iteration (lines 19–22) and an optimization

carried out to determine a new estimate zk+1 for the limit state levels (line 25), which may depend

on the updating of a penalty parameter each iteration (line 24). The penalty parameter corresponds

to the nonlinear equality constraint in the inverse reliability analysis optimization problem shown

in (3.1). Consequently, at each iteration the kriging models become more informed of the failure

regions corresponding to the current limit state level zk and in addition the estimate of the limit

state levels corresponding to the prescribed probability of failure p̄f is refined.

Convergence of the algorithm is determined by assessing the epistemic uncertainty in the kriging

model’s probability of failure prediction πf (lines 7–12, 16), the error in estimated limit state levels

zk εz between iterations (lines 13, 17), and the satisfaction of the the p̂f = p̄f constraint (lines

14–15). Typical values of the tolerances τz, τpf and τp are 10−2, 10−6, and 0.1, respectively. The

two-sided confidence interval α may be as low as 50% or as large as 99%. In situations where the

kriging model is a good predictor of the underlying limit states, a smaller interval is desirable and

will lead to faster convergence.

Note that the kriging model may not be updated each iteration if the current limit state levels do

not correspond to the prescribed probability of failure (line 15); instead a new attempt at determining

the correct limit state levels is made (lines 24–25). When the probability of failure constraint is

satisfied or little progress has been made towards the constraint satisfaction (line 15), the kriging

model is updated again (lines 16–22). While unfortunately there is no proof of convergence due to

the epistemic nature of the kriging models, the framework outlined in algorithm 1 has successfully

converged on a variety of reliability test problems as well as realistic engineering applications.
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Algorithm 1: Adaptive Kriging Inverse Reliability Analysis (AKIRA)

Data: prescribed probability of failure p̄f , exact limit state functions g(u) and failure levels

z̄, penalty ρ, tolerances τz, τpf , and τp, maximum iterations kmax, number of points r

to add to kriging models each iteration, standard normal variate zα/2 and confidence

interval α used in kriging model convergence estimation

Result: limit state levels z, kriging models of limit states ĝ(u)

1 u(j) for j = 1 . . . r0 ← Generate a set of space-filling samples;

2 foreach u(j) do

3 Evaluate exact limit state functions g(u(j));

4 ĝ0(u)← Build initial kriging models of limit states using (u(j), g(u(j)));

5 z0 ← Estimate initial limit state levels;

6 for k ← 0 to kmax do

7 p̂f ← Estimate failure probability using kriging means mk(u) and limit state levels zk;

8 p̂−f ← Estimate failure probability using mk(u)− zα/2sk(u) and limit state levels zk;

9 p̂+
f ← Estimate failure probability using mk(u) + zα/2s

k(u) and limit state levels zk;

10 πkf ← Calculate p̂f convergence ratio:
max(p̂f−p̂+f ,p̂

−
f −p̂f)

p̂f
;

11 if πkf > πk−1
f > πk−2

f > . . . then

12 return since kriging model is ill-conditioned;

13 εz ← Estimate max error in z between iterations: maxi{| z
k
i −zk−1

i

1+|zki |
|};

14 vk ← Calculate constraint violation: ‖p̂f − p̄f‖;
15 if vk ≤ τpf or |vk−vk−1

vk
| < 0.1 then

16 if πkf ≤ τp then

17 if εz < τz then

18 return z, ĝ(u);

19 u(j) for j = 1 . . . r ← Select r points for adaptive refinement of kriging model;

20 foreach u(j) do

21 Evaluate exact limit state functions g(u(j));

22 ĝk+1(u)← Update kriging models of limit states using (u(j), g(u(j)));

23 else

24 ρ← Increase penalty to, say, 10ρ;

25 zk+1 ← Solve inverse reliability analysis for new limit state levels;
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3.2 Model Construction

3.2.1 Individual or Composite?

Most kriging-based system reliability analysis methods fall into one of three categories: an individual

limit state method where a separate kriging model is built and refined separately for each limit

state, a composite limit state method where a single kriging model is built for all limit states, and

an individual limit state with composite learning method where a separate kriging model is built for

each limit state but each is refined using a composite learning function [72]. When individual kriging

models are built, each model may be refined individually but correlations between limit states are

not taken into account, which can lead to a less efficient method requiring more model refinement

overall between the models. In general, refining a group of individual models together using a single

composite learning criterion appears to be more efficient than individual refinement using separate

criteria as certain limit states may be more important than others [18]. When a composite limit state

kriging model is used instead, correlations between limit states are inherently taken into account

but inaccuracies at limit state intersections may occur due to the smoothing property of the kriging

model.

Most existing system reliability analysis methods use a composite limit state approach. However,

in the EKSA method, the authors propose a hybrid approach where both individual limit state

kriging models and a single kriging model based on the Singular Value Decomposition (SVD) of the

matrix of limit state responses at training points is constructed [72]. A hybrid limit state model

is constructed by choosing between the SVD-kriging model or individual limit state kriging model

at different locations, depending on which model is more accurate. Since the SVD-kriging model

captures correlations between limit states, the EKSA method addresses the shortcomings of using a

purely individual limit state or composite limit state-type approach.

In AKIRA an individual limit state with composite learning approach is taken. Each limit state

is modeled using an independent kriging response surface. Then a composite learning function (see

section 3.3) is used to select the next shared training point(s) for each kriging model based on

information from each model. Since an individual limit state approach is used, accurately modeling

the intersections of limit states poses no issues for the kriging models. The use of a composite

learning function also ensures that limit state evaluations are not wasted on limit states that do not

need to be refined.

3.2.2 Initial Construction

Loeppky et al argue in favor of the N = 10p rule for the initial design of experiments (DoE) where

N is the number of initial samples and p is the dimension of the random space [84]. They note

that the rule leads to reasonable initial kriging models for “tractable” functions. For more difficult

functions their results suggest increasing N yields little benefit in terms of increasing approximation
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accuracy. Bichon recommended (p+1)(p+2)
2 initial samples for an initial DoE spanning ±5σ of the

random input variable space during use in the EGRA algorithm [18].

In the standard normal space the furthest limit state from the origin corresponding to a specified

probability of failure pf is the hypersphere of radius rmax:

rmax =
(
(χ2
p)
−1 (1− pf )

) 1
2 , (3.2)

where (χ2
p)
−1 is the inverse cumulative chi-squared distribution function with p degrees of freedom

and p is the dimension of the standard normal space. The derivation of (3.2) follows from the

probability of failure estimator for integration via directional simulation from (2.26). Thus when

the probability of failure is prescribed as p̄f , the furthest distance to search from the origin in the

standard normal space for a point corresponding to the limit state level z leading to failure with

probability p̄f is rmax.
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Figure 3.2: Comparison of the probabilities of failure for linear and spherical limit states in the
standard normal space as a function of distance from origin r = ‖u‖. The linear limit state distance
corresponds to the case of the geometric reliability index β. Note the 100% chance of failure for
the spherical limit states and the 50% chance of failure for a linear limit state when r = 0. Note
also that a spherical limit state in higher dimensions (compare p = 10 to p = 2) induces a larger
probability of failure for equivalent radius.

Figure 3.2 compares distances for several simple limit states. For example, in the standard

normal space a linear limit state yielding probability of failure pf is a distance β = Φ−1(pf ) from
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the origin, which follows from the definition of the reliability index β (see section 2.1.4). Thus for

pf = 10−4, β = 3.72 which is less than rmax = 4.29 for the hyperspherical failure surface in two

dimensions. When the number of dimensions increases to 20, rmax = 7.24.

The above discussion shows that for an inverse reliability analysis the samples used to construct

the initial kriging model need only be space-filling within the p-sphere of radius rmax. A variety of

techniques can be used to construct a set of space-filling samples. Traditional techniques such as

Latin Hypercube Sampling (LHS) or Sobol’ sequences can also be used if combined with acceptance-

rejection sampling, i.e. samples that fall outside of the sphere of radius rmax can be rejected.

3.3 Model Refinement

Selecting the next training point(s) is a crucial component of an effective adaptive kriging-based

reliability analysis. Typically the search for the training point(s) is formulated as an optimization

problem, where the objective is a criterion measuring how “good” a candidate training point is. How-

ever, even if an effective criterion is chosen, the solution of the problem is typically non-trivial. Most

search spaces are multimodal and highly nonlinear requiring the use of efficient global optimization

techniques or sampling methods to estimate the optimum.

A good algorithm for selecting the next point(s) to refine the kriging model in a reliability analysis

method will select points that have a large impact on the probability of failure estimate p̂f . Note that

at any point u, the kriging model prediction at u has epistemic uncertainty ĝ(u) ∼ N (m(u), s2(u)).

Therefore the probability of a selected point u corresponding to a point that actually resides in the

failure region (where g(u) ≤ z̄) can be estimated as

π(u) = P [ĝ(u) ≤ z̄]

= P

[
ĝ(u)−m(u)

s(u)
≤ z̄ −m(u)

s(u)

]
= Φ

(
z̄ −m(u)

s(u)

)
,

(3.3)

where Φ(·) is the standard normal cumulative distribution function. π(u) can also be interpreted as

the probability of misclassification [44] and has also been labeled the excursion probability [28] and

probabilistic classification function [43].

3.3.1 Existing Methods

Methods for adaptive refinement of kriging models can be roughly divided into two categories:

point-based methods and global methods. In a point-based method, the decision to select a point

for refinement is based on information available at that point only, namely the mean m(u) and

standard deviation s(u) of the kriging model. In contrast, a global method assesses the impact of
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selecting a point on nearby points and/or on a global quantity of interest. As a result global methods

can more efficiently refine a kriging model, although they may be more expensive.

Point-based Methods

In a point-based method, information from the kriging model at a single point u, i.e. its mean m(u)

and standard deviation s(u), is used to calculate a score for the point. The point with the best score

is then chosen as the next training point. Three methods are discussed below.

In EGRA, maximization of the Expected Feasibility function EF (u) is used to pick the next

training point in a Gaussian process giving limit state level z [18], where

EF (u) ≡
∫ z+ε

z−ε
(ε− |g − z|) ĝ(g)dg, (3.4)

where g is a realization of the normally distributed ĝ(u). Bichon recommends taking ε = 2s(u) and

terminating when the scaled maximum EF (u) falls below a certain value, for example 10−3. The

Expected Feasibility function is inspired from contour estimation and quantifies how likely a point

u yields a value g(u) close to the desired limit state level z. (3.4) is expressible in simple analytic

form in terms of the standard normal variate when a Gaussian Process is used (see the derivation

in [18, p. 145]), and is therefore easy to calculate.

In AK-MCS, minimization of the learning function U(u) is used to select the next training

point [44], where

U(u) ≡ |m(u)− z|
s(u)

, (3.5)

where U(u) has the interpretation of the distance measured in kriging standard deviations between

the prediction and estimated limit state. As the integrand of the excursion probability π(u) defined

in (3.3), it is readily interpreted as a reliability index. The authors recommend terminating when

minu{U(u)} ≥ 2, i.e. when there is a 2.3% chance of making an error on the sign of g(u).

In the EKSA method, the authors propose choosing the point with the maximum probability

of error of its sign to be the next training point [72]. Although this is similar in spirit to the AK-

MCS U function, it is complicated by EKSA’s use of an SVD-based kriging model which requires

the integral of a correlated multivariate Gaussian. In general, the authors propose integration via

sampling. The authors propose terminating the algorithm when the maximum probability of sign

error falls below 10−4.

Global Methods

In spite of the simplicity of EGRA, AK-MCS, and similar point-based methods they are “short-

sighted” since they only use local information from the posterior marginal distribution to select

the next training point, as well as for assessing convergence. In other words, point-based methods
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do not consider the effect of a training point choice on its neighborhood, and they also do not

consider the convergence of the primary quantity of interest, the failure probability. As a result,

several authors have pointed out this leads to inefficiencies as training points are selected that

do not affect the reliability analysis, sometimes even after the probability of failure estimate has

converged [71, 72, 26]. Two criteria which overcome this difficulty are reviewed here.

In the GSAS method, the authors propose using a global sensitivity analysis to estimate the

sensitivity of the probability of failure estimate p̂f with respect to candidate training points and

choosing the point with the highest sensitivity [71]. Since performing the global sensitivity analysis

is expensive, they first screen candidate points using the AK-MCS U -function and keep points that

have a probability of sign error greater than 0.1%, which corresponds to U(u) ≤ 3.1. They then pick

the point with the highest sensitivity from the remaining candidate points.

Bect et al introduced the concept of Stepwise Uncertainty Reduction (SUR) for probability of

failure estimation [16, 26, 28]. Such a strategy seeks to choose a point u(s+1) or points which minimize

the average of a future measure of uncertainty Hs+1(u) in a quantity of interest given the selection

of those points. In particular, a SUR strategy solves the following problem for a given kriging model

constructed from s samples:

minimize
u(s+1)

Es[Hs+1(u) | u(s+1)]. (3.6)

Since the outcome of the kriging model at u(s+1) is random, the measure of uncertainty Hs+1(u) is

also random. The conditional expectation given the s + 1st sample Es[Hs+1(u) | u(s+1)] averages

the effect of choosing u(s+1) on the uncertainty measure.

One proposed SUR criterion is the Jαs criterion which is defined as the average variance of the

probability of failure estimate given the s+ 1st sample u(s+1) [26]:

Jαs (u(s+1)) ≡ Es

[
Vars+1 (p̂f ) | u(s+1)

]
. (3.7)

The variation in the estimated excursion set S ≡ {u ∈ Rp : ĝ(u) > z}, also called the safe set,

can also be used to assess the accuracy of the probability of failure estimation. Note that the safe

set S can also be written as in terms of its indicator function S = {u ∈ Rp : 1ĝ(u)>z}. The variance

of the random variable 1ĝ(u)>z is simply π(u)(1 − π(u)) where π(u) is defined in (3.3). Therefore

another criterion JΓ
s can be defined as the average of the integrated variance of the indicator of the

safe set given the s+ 1st sample u(s+1) [26]:

JΓ
s (u(s+1)) ≡ Es

[∫
πs+1(u)(1− πs+1(u))dPu | u(s+1)

]
. (3.8)

In summary, the Jαs criterion estimates how much the volume of the failure region will vary on

average if u is selected as the s+ 1st point and the JΓ
s criterion estimates how much the probability
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of misclassification will vary on average if u is selected as the s+ 1st point. Although Chevalier et al

derive efficient methods for calculating both the Jαs and JΓ
s SUR criteria [26], the calculation of SUR

criteria is more expensive than point-based refinement criteria due to the need to perform nested

integrations to calculate the criterion at each candidate point. However, when function evaluations

are expensive the additional effort required to select an optimal next point may be well worth the

expense. In fact, a SUR criterion is derived and used in the adaptive cokriging algorithm introduced

later for the approximation of design sensitivities of the limit state (see section 3.6).

A similar optimal one-step lookahead method for adaptive refinement of a kriging model is the

Robust Maximum Improvement for Level-set Estimation (RMILE) introduced by Zanette et al [137].

The RMILE method applied for probability of failure estimation seeks to choose a point u(s+1) that

yields the maximum expected improvement in the volume of a sub-level set Is defined by

Is = {u : πs(u) > 1− δ} (3.9)

for a given level of confidence δ. The RMILE method solves the following problem for a given kriging

model constructed from s samples:

maximize
u(s+1)

Es[|Is+1| − |Is| | u(s+1)], (3.10)

where |·| denotes the volume of the set. The authors ensure robustness for the problem in (3.10) by

falling back on maximization of variance when all points yield sufficiently small expected improve-

ments. They consider solving (3.10) via discretization on a grid and derive an analytic expression

which can be used to efficiently solve (3.10) on a fixed grid.

Convergence Criteria

Termination criteria is important for any adaptive refinement method since additional function

evaluations may be costly and lead to marginal, if any, improvements in the probability of failure

estimate or the estimated limit state levels. Reliability analysis methods using a point-based re-

finement method tend to rely on a tolerance for the maximum or minimum value of the learning

function [18, 44]. When the learning function value reaches the tolerance, refinement is stopped.

However, since point-based refinement methods do not directly measure the impact on the quan-

tity of interest, the probability of failure estimate p̂f , such a tolerance does not necessarily dictate

convergence of the kriging model or p̂f . On the other hand, p̂f may have already converged and

subsequent iterations of refinement may be wasted effort. Below several termination criteria are

described.

One suggested conservative termination criterion adopted by GSAS and EKSA is to terminate

when the estimated maximum percent error in the failure probability εmax is below a certain thresh-

old. Assuming p̂f is a Monte Carlo estimate, the samples are partitioned into two groups: those
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where the chance of making an error on the sign of the shifted limit state m(x) − z is low (group

1 samples) and the remaining samples (group 2 samples) [71, 72]. The maximum percent error is

then given by

εmax = maxN∈[0,N2]

( |N2 −N |
N1 +N

× 100%

)
, (3.11)

where N1 is the number of samples in group 1 and N2 is the number of samples in group 2 [71,

p. 505].

GSAS considers a second termination criterion where p̂f is considered to be a stochastic response

with random multivariate input variables ĝ(u) ∼ N (m(u), S(u)) where S(u) is the covariance matrix

between samples in the kriging model [71]. The authors sample from the correlated random input

variables and propagate the samples through a Monte Carlo estimator to build a histogram of p̂f

and the error in p̂f , which they then fit a distribution to and estimate 1% and 99% quantiles.

The maximum of either quantile is taken as the maximum error. Since the additional sampling is

expensive for large numbers of samples, they propose performing the sampling only for a subset of

samples, those with U function value ≤ 3.1 (see section 3.3).

Dubourg et al consider a termination criterion based on the maximum range of the probability

of failure estimate due to epistemic uncertainty in the kriging model which is similar to the method

used in AKIRA and described in the following section [42].

3.3.2 A New Heuristic for Refinement

Although SUR-based refinement criteria are optimal, they incur additional computational cost. In

many applications, it may be preferable or advantageous to use a refinement criterion that is sub-

optimal but faster to compute. The expected feasibility function of EGRA and the U function of

AK-MCS are both candidates, but they suffer from several shortcomings [18, 16, 26, 71] including

the selection of points that have little to no impact on the probability of failure estimate p̂f as well

as the continued selection of points even after p̂f is converged. In addition, AK-MCS and other

methods sometimes lead to the selection of points that are very close in space, when points that are

better spaced can lead to a better-conditioned kriging model and p̂f .

An effective heuristic for model refinement during reliability analysis selects points that both

have a large impact on the probability of failure estimate p̂f and reduce the epistemic uncertainty

of the kriging model in regions contributing greatly to p̂f . Here a new point-based heuristic for

adaptive refinement of kriging models for reliability analysis is introduced. It addresses both desired

criteria and is based on ideas from directional simulation (see section 2.2.3). First an appropriate

convergence criterion for assessing when the kriging model is sufficiently converged is discussed.
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Termination Criterion

Kriging model refinement should be stopped when the kriging model is sufficiently accurate that

it provides a consistent estimate of the probability of failure. Note however that this does not

imply the probability of failure estimate p̂f is accurate. If the kriging model does not represent the

original limit state due to limit state discontinuities, improper choice of kriging covariance function,

insufficient initial random sampling or other issues, p̂f may be inaccurate. Nevertheless, we define

a criterion for termination based on the decrease in epistemic uncertainty of the kriging model with

regard to its effect on the probability of failure estimate p̂f .
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Figure 3.3: Upper and lower empirical 95% confidence bounds (k = 1.96) on a kriging model with
mean m(u) and standard deviation s(u) are shown in the standard normal space in R2. The true
limit state is shown in the solid black line. The probability of failure can be estimated with respect
to the mean contour and each bound. If the kriging model is accurate in the areas of the limit state
that contribute to the probability of failure then each estimated probability of failure will be close
in value. Such a metric is encoded in the probability convergence ratio πf given in (3.14).

Let the following failure subsets F−1, F 0, and F+1 be defined similarly to [42] as

F i = {u ∈ Ω | m(u) + izα/2s(u) ≤ z}, (3.12)

where i ∈ {−1, 0,+1} and zα/2 = Φ−1(0.95) ≈ 1.65 or similar, in the case of a one-sided 95%

confidence interval on the kriging estimate at point u. Figure 3.3 shows the bounds for a particular

kriging approximation to a convex limit state in R2. Note that F+1 ⊆ F 0 ⊆ F−1 since the kriging

standard deviation s(u) ≥ 0. The following relationship exists between the probabilities of failure
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measured with respect to each failure subset:

P [u ∈ F+1] ≤ P [u ∈ F 0] ≤ P [u ∈ F−1], (3.13a)

p̂+
f ≤ p̂f ≤ p̂−f , (3.13b)

where a simpler notation p̂+
f , etc. is introduced and the previously used p̂f ≡ P [u ∈ F 0], i.e. the

probability of failure estimate when the kriging mean is taken as the limit state. Then the following

probability of failure convergence ratio πf may be used to estimate termination of refinement:

πf =
max

(
p̂f − p̂+

f , p̂
−
f − p̂f

)
p̂f

≤ τp. (3.14)

When p̂f = 0, the termination criterion is undefined but causes no issues when used within an

inverse reliability analysis since the sought p̂f will be non-zero. In such cases, the termination

criterion indicates that the kriging model has not converged. The tolerance τp can be selected to be

around 0.1 or so. The selection of τp depends not only on the variance of the probability of failure

estimate but also on whether the kriging covariance kernel has a nugget, i.e. a known noise term σ2

added to its diagonal, in which case s(u) is non-zero at kriging training points. Both will increase

the value of the refinement criterion. To address variance in p̂f , previous authors have recommended

using the 95% confidence bound of p̂+
f and p̂−f instead of their mean values [42].

Single-point Refinement Criterion

The termination criterion given by the probability of failure convergence ratio πf in (3.14) motivates

a refinement criterion that addresses the difference between the probability of failure estimate using

the mean of the kriging model and the estimates using a lower and upper confidence interval for the

kriging model. Such a criterion indirectly addresses variance in the kriging model (πf = 0 implies

zero variance in the kriging model at all points relevant to the probability of failure calculation) and

at the same time directly addresses variability in the quantity of interest, the probability of failure

estimate p̂f .

While the termination criterion πf ≤ τp is easily calculated, the determination of an appropriate

refinement criterion is less obvious, particularly with regard to determining a preference for selecting

one point over another. SUR methods address the selection issue by forecasting which points will

contribute most to the reduction in uncertainty but they are more expensive.

Ideas from the technique of directional simulation prove useful here (see section 2.2.3). Recall

in directional simulation that a sampling of random directions is made in the standard normal

space and a search performed along each direction from the origin to determine the first point of

failure, given that direction. The estimator of the probability of failure p̂f is approximated as a sum

of conditional probabilities, which are easily calculated in the standard normal space knowing the
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distance r from the origin to the limit state surface as previously shown:

p̂f (x) =
1

N

N∑
i=1

P [g(x,Ra(i)) ≤ z | a(i)]

=
1

N

N∑
i=1

1− χ2
n((r(i))2),

(2.26)

where r(i) is the distance from the origin to the limit state surface along the ith sampled direction.
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Figure 3.4: Upper and lower empirical 95% confidence bounds (k = 1.96) on a kriging model with
mean m(u) and standard deviation s(u) are shown in the standard normal space in R2. The true
limit state is shown in the solid black line. To select a new point that will increase the kriging model
accuracy in areas contributing to the probability of failure, directions are first sampled in the random
space and the conditional probability discrepancy ∆pcond between the upper and lower kriging model
bounds is calculated. In the plot above, ∆pcond corresponds to the integrated conditional probability
content between points α and β. The direction a(i) with the largest ∆pcond is selected for a linesearch
from which a point will be chosen to be added to the kriging model.

Consider performing directional simulation for the estimation of the probability of failure conver-

gence ratio πf . Three simulations must be performed, one using the limit state modelm(u)−zα/2s(u),

one using m(u) and one using m(u)+zα/2s(u). In such a situation one could consider using the same
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set of directions a(i) for i = 1 . . . N , i.e. common random numbers. Then, p̂−f − p̂+
f is given by

p̂−f − p̂+
f =

1

N

N∑
i=1

(
χ2
n((r

(i)
+ )2)− χ2

n((r
(i)
− )2)

)
=

1

N

N∑
i=1

∆p
(i)
cond,

(3.15)

where ∆p
(i)
cond is the conditional probability content along direction a(i) between r

(i)
− and r

(i)
+ denoted

as points α and β in Figure 3.4. ∆p
(i)
cond represents the discrepancy in failure probability due to the

kriging model’s epistemic uncertainty given direction a(i). A large value of ∆p
(i)
cond implies the ith

direction is one where the kriging model has a (relatively) large epistemic uncertainty and may have

a (relatively) large effect on p̂f . Note that controlling the values of ∆p
(i)
cond directly influences the

convergence of πf . As a result, a naive algorithm for ensuring convergence with respect to πf is to

simply select the point r
(i)
− or r

(i)
+ that corresponds to the maximum ∆p

(i)
cond.

However such a naive approach can be slow to converge and also susceptible to numerical in-

stabilities once many points which are close in distance and/or value have been used to train the

kriging model. In addition, the refinement of the kriging model can benefit from the selection of a

variety of intermediate points lying on the line segment between r
(i)
+ and r

(i)
− . As such, we propose

first selecting the direction a(i) whose conditional probability discrepancy content is greatest and

then choosing a point along that direction according to its proximity to other points already in the

trained model and its contribution to the probability of failure.

First, select the direction whose probability discrepancy content is greatest as

argmax
a(i)

∆p
(i)
cond. (3.16)

Let r+ and r− denote the corresponding endpoints of the line segment along direction a(i). Any

point between r+ and r− can be written as

r(α) = αr+ + (1− α)r− (3.17)

for α ∈ [0, 1]. Then perform the univariate and potentially multimodal optimization for α where

u(i)(α) = r(α)a(i) and u(j) is the jth training point in the kriging model:

maximize
α

w(α)minj

{
dist

(
u(i)(α), u(j)

)}
s.t. 0 ≤ α ≤ 1,

(3.18)

where the maximization objective is the minimum distance between the prospective point u(i) and

each training point in the kriging model, weighted by w(α). Such an objective ensures that training
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points are well spaced. The weight w(α) is taken to be w(α) = pcond(r(α)) = 1−χ2
p(r

2(α)), i.e. the

conditional probability of failure of u(i) given direction a(i). Its purpose is to ensure points are not

selected in regions that do not contribute much to the probability of failure. The minimization in

(3.18) is most easily and robustly carried out via evaluation of the objective on a grid spanning

α = 0 to α = 1.

Multi-point Refinement Criterion

The selection of multiple points for adaptive refinement of the kriging model can be advantageous

when limit state evaluations can be run in parallel. Although a multiple point selection strategy

may increase the total number of limit state evaluations, the number of iterations of the adaptive

refinement procedure can decrease thereby yielding a performance benefit overall in terms of time to

convergence. In addition, there is rarely a single best point for selection and addition to the kriging

model; typically many points could be selected that would yield similar improvements in the kriging

model over the course of the adaptive refinement process.

A variety of multiple point adaptive refinement techniques have been explored including those

based on k-means clustering [42] and SUR criteria [26]. Here an approach similar to the heuristic

optimization discussed in [28] is used. Suppose N points are to be selected at each iteration for model

refinement according to the available computational resources. Instead of solving a multivariate

optimization problem for the N currently unknown choices, we solve a suboptimal sequence of

univariate optimization problems by selecting a point using the single point refinement criterion,

updating the kriging model using an estimate of the selected point, and then selecting the next point

etc. until N points have been selected. The multipoint selection algorithm for adaptive refinement

is outlined in Algorithm 2.

When a single point u(i) is selected, the kriging model provides an estimate of its value g(u(i)) as

a distribution with a mean m(u(i)) and variance s2(u(i)). In SUR-based criteria (see section 3.3.1),

this uncertainty is taken into account when selecting the next point u(i+1) in a multipoint criteria.

However, in Algorithm 2 this uncertainty is only partially taken into account. Instead, the next

point u(i+1) is selected assuming the previous point’s value (which is currently unknown) is in fact

equal to its mean, i.e. g(u(i)) = m(u(i)).

In fact, the updated kriging variance given a newly selected point u(i) is independent of the

response value g(u(i)) at u(i) (barring reoptimization of kernel hyperparameters) and only the up-

dated kriging mean is dependent on the response value [27]. Thus, if the kriging mean is indeed

equal to the response value at u(i), then no additional value is added to the kriging mean prediction.

Inspection of Algorithm 2 shows that refinement is driven by the deviation of the kriging model

from its mean; as such the multiple point selection under the predictive mean assumption above is

reasonably expected to yield benefits over a single-point criterion.
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Algorithm 2: Kriging adaptive refinement with new heuristic

Data: kriging models of limit states ĝi(u) and limit state levels zi for i = 1, . . . ,m; set of

directions a(j) for j = 1, . . . , N from directional simulation; number of points t to select

Result: t next points u(k), k = 1, . . . , t, for kriging model refinement

1 for i← 1 to m do

2 g̃i(u)← Save an alternate copy of the kriging model ĝi(u);

3 for k ← 1 to t do

4 for j ← 1 to N do

5 r0 ← Perform directional simulation linesearch for direction a(j) using m̃i(u);

6 r− ← Perform linesearch for direction a(j) using m̃i(u)− zα/2s̃i(u);

7 r+ ← Perform linesearch for direction a(j) using m̃i(u) + zα/2s̃i(u);

8 ∆p
(j)
cond ← Calculate conditional probability discrepancy from (3.15);

9 a∗ ← Determine most important direction: argmaxa(j){∆p(j)
cond};

10 u(j) ← Perform linesearch along direction a∗ ((3.18));

11 for i← 1 to m do

12 g̃i(u)← Update kriging model with mean value of u(j);

13 return u(k) for k = 1 . . . t;

3.3.3 Extension to Multiple Limit States

Multiple limit states are easily accommodated using Algorithm 2 since it generally relies upon the

technique of directional simulation for adaptive refinement and directional simulation is readily

applied to series, parallel, or mixed systems (see chapter 2 and section 2.2.3 in particular).

3.3.4 Demonstration

Comparison to Other Refinement Criterion

The new adaptive refinement heuristic proposed in this section is compared with Monte Carlo and

the Efficient Global Reliability Analysis (EGRA) method [19] for the estimation of probability of

failure on three structural reliability test problems: the short column problem [19] with y ∈ R4, the

steel column problem [77] with y ∈ R9, and the cantilever beam problem [132] with y ∈ R4. Each

problem is described in detail in Appendix A. For each problem the new heuristic is either more

efficient or more accurate than EGRA in estimating the probability of failure.
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Table 3.1: The adaptive refinement heuristic for kriging models proposed in this section is compared
with Monte Carlo and EGRA [19] for three structural reliability test problems. In EGRA, a proba-
bility of failure is estimated from the kriging model using multimodal adaptive importance sampling.
The new heuristic is used to refine a kriging model from which probability of failure is estimated
using directional simulation. The average and coefficient of variation (in parentheses) of probability
of failure estimate p̂f and number of simulations N is shown for each method. Both EGRA and the
new heuristic are much more efficient than Monte Carlo. Furthermore the new heuristic yields more
accurate kriging models which generally require less function evaluations than EGRA for probability
of failure estimation.

Problem Method z p̂f N

Short Column
Monte Carlo

-0.3796
10−6 (0.1) 108

EGRA 1.1965×10−6 (0.01) 51.0 (0.12)
New Heuristic 0.9737×10−6 (0.09) 66.6 (0.18)

Steel Column
Monte Carlo

-0.2562
10−6(0.1) 108

EGRA 1.2136×10−6 (0.13) 163.4 (0.17)
New Heuristic 1.0494×10−6 (0.21) 70.8 (0.06)

Cantilever
Monte Carlo

[−0.18,−0.17]>
1.01× 10−6 108

EGRA 1.1658×10−6 (0.22) 66.7 (0.15)
New Heuristic 1.0680×10−6 (0.07) 30.1 (0.09)

Comparison of Single-point and Multi-point Refinement

Figures 3.5 and 3.6 compare the single-point and multi-point refinement algorithm as embedded in

the AKIRA algorithm for the highly nonlinear limit state problem described in Appendix A.5. In

this particular case, the AKIRA algorithm requires 75 iterations for convergence using the single-

point adaptive refinement strategy but only 17 iterations for convergence using the multi-point

strategy which results in a reduction of approximately 4 in serial computation time when limit state

evaluations are run in parallel. The multi-point refinement strategy requires 96 function evaluations

total compared to 86 for the single-point criterion. Both refinement methods converge to the same

estimated limit state levels with 5 digits of accuracy.

3.4 Solving the Inverse Reliability Analysis

When only one limit state function is present, obtaining the limit state level z ∈ R that results in

a prescribed probability of failure p̄f is a simple 1D optimization problem with a non-decreasing

function pf (z) (see Figure 3.7). In this case standard rootfinding methods methods can be used to

efficiently determine the unique solution z∗.

When multiple limit state functions are present in a system reliability analysis, the problem

becomes more complicated since multiple sets of limit state levels can result in the same probability

of failure pf , i.e. the solution of the inverse problem is not unique. Previous inverse reliability
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(a) Single-point, k = 5 (b) Multi-point, k = 1

(c) Single-point, k = 30 (d) Multi-point, k = 6

Figure 3.5: Single-point vs. multi-point adaptive kriging refinement in AKIRA for the highly non-
linear limit state problem (section A.5). The kriging approximation is shown in dashed lines and the
exact limit state contours are shown in solid lines. Five points are added per iteration for the multi-
point criterion; the most recent training points for both the single-point and multi-point refinement
strategies are shown in red triangles; older training points are shown as black dots. Iterations 1
and 6 of the AKIRA algorithm using the multi-point adaptive refinement heuristic are compared
with iterations 5 and 30 of the AKIRA algorithm using the single-point adaptive refinement heuris-
tic. Note the slightly better spaced training points using the single-point refinement criteria, but
overall similar refinement. AKIRA with multi-point refinement requires much fewer iterations for
convergence.
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(a) Single-point, k = 55 (b) Multi-point, k = 11

(c) Single-point, k = 75 (d) Multi-point, k = 16

Figure 3.6: Single-point vs. multi-point adaptive kriging refinement in AKIRA for the highly non-
linear limit state problem (section A.5). The kriging approximation is shown in dashed lines and the
exact limit state contours are shown in solid lines. Five points are added per iteration for the multi-
point criterion; the most recent training points for both the single-point and multi-point refinement
strategies are shown in red triangles; older training points are shown as black dots. Iterations 11
and 16 of the AKIRA algorithm using the multi-point adaptive refinement heuristic are compared
with iterations 55 and final iteration 75 of the AKIRA algorithm using the single-point adaptive re-
finement heuristic. Note the slightly better spaced training points using the single-point refinement
criteria, but overall similar refinement. AKIRA with multi-point refinement requires much fewer
iterations for convergence.
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Figure 3.7: Determination of a single limit state level z ∈ R for a prescribed probability of failure
p̄f is a simple problem due to the non-decreasing cumulative distribution function.

analysis methods for systems have enforced a unique solution by requiring each limit state level to

be described by different univariate functions of the same shared variable. For example, Li proposed

letting reliability indices β1 = k1β, . . . , βm = kmβ, where ki > 0 is interpreted as a ratio of each

reliability index βi to β (this is the inverse problem formulated in terms of reliability index β as

opposed to limit state level z) [80]. Then only a single unique β need be determined during a

rootfinding procedure. Of course the solution of the inverse problem depends on the prescribed

ratios ki.

For use in reliability-based design optimization, the chosen set of limit state levels z ∈ Rm should

be representative of the true limit state levels z̄ ∈ Rm in the sense that the most critical limit states

for the system should be reflected in the chosen limit state levels z. As such, we desire an ideally

unique set of limit state levels z that are both close to the true limit state levels z̄ and correspond to

a prescribed probability of failure p̄f . One way of writing the problem is as a least squares problem

with a nonlinear equality constraint:

minimize
z

φ(z) =
1

2
‖z − z̄‖22

s.t. p̂f (z) = p̄f ,

(3.1)

where p̂f (z) is the probability of failure estimate obtained from the kriging models of the limit

states ĝ(u). Assuming that the limit state kriging models are well-scaled, a scaled version of the
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optimization problem is

minimize
z

φ(z) =
1

2
‖z − z̄‖22

s.t. c(z) =
p̂f (z)

p̄f
− 1 = 0.

(3.19)

Unfortunately, there is no guarantee of uniqueness of the optimal solution z∗ from solving (3.19)

due to the nonconvex equality constraint c(z). A potentially redeeming characteristic of p̂f (z) and

therefore c(z) is that they are nonincreasing along each coordinate zi, however there is no such

similar property for an arbitrary z.

Nevertheless, (3.19) has several nice properties, namely 1) it is formulated as a least squares

problem for which efficient methods are available for solution (see section 3.4.1) and 2) the optimal

solution z∗ is reliable in the sense that z∗i < z̄i only when z∗j ≤ z̄j for all j 6= i. In other words z∗

is consistent with z̄ such that the estimated limit state level z∗i only predicts failure when all other

(active) levels also predict failure. Empirical evidence for this property can be found in section 3.7.3.

A short proof follows for the second property:

Proof. Let z∗ = [z∗1 , . . . , z
∗
m]> be the optimal solution of (3.19) and c(z) be defined as in (3.19) with

continuous partial derivatives. Assume all limit state levels are active, that is they contribute to the

probability of failure. Now let z∗1 < z̄1 and all z∗j > z̄i for i = 2, . . . ,m. Consider limit state levels

z1 and zi for i 6= 1. Since c(z) is nonincreasing and continuous in each zi, there exist two small

quantities δ1 and δi where 0 < δ1 < z̄1 − z∗1 and z̄i − z∗i < δi < 0 such that c(z∗ + δ1e1 + δiei) = 0,

i.e. feasibility is maintained. ei = [0, . . . , 1, . . . , 0]> is the m-vector of zeros with 1 in the ith place.

It follows that φ(z∗+ δ1e1 + δiei) < φ(z∗) and therefore z∗ is not the optimal solution of (3.19).

3.4.1 Solving the Optimization for Limit State Levels

The presence of the nonlinear equality constraint c(z) = 0 unfortunately prevents the problem from

being convex for general p̂f , which otherwise would guarantee a unique global solution. Nevertheless

a solution can be obtained relatively efficiently using a general nonlinear equality-constrained op-

timization algorithm, such as sequential quadratic programming (see Appendix C.4) or augmented

Lagrangian methods. Since the gradient and Hessian of both the objective f(z) and constraint c(z)

are available (details provided in section 3.4.2), efficient Newton-type methods can be used.

On the other hand, (3.19) can be reformulated by exploiting the fact that it is an equality-

constrained least squares problem and rewriting it as an unconstrained least squares problem, thereby

allowing the use of a potentially more efficient algorithm for least squares. De Meersman has

previously described a procedure for reformulating a least squares problem with nonlinear equality

constraints as an unconstrained least squares problem [34]. The key idea is to rewrite an exact

penalty function for the original constrained least squares problem as an equivalent sum of squares,

thereby enabling solution as an unconstrained least squares problem. The method for doing so is

72



CHAPTER 3. ADAPTIVE KRIGING INVERSE RELIABILITY ANALYSIS (AKIRA)

to introduce a set of new variables and some linear mappings and massage the equations until an

unconstrained least squares problem can be written.

Both an augmented Lagrangian approach for solving (3.19) and reformulating and solving it as

an unconstrained least squares problem require the specification of a penalty ρ. In both cases, a suffi-

ciently large penalty ρ will give the optimal solution to the original constrained least squares problem

in (3.19) for the limit state levels. As in standard augmented Lagrangian or penalty methods, an

initial guess is made for ρ and the penalty is increased in subsequent iterations if the constraint

violation exceeds a certain tolerance. As the AKIRA algorithm is iterative, at each iteration the

probability of failure constraint feasibility is checked and the penalty updated if necessary. An initial

penalty value of 100 and constant multiplicative update factor of 10 when the equality constraint is

violated appear to work well in practice for a variety of problems. The use of the penalty is reflected

in the AKIRA algorithm shown in Algorithm 1.

3.4.2 Efficient Gradient Calculation

The efficient solution of (3.19) requires the gradients of the probability of failure estimate p̂f with

respect to the levels z. The sensitivities from section 2.6 can be adapted; for example for a single

limit state g(x, u) : Rn ×Rp → R, the gradient ∇zpf can be written as a surface integral:

∇zpf (x) = −
∫
g(x,u)=z

fu(u)

‖∇ug(x, u)‖dS (3.20)

since ∇zg(x, u) = ∇zz = 1. Of course, the integral in (3.20) can also be written as a volume

integral or combination of volume and surface integrals in accordance with Uryas’ev’s theorem (see

section 2.6).

Using Directional Simulation

In certain cases, it may be easier to directly differentiate the estimator as in the case when directional

simulation is used to estimate the probability of failure (see section 2.2.3).

First, the gradient calculation is generalized to multiple limit states using the assumptions from

section 2.6.2, namely, let pf (z) be separable and represented as

pf (z) = p1(z1) + · · ·+ pm(zm). (2.66)

In other words, each limit state is responsible for an independent contribution pi(zi) to the total

failure probability pf , which is the case when using directional simulation to find single roots from
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which to estimate pf . The derivatives of the estimator are then obtained as

∂p̂f
∂zj

=
dp̂j
dzj

=
d

dzj

[
1

N

N∑
i=1

1ij

(
1− χ2

p(r
2
i )
)]

= − 2

N

N∑
i=1

1ijχ
2′
p (r2

i )ri
dri
dzj

,

(3.21)

where there are N simulated directions for i = 1, . . . , N , each with a corresponding ri measuring

the distance to the nearest failure surface. 1ij is 1 when the ith direction corresponds to failure

for the jth limit state, and 0 otherwise. χ2′
p (r2

i ) is the first derivative of the chi-squared cumulative

distribution function with p degrees of freedom evaluated at r2
i . Note again that ∂ri/∂zj = 0 when

the ith distance to the failure surface ri does not correspond to the jth limit state.

dri/dzj is the reciprocal of the directional derivative of zj = gj(x, u) in the radial direction given

by ri:

dri
dzj

=

(
dzj
dri

)−1

=

(
∇uz>j

u

ri

)−1

, (3.22)

which requires the gradient of the limit state ∇ugj(x, u) to be available.

Efficient optimization methods also make use of second derivative information. The Hessian of

the directional simulation estimator p̂f is derived as

∂2p̂f
∂zj∂zk

=
−2

N

N∑
i=1

1ij

(
χ2′′
p 2r2

i

∂ri
∂zj

∂ri
∂zk

+ χ2′
p

∂ri
∂zj

∂ri
∂zk

+ χ2′
p ri

∂2ri
∂zj∂zk

)
, (3.23)

where the first and second derivative of the chi-squared cumulative distribution function with p

degrees of freedom χ2′
p and χ2′′

p are evaluated at r2
i . Note again that since ∂ri/∂zj = 0, the ith

distance to the failure surface ri does not correspond to the jth limit state level zj resulting in a

diagonal Hessian:

∂2p̂f
∂z2
j

=
−2

N

N∑
i=1

1ij

(
χ2′′
p 2r2

i

(
dri
dzj

)2

+ χ2′
p

(
dri
dzj

)2

+ χ2′
p ri

d2ri
dz2
j

)
j = k

∂2p̂f
∂zj∂zk

= 0. j 6= k

(3.24)

3.5 Design Sensitivities

Design sensitivities were introduced in section 2.6 for both the forward and inverse reliability analysis.

The primary sensitivity of interest for design is ∇xz, or the derivative of the quantile function z(x)

with respect to the set of deterministic design variables x. As a reminder, the quantile sensitivity is
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the m× n matrix whose ijth entry is

∂zi
∂xj

=

(
dpi
dzi

)−1

|z=pf (x0)
∂pf
∂xj
|x=x0

, (2.69)

where the assumption was made that pf can be decomposed as a sum pf =
∑m
i pi(zi). In other

words the probability of failure can be decomposed into a sum of contributions from each limit state.

3.5.1 Calculation Using Directional Simulation

When directional simulation is used as the technique for integrating the probability of failure pf (see

section 2.2.3), the sensitivities in (2.69) can be obtained fairly easily. Two methods are described

below; method I is based on (2.69) and method II is a more robust approximation method.

In both methods only the design variable sensitivity ∇xg(x, u) is potentially difficult to obtain,

especially as it must be evaluated at each of N points on the limit state surface in the standard

normal space u(i) for i = 1, . . . , N , albeit for a fixed x. The following section describes an adaptive

cokriging approach that can be used to aid in the estimation of ∇xg(x, u) when gradient estimation

is expensive.

Method I

(2.69) may be used for gradient estimation. The first component was derived in (3.21) and will

not be discussed further here. The second component (∂pf/∂xj) is the sensitivity for the forward

reliability analysis which was derived in section 2.6.1 for the case of directional simulation. As a

reminder the sensitivity when directional simulation is used is

∇xpf (x) ≈ − 1

N

N∑
i=1

fu(u(i)) · ∇xg(x, u(i)) · Sp−1(0, r(i)) · r(i)

u(i)>∇ug(x, u(i))
, (2.60)

where N is the number of simulations that intercept a limit state, u(i) is the point of interception

for the ith simulation, fu is the standard normal density, ∇xg(x, u) is the gradient of the limit state

with respect to the deterministic design variables x, ∇ug(x, u) is the gradient of the limit state with

respect to the standard normal variables u, Sp−1 is the surface area of the p-sphere of radius r(i),

and r(i) =
∥∥u(i)

∥∥.

Method II

An alternative method for estimating the design sensitivities is considered due to the limitations of

the chain rule derivation when dpi/dzi approaches zero. This is inevitably the case when multiple

limit states are present. In such situations derivatives estimated with method I can be incorrect when

a limit state contributes only a small amount to the system failure probability. Instead, note that
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the design sensitivity ∇xz(x, u) for a given design x is a function of random variables u subject to

the constraint g(x, u) = z. In directional simulation a random sample of N points on the constraint

g(x, u) = z has been obtained, furthermore the likelihood of each point u(i) is given by fu(u(i)), the

standard normal density function. As a result, the design sensitivities may be estimated as

∇xz(x) ≈
∑N
i=1∇xz(x, u(i))fy(u(i))∑N

i=1 fy(u(i))
. (3.25)

3.6 Adaptive Cokriging Model for Limit State Sensitivities

In many cases the limit state sensitivity ∇xz(x, u) = ∇xg(x, u) is difficult or expensive to obtain. In

this section an adaptive cokriging model is proposed for efficient estimation of ∇xg(x, u) for a given

design x. The following cokriging approach takes advantage of the information obtained during the

AKIRA algorithm when directional simulation is used for probability of failure integration, namely

1. An accurate model of g(x, u) has already been obtained in the vicinity of the limit state surface

g(x, u) = z.

2. A set of points u(i) for i = 1, . . . , N has been obtained which reside on the limit state surface

g(x, u) = z.

3.6.1 Cokriging

In cokriging, kriging (see section 2.4.2) is extended to the multivariate case by modeling the co-

variances between responses in addition to the covariances between the inputs for each response.

In doing so, a response that has little data but is well correlated with another more well-informed

response can rely on its correlation to make more accurate predictions with less uncertainty. There

are many varieties of cokriging for different applications (see Chapter 5 of Chiles and Delfiner [29]

for an introduction), however here we focus on the use of simple bivariate cokriging. Simple implies

the assumption of a known and zero mean prior for each response, which is in agreement with the

AKIRA kriging model ĝ(x, u) which is built using normalized data. Bivariate implies that only two

responses are correlated during the cokriging process, the primary response which typically has less

data and is to be estimated, and the secondary response which typically has more data and informs

the prediction for the primary response.

A general cokriging model can be written as

Z∗∗(u) =

r∑
i=1

Ni∑
j=1

λij(u)Zi(u
(ij)) + λ0, (3.26)

where the r responses for i = 1, . . . , r are considered to be modeled by the random functions

Zi(u) : u ∈ Rp → R, and the weights λij(u) define a linear combination of the random functions
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Zi(u
(ij)). Note that the weights λij depend on the input data u, whereas the random functions

do not and are conditioned on already sampled data pairs (u(ij), Zi(u
(ij))). Note also that each

response’s sampled data need not be collocated, i.e. data can be sampled for each response at

different locations and in different quantities.

Adopting a vector notation leads to the following succinct representation of the cokriging esti-

mator at point u:

Z∗∗(u) =

r∑
i=1

λ>i Zi + λ0, (3.27)

where λi = [λi0, . . . , λiNi ]
> and Zi = [Zi(u

(i1)), . . . , Zi(u
(iNi))]>.

In general the same steps as for kriging are followed in the derivation of the cokriging system

equations which allow determination of the coefficients λi, namely that the bias of the estimator is

first eliminated and then the mean square error of the estimator is minimized, leading to its moniker

of Best Linear Unbiased Estimator [29]. These derivations are widely available and not reproduced

here for brevity.

Simple Cokriging

In simple cokriging, the mean for each random function Zi(u) (i.e. response) is considered to be

known and zero. The following cokriging system is then derived which allows determination of the

unknown coefficients λi at a point u0:

∑
j

Kijλj = ki0 for i = 1, . . . , r, (3.28)

where Kij = K(U (i), U (j)) is the Ni × Nj matrix of data-to-data covariances between the ith and

jth responses and U (i) = [u(i1), . . . , u(iNi)]> is the matrix of sampled data for the ith response.

ki0 = K(U (i), u0) is similarly the Ni × 1 covariance matrix between the known data U (i) for the

ith response and the point u0 whose response is estimated. In a bivariate cokriging model with two

responses, the simple cokriging system in matrix notation is[
K11 K12

K21 K22

][
λ1

λ2

]
=

[
k10

k20

]
, (3.29)

which is succinctly written as Kλ = k0. Comparing the simple bivariate cokriging system in (3.29)

with the simple kriging sytem from (2.38), we note that cokriging system considers cross-covariances

(K12 and K21) in addition to two univariate kriging covariance matrices (K11 and K22). The solution

of (3.29) may be obtained if K is positive definite via Cholesky decomposition.

The mean of the cokriging estimator m(u0) at u0 for simple cokriging follows simply from (3.27)
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as

m(u) = E[Z∗∗] =

r∑
i=1

λ>i Zi. (3.30)

The cokriging variance s2(u0) derives from the minimum mean square error calculation [29] as

s2(u) = Var(Z∗∗)(u) = K00 −
r∑
i=1

λ>i Ki0. (3.31)

Multivariate Matérn Covariance Kernel

The selection of a covariance function for modeling cross-covariances between random functions

Zi and Zj is non-trivial, especially since it is desirable that such functions yield a positive def-

inite covariance matrix K. One common covariance model is the proportional covariance model

where all direct and cross-covariances are assumed to be proportional to the same covariance kernel,

i.e. Kij(h) ∝ K(h) [29]. Here h represents the separation between two points, implying a station-

arity assumption, namely that the mean and variance of the random fields Zi and Zj are invariant

under translations (second order stationarity).

In the bivariate cokriging model the proportional covariance model is

K11(h) = σ2
1K(h)

K22(h) = σ2
2K(h)

K12(h) = K21(h) = ρσ1σ2K(h),

(3.32)

where −1 < ρ < 1. In the multivariate Matérn covariance kernel K(h) is taken to be a univariate

Matérn covariance function which is described in Appendix B.2.

In order to ensure a positive definite covariance matrix, Gneiting et al derived several conditions

on the hyperparameters of the Matérn covariance functions (namely smoothness parameters νij ,

scale parameters aij and variance parameters σ2
i and ρij) [62]. Interested readers are referred to

their paper [62] for the appropriate conditions which should be checked during kernel construction

and hyperparameter optimization.

3.6.2 Model Construction

For a given limit state g(x0, u) : u ∈ Rp → R, a model can be constructed for the partial derivative

∂g/∂xi(x0, u) : u ∈ R
p → R using cokriging. The primary response (to be estimated) is taken

to be the partial derivative ∂g/∂xi(x0, u) and the secondary response is taken to be the limit state

response g(x0, u) for which a very accurate representation was previously obtained through the

AKIRA algorithm.
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The accuracy of the assumption of a correlation between a function and its gradient depends

on the case. If there is a strong correlation then cokriging will make estimation of the the primary

response very efficient, however if there is no correlation then no benefit is gained by cokriging and

the system will degenerate to univariate kriging with an appropriate choice of kernel hyperparameters

(K12 = K21 = 0 in (3.29)). Take for example, the artificially modified limit state function with 3

deterministic design variables and 2 random variables [21]:

g(x, u) = x1(u1 − u2)2 − (u1 + u2)x2 + x3. (3.33)

The limit state in (3.33) is well-correlated with its partial derivative ∂g/∂x3 in the standard normal

space (via a translation) but less well-correlated with its partial derivative ∂g/∂x1 due to the quadratic

nonlinearity in u.

Instead of constructing a series of independent bivariate cokriging models, one for each partial

derivative, one could consider solving a larger cokriging system where all partial derivatives and

the limit state are considered correlated. In this case correlations between partial derivatives could

be exploited by the cokriging model to yield potentially more efficient estimates of ∇xg(u, x), how-

ever for large numbers of design variables the cokriging system matrix K will become large. A

more significant problem is perhaps the accurate and efficient determination of covariance kernel

hyperparameters which will grow quadratically with the n+ 1 responses in the cokriging system for

x ∈ Rn.

Thus in the general case, a total of mn simple bivariate cokriging models are constructed for m

limit states gi(x0, u) and their n partial derivatives ∂gi/∂xj(x0, u). Each cokriging model is initially

trained using the N samples obtained from AKIRA for g(x, u) and a single sample for ∇xg(x, u)

located at the most probable point (MPP) of failure. The multivariate Matérn covariance kernel

is used and the kernel’s variance hyperparameters σ2
1 , σ2

2 , and ρ are optimized via maximum log

marginal likelihood (see section 2.4.2). The length scales for all covariance kernels are taken to be

the same as those in refined kriging model for g(x, u) from AKIRA.

3.6.3 Model Refinement

Each simple bivariate cokriging model can be refined using a Stepwise Uncertainty Reduction (SUR)

strategy [16, 26] which was introduced in section 3.3.1. As a reminder a SUR strategy seeks to choose

a point u(s+1) or points which minimize the average of a future measure of uncertainty Hs+1(u) in

a quantity of interest given the selection of those points.

In the current problem, the quantity of interest is a design sensitivity ∂pf/∂xi(x) which can be

approximated by a finite weighted sum of limit state sensitivities ∂g/∂xi(x, u(j)) for j = 1, . . . , N .
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For example, when directional simulation is used, the ith partial of pf can be written as

∂pf
∂xi

(x) ≈
N∑
j=1

γj(u
(j))

∂g

∂xi
(x, u(j)), (3.34)

which was derived in section 2.6.1. The derivative is further approximated by replacing the limit

state sensitivity by its cokriging model ∂̂g/∂xi(x)

∂pf
∂xi

(x) ≈
N∑
j=1

γj(u
(j))

∂̂g

∂xi
(x, u(j)). (3.35)

SUR Uncertainty Measure

At this point to simplify notation we consider a general quantity of interest f ∈ R which is defined

as a weighted sum of N cokriging model evaluations c(u), where the cokriging model has been

constructed from s samples u(1), . . . , u(s) in the form

f =

N∑
i=1

γic(u
(i)), (3.36)

where the correspondence with (3.35) is clear.

One appropriate measure of uncertainty Hs+1(u) for the quantity of interest f is its variance

taking u(s+1) into account given by

Vars+1(f) = Vars+1

(
N∑
i=1

γic(u
(i))

)

=

N∑
i=1

γ2
i Vars+1

(
c(u(i))

)
+ 2

N∑
i=1

N∑
j=i+1

γiγjCovs+1

(
c(u(i)), c(u(i))

)
,

(3.37)

which shows that the variance and the covariances of each of N points with each other must be

calculated from the cokriging model. The conditional expectation of Vars+1(f) requires a univari-

ate integral over the possible values of c(u(s+1)) and can be approximated using Gauss-Hermite

quadrature as

Es[Vars+1(f) | u(s+1)] ≈
Q∑
q=1

w(q)Var
(q)
s+1(f), (3.38)

where w(q) are the quadrature weights for the Q univariate quadrature points and Var
(q)
s+1(f) is the

variance of f when the s+ 1st sample is evaluated at the qth quadrature point.

80



CHAPTER 3. ADAPTIVE KRIGING INVERSE RELIABILITY ANALYSIS (AKIRA)

Extension to Multiple Quantities of Interest

In the section above a single quantity of interest f was considered for refinement. If however n

quantities of interest (each estimated using separate cokriging models) are considered for refinement

and a single point u(s+1) is to be picked at which to evaluate each of them, we choose the point

corresponding to the quantity with the maximum optimized SUR criterion from (3.6). Such a

strategy is only valid when all quantities of interest are comparable, such as when each cokriging

model is constructed using normalized data. The rationale of this approach is to choose the best

sample according to the SUR strategy for the quantity of interest with largest uncertainty.

Termination Criterion

A satisfactory termination criterion for cokriging model refinement is one that ensures the uncer-

tainty in the quantity of interest is small. Unfortunately, it is difficult to ensure the cokriging model

is sufficiently accurate without exhaustive model refinement due to the assumptions made in the

choice of covariance kernel. Nevertheless, a bound on the maximum coefficient of variation for the

quantities of interest ∂pf/∂xi(x, u) is useful:

maxi


√

Var
(

ˆ∂pf
∂xi

)
E
[

ˆ∂pf
∂xi

]
 ≤ τc, (3.39)

where τc is taken to be 0.1 or so.

3.6.4 A Practical Algorithm

The procedure outlined in this section for the construction and adaptive update of a cokriging model

for limit state sensitivities ∇xg(x, u) is nontrivial and can become quite expensive when the number

of design variables x and limit states are large. Algorithm 3 outlines a practical algorithm.
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Algorithm 3: Adaptive SUR cokriging approximation for limit state sensitivities

Data: N samples u(1), . . . , u(N) on the limit state surface obtained via directional simulation,

refined kriging model for the limit states ĝj(x, u) for j = 1, . . . ,m, Q quadrature

points, convergence tolerance τc

Result: Refined cokriging models of limit state sensitivities
∂̂gj
∂xk

(x, u)

1 uMPP ← Determine the most probable point (MPP) of failure: argminu(i)

∥∥u(i)
∥∥;

2 ∇xg(x, uMPP )← Evaluate design sensitivities at the MPP;

3 for j ← 1 to m do // each limit state gj

4 for k ← 1 to n do // each design variable xk

5
∂̂gj
∂xk

(x, u)← Build a bivariate cokriging model for each response and partial derivative;

6 w(q), p(p), q = 1, . . . , Q← Calculate Gauss Hermite quadrature weights and points;

7 Select M < N representative points from u(1), . . . , u(N);

8 for s← 1 to smax do

9 if maxi


√

Var

(
ˆ∂pf
∂xi

)
E

[
ˆ∂pf
∂xi

]
 ≤ τc then // model is converged

10 return
∂̂gj
∂xk

(x, u);

11 for i← 1 to M do // each prospective point u(i)

12 for q ← 1 to Q do // each quadrature point p(q)

13 for j ← 1 to m, k ← 1 to n do // each cokriging model

14 r
(q)
ijk ← mjk(u(i)) + p(q)σjk(u(i));

15
∂̃gj
∂xk

(x, u)← Temporarily update cokriging model with (
∂̂gj
∂xk

(u), u(i), r
(q)
ijk);

16 V
(q)
ijk ← Var(

∂̃gj
∂xk

(u));

17 Sijk ← Calculate SUR criterion:
∑Q
q=1 w

(q)V
(q)
ijk ;

18 u(s+1) ← Select next sample as optimum of: maxj,k{mini{Sijk}};
19 ∇xg(x, u(s+1))← Evaluate design senstivities at u(s+1);

20 for j ← 1 to m, k ← 1 to n do // each cokriging model

21
∂̂gj
∂xk

(u)← Update cokriging model with (u(s+1),
∂gj
∂xk

(u(s+1)));

3.6.5 Demonstration

Table 3.2 compares the design sensitivities ∇xp̂f calculated using several methods after the AKIRA

algorithm successfully converged for the following modified convex limit state with 3 deterministic
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Table 3.2: Comparison of methods for approximating design sensitivities ∇xp̂f for the simple modi-
fied convex limit state in (3.33). For this problem, the adaptive cokriging approach yields acceptable
derivatives with two gradient evaluations and near-exact derivatives with six. Note also that merely
using the design sensitivities at the most probable point (MPP) does not necessarily lead to accurate
derivative estimation.

Method
∂p̂f
∂x1

∂p̂f
∂x2

∂p̂f
∂x3

Exact -0.03658 0.09278 -0.02889
One sample at MPP -4.2848×10−7 0.08770 -0.02889

Adaptive cokriging with 2 samples -0.01254 -0.0890 -0.02889
Adaptive cokriging with 6 samples -0.03679 0.09278 -0.02889

design variables x ∈ R3 [21]:

g(x, u) = x1(u1 − u2)2 − (u1 + u2)x2 + x3. (3.33)

In this case the cokriging approach yields an acceptable derivative approximation with only two

gradient evaluations and a near-exact approximation with six evaluations. Derivative estimation

based solely on the gradient at the most probable point (MPP) may be prone to error as shown even

in this simple example. The derivative for x1 is completely wrong when calculated only using the

MPP.

3.7 Demonstration

In this section, AKIRA is demonstrated in detail on several test problems including a highly nonlinear

limit state with y ∈ R2, a cantilever beam problem with two limit states with y ∈ R4, and several

other structural reliability test problems. Comparisons are made with Monte Carlo and inverse

FORM when possible.

3.7.1 2D Example: Highly Nonlinear Limit State

Grandhi and Wang [65] introduced the highly nonlinear limit state

g(y) = 2.5 + 0.00463(y1 + y2 − 20)2 − 0.2357(y1 − y2), (3.40)

where y1, y2 ∼ N (10, 32) and are uncorrelated. Using a response surface method to solve the

reliability analysis for the limit state in (3.40) is challenging due to its nonlinearity.

Here we apply AKIRA for the solution of the inverse reliability analysis with a prescribed prob-

ability of failure p̄f = 10−2. Four Monte Carlo samples are used in the initial sampling stage in

addition to a sample at the mean of the random variables. Samples are adaptively selected in
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Table 3.3: Random parameters in the cantilever beam problem.

Name Variable Distribution Mean CoV

Yield strength Y Normal 40,000 0.05
Elastic modulus E Normal 2.9× 107 0.05
Horizontal load H Normal 500 0.2

Vertical load V Normal 1,000 0.1

batches of five using the heuristic from section 3.3.2 using zα/2 = 0.67 (75% one-sided confidence

interval) and added to the kriging model each iteration. Figure 3.8 compares the exact limit state

contours and kriging model contours at the beginning, end, and two intermediate iterations during

the AKIRA algorithm. AKIRA converges in 9 iterations when the p̂f convergence ratio πf falls

below 0.05 leading to 45 total function evaluations.

The convergence of AKIRA is shown in Figure 3.9. The estimated limit state level from AKIRA

is ẑ = 0.4371 which compares well with level zMC = 0.4654 obtained from a Monte Carlo simulation

with 106 samples (CoV = 0.01) on the exact limit state function. The -6.1% difference between the

two levels is attributable to two sources of error: inaccuracies in the kriging model in the vicinity

of the limit state and differences between the directional simulation and Monte Carlo sampling

methods. Postprocessing using directional simulation with common random numbers (i.e. the same

set of directions used during AKIRA) on the exact limit state for the final level estimate shows

p̂f = 0.996× 10−2 (CoV = 0.1), thus we conclude that the kriging model is very accurate. Instead,

the main contribution to the source of error in ẑ is the use of uniform directional simulation. A

more accurate estimate of ẑ can be made by using a more accurate integration method or searching

for multiple roots in directional simulation.

3.7.2 4D Example with Multiple Limit States: Cantilever Beam

The cantilever beam problem is illustrated in Figure 3.10 [132, 126]. Its four random variables

y = [Y,E,H, V ]> are summarized in Table 3.3. For the purposes of demonstrating AKIRA the

beam geometry’s geometry parameterized by x = [w, t]> is fixed with w = 2.6041, t = 3.6746

and L = 100 inches. Two limit states are considered: one related to stress and one related to

displacement. The stress S in the beam is given by

S(x, y) =
600

wt2
V +

600

w2t
H, (3.41)

whereas the displacement of the beam D is given by

D(x, y) =
4L3

Ewt

√(
V

t2

)2

+

(
H

w2

)2

. (3.42)
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(c) k = 7
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Figure 3.8: AKIRA’s kriging approximation (dashed lines) of the highly nonlinear limit state (solid
lines) defined in (3.40) at the beginning (k = 0) of the algorithm and at iterations 4, 7, and final
iteration 9. The prescribed probability of failure p̄f is 10−2 which corresponds to a limit state
level z = 0.4654 (estimated from 106 Monte Carlo samples). AKIRA terminates after 9 iterations
with estimated ẑ = 0.4371. The multipoint adaptive point selection strategy from section 3.3.2 is
employed with batches of 5 points selected per iteration. The last 5 samples added to the kriging
model are denoted using red triangles; other training samples are shown with black dots. A small
initial Monte Carlo sample of 4 points is used to illustrate AKIRA’s recovery from a poor initial
kriging model in the first iteration. Note how AKIRA chooses to refine the kriging model in the
region that contributes most to the probability of failure; samples are also relatively spaced out.
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Figure 3.9: Convergence of AKIRA for the nonlinear limit state defined in (3.40) occurs in 9 iterations
and 45 total function evaluations. The convergence of πf , the p̂f convergence ratio defined in (3.14)
in subplot 3.9a illustrates the convergence of AKIRA’s kriging model in the regions important to
the probability of failure calculation. This is qualitatively shown in Figure 3.8 as well. A tolerance
of 0.05 is used for πf . Convergence of the estimated limit state level ẑ in subplot 3.9b shows that
by iteration 3, AKIRA already has decent estimate of the solution to the inverse reliability analysis
problem.

Figure 3.10: Schematic for the proposed cantilever beam problem subject to a lateral and vertical
load [132, 126]. Elastic modulus E, yield strength Y , and horizontal and vertical loading H and V
are uncertain. L = 100 inches and w and t are deterministic design variables.

Failure occurs when the stress S exceeds the yield stress Y or the displacement D exceeds D0 =

2.2535 inches. The limit states are normalized such that a value less than zero corresponds to failure.

The normalized limit states gs(x, y) and gD(x, y) are given by

gS(x, y) = 1− S(x, y)

Y
, (3.43)

gD(x, y) = 1− D(x, y)

D0
. (3.44)

We apply AKIRA for the solution of the inverse reliability analysis with a prescribed probability

of failure p̄f = 10−6. 8 Monte Carlo samples are used in the initial sampling stage in addition to a

sample at the mean of the random variables. Samples are adaptively selected in batches of five using

the heuristic from section 3.3.2 using zα/2 = 0.67 (75% one-sided confidence interval) and added

to the kriging model each iteration. AKIRA converges in 8 iterations when the p̂f convergence

ratio πf falls below 0.05 leading to 47 total function evaluations. Inspection of the AKIRA analysis
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shows failure occurs most often when the loads are high, yield strength is low, and elastic modulus

is slightly below average. Both limit states contribute nearly equally to the probability of failure

with the stress limit state garnering 182 failure samples and the displacement limit state garnering

215 failure samples out of 3000 directional simulations.

The convergence of AKIRA is shown in Figure 3.11. The estimated limit state levels from AKIRA

are ẑS = −0.1889 for the stress and ẑD = −0.1521 for the displacement. A Monte Carlo simulation

with 108 samples (CoV = 0.1) using ẑS and ẑD from AKIRA estimates the probability of failure as

9.5× 10−7, thus we conclude the AKIRA estimate of the limit state levels is fairly accurate.
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Figure 3.11: Convergence of AKIRA for the cantilever beam problem with limit states defined in
equations 3.43 and 3.44. Convergence occurs after 8 iterations and 47 total function evaluations for
each limit state. The convergence of πf , the p̂f convergence ratio defined in (3.14) in subplot 3.11a
illustrates the convergence of AKIRA’s kriging model in the regions important to the probability of
failure calculation. A tolerance of 0.1 is used for πf . Convergence of the estimated limit state level
ẑ in subplot 3.11b shows that by iteration 4, AKIRA already has a good estimate of the solution to
the inverse reliability analysis problem.

3.7.3 14D Example with Multiple Limit States: Supersonic Nozzle

The supersonic nozzle problem is described in detail in chapter 5. Here we content ourselves with a

cursory overview for the purpose of demonstrating AKIRA. Figure 3.12 shows the nozzle geometry

which is axisymmetric only for illustrative purposes. Three quantities of interest and 14 random

parameters have been identified as important contributors to the performance and failure states

of the nozzle (see section 5.5.3). These are the thrust F which is primarily affected by variability

in pressures and temperatures, the temperature ratio in the inner load layer T (component 2 in

Figure 3.12) which is primarily affected by variability in material thermal properties such as thermal

conductivity as well as temperatures, and the structural failure criterion S in the thermal layer which

is primarily affected by variability in material thermal properties and temperatures.

AKIRA is applied for the solution of the inverse reliability analysis with a prescribed probability
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Figure 3.12: Schematic for the supersonic nozzle design problem. 14 random parameters have been
identified as important including the inlet and atmospheric pressures and temperatures, various
material properties such as thermal conductivities and the heat transfer coefficient from the external
nozzle wall to the ambient. Three quantities of interest are considered to be the critical design
limiting quantities: the thrust, the temperature ratio in the inner load layer (2), and the structural
failure criterion in the thermal layer (1). A full description of the supersonic nozzle design problem
can be found in chapter 5.

of failure p̄f = 10−6. 70 samples generated from a Sobol’ sequence are used in the initial sampling

stage in addition to a sample at the mean of the random variables. Samples are adaptively selected

in batches of eight using the heuristic from section 3.3.2 using zα/2 = 0.67 (75% one-sided confidence

interval) and added to the kriging model each iteration. AKIRA converges in 4 iterations when the

p̂f convergence ratio πf falls below 0.1 leading to 95 total function evaluations. Inspection of the

AKIRA analysis shows failure occurs most often when the inlet stagnation pressure is high, the

heat transfer coefficient is low, thermal conductivity of the air gap is high, and the max service

temperature in the inner load layer is low (low/high is measured with respect to the mean). Under

such conditions, both stress and temperature increase in the nozzle wall layers, leading to a greater

chance of failure. The thrust and the inner load layer temperature ratio quantities of interest

contribute to the system failure of the nozzle whereas the failure criterion in the thermal layer is not

an active limit state for the chosen design.

The convergence of AKIRA is shown in Figure 3.13. The estimated limit state levels (for the

normalized quantities of interest; ≤ 0 is failure) from AKIRA are ẑF = −0.0142 for the thrust,

ẑT = −0.0777 for the inner load layer temperature ratio and ẑS = 0.0000 for the structural failure

criterion. Note for this particular design, the nozzle system has failed and the property of consistency

discussed in section 3.4 is met (all limit state levels returned by AKIRA correspond to failure or

non-failure), even for the inactive limit state ẑS . A Monte Carlo simulation was not performed for

comparison due to the expense of running the nozzle problem.

3.7.4 Comparison of AKIRA Performance on Select Problems

Table 3.4 compares the performance of AKIRA with Monte Carlo and FORM using the performance

measure approach (see section 2.3.1) when possible on several common structural reliability analysis

test problems. For problems with multiple limit states, a direct comparison cannot be made since
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Figure 3.13: Convergence of AKIRA for the supersonic nozzle problem with three normalized limit
states: thrust F , inner load layer temperature ratio T , and thermal layer structural failure criterion
S, described in detail in chapter 5. Convergence occurs after 4 iterations and 95 total function
evaluations for each limit state. The convergence of πf , the p̂f convergence ratio defined in (3.14)
in subplot 3.13a illustrates the convergence of AKIRA’s kriging model in the regions important
to the probability of failure calculation. A tolerance of 0.1 is used for πf . Convergence of the
estimated limit state level ẑ in subplot 3.13b demonstrates the consistency property described in
section 3.4 where limit state levels chosen by AKIRA (iterations 1–4) either all correspond to failure
or non-failure (in this case > or ≤ 0).

other methods work for a single limit state. Instead, the limit state levels obtained with AKIRA

are used in a Monte Carlo forward reliability analysis to verify they correspond to the prescribed

probability of failure p̄f .

The full problem definitions for the short column and the steel column problems can be found

in Appendix A. The short column problem has four random variables and features a short column

with rectangular cross-section subject to two bending moments and an axial load [77]. The steel

column problem has nine random variables and features a steel column subject to a variety of loads

and geometric uncertainties [77]. Table 3.4 shows that AKIRA is superior to FORM in terms of

accuracy on nonlinear limit states and also that AKIRA solves the inverse problem in relatively few

function evaluations.
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Table 3.4: AKIRA is compared with Monte Carlo and FORM for a prescribed probability of failure
p̄f = 10−6. The average estimated limit state level ẑ and average number of limit state evaluations
N is reported from 20 independent AKIRA analyses. Coefficients of variation are reported in
parentheses. Data marked with – is unavailable; for FORM and Monte Carlo this is due to lack
of a means to solve the inverse problem for multiple limit states. Instead, a Monte Carlo forward
reliability analysis is run for the average limit state levels estimated by AKIRA to verify AKIRA
accurately identifies limit state levels for the prescribed probability of failure. The AKIRA algorithm
uses the multipoint adaptive point selection strategy from section 3.3.2 with batches of 5 points
selected per iteration.

Problem Method ẑ / p̂f N

Short Column
Monte Carlo ẑ = −0.3796 108

Inverse FORM ẑ = −0.3048 25
AKIRA ẑ = −0.3677 (0.024) 73 (0.19)

Steel Column
Monte Carlo ẑ = −0.2562 108

Inverse FORM ẑ = −0.3158 65
AKIRA ẑ = −0.2524 (0.081) 72 (0.05)

Cantilever
Monte Carlo p̂f = 1.012× 10−6 (0.03) 108

Inverse FORM — —
AKIRA ẑ = [−0.1894(0.014),−0.1524(0.011)]> 54 (0.13)
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Chapter 4

Reliability-Based Design

Optimization (RBDO)

Many problems in engineering as well as physics, economics and myriad other disciplines can be

formulated as optimization problems, that is, as the minimization or maximization of some quantity

or quantities such as safety, energy, or profit. In engineering the word “optimization” is often used

interchangeably with “design”, the intent being that a good design has a lower cost, higher reliability,

or some combination thereof than other designs. Chapters 1 and 2 motivated the importance of

reliability in engineering systems and as such, the incorporation of reliability into design optimization

is the logical next step thereby leading to reliability-based design optimization (RBDO). The use

of RBDO enables engineers and designers to ensure that systems perform reliably and maintain

sufficient standards of safety. The application areas are virtually limitless and include among others,

electronics, finances, structures, and aerospace.

This chapter introduces RBDO and proposes a new multifidelity sequential method for use with

AKIRA. First an introduction to deterministic and reliability-based design optimization is given

in section 4.1, including the reformulation of the RBDO problem using the performance measure

approach. Next, traditional methods for building margin into a design to account for uncertainties

such as safety factors and basis values are discussed in section 4.2. Then existing classes of RBDO

methods and classical trust region methods are reviewed in sections 4.3 and 4.4. Finally a sequential

RBDO algorithm which takes advantage of anchored decomposition, multifidelity models, and trust

region methods is presented in section 4.5. A demonstration of the algorithm on two common

structural reliability problems is given in section 4.6. A review of optimization theory may be

helpful and can be found in Appendix C.
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4.1 Introduction

4.1.1 Deterministic Optimization

First let us take a deterministic standpoint for the purpose of introducing optimization. Often the

most difficult task in design optimization is choosing the appropriate mathematical description for

the physical design problem at hand. First and foremost are the design variables x ∈ Rn. The

design variables are the “knobs” which can be turned to tune the design; for example geometric

dimensions or process parameters. The objective f(x) : Rn → R is the quantity to be minimized

or maximized; for example cost or weight. The constraints g(x) : Rn → R
m prescribe limits on

characteristics of the design; for example a maximum allowable temperature or stress in a structural

component. Constraints may also encompass geometric limitations such as size and shape as well

as bounds on the design variables x. A typical deterministic nonlinear optimization problem with

nonlinear inequality constraints can be written as

minimize
x

f(x)

s.t. g(x) ≥ 0,
(4.1)

where the constraints g(x) may include nonlinear constraints, linear constraints, and/or bounds on

the variables x. On occasion the presence of linear constraints and variable bounds is emphasized

by explicitly writing them out as shown in the following problem statement:

minimize
x

f(x)

s.t. g(x) ≥ 0

Ax ≥ b
l ≤ x ≤ u.

(4.2)

The problem in (4.2) shows a set of nonlinear constraints g(x), linear constraints defined by

the matrix A and vector b, and lower and upper bounds l and u on the design variables x. Linear

constraints are common in design optimization problems where simple linear relationships often exist

between xi as a result of the chosen design parameterization. Such constraints can be used to enforce

reasonable designs and furthermore can be directly incorporated when an active set optimization

algorithm is used [61], ensuring that the linear constraints are satisfied for all iterates i.e. that only

reasonable designs are considered during the optimization.

Naturally the solution of the optimization problem in (4.1) yields an optimal design insofar as the

objective and constraint functions accurately model the true behavior of the system being designed,

and in addition that all variables and requirements have been taken into account. As a result,

proper problem specification and design variable, objective, and constraint identification are key to
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obtaining a useful optimal design. If any part of the design problem is misspecified or overlooked, the

result of the optimization is likely to be useless. The supersonic nozzle design problem introduced

and solved in chapter 5 showcases a methodical procedure for determining a proper optimization

problem in the context of engineering design.

Unfortunately the optimization problems stated in (4.1) and (4.2) are only approximations of any

real design problem. As discussed in chapter 1, in addition to a dependence on x, design problems

are also characterized by uncertainties, which are parameterized here by the random variables y.

Reliability-based design optimization seeks to directly account for the uncertainties y in order to

meet reliability requirements for a design.

4.1.2 RBDO Problem Formulation

A RBDO problem can be written as a stochastic optimization problem over deterministic variables

x ∈ Rn and random variables y ∈ Rp, where one or more of the objectives or constraints seek a

small probability of failure, i.e. a reliable design. A typical form of the RBDO problem is shown in

(4.3) for the objective f(x, y) ∈ R and limit states g(x, y) ∈ Rm:

minimize
x

E[f(x, y)]

s.t. P [gi(x, y) ≤ z̄i] ≤ p̄f,i i = 1, . . . ,m

Ax ≤ b,

(4.3)

where x are deterministic design variables which may be independent from y or may be distributional

parameters for the random variables y such as a mean. The objective function f(x, y) is a random

function and its expectation E[·] is taken as the optimization objective. Each limit state gi(x, y)

is constrained to only violate its performance bound z̄i with at most probability p̄f,i. Finally a set

of linear deterministic constraints defined by the matrix A and vector b are included which specify

simple relationships between the deterministic variables as well as their bounds.

The RBDO problem in (4.3) constrains the failure probability of each limit state independently.

However in most engineering systems the system failure probability, i.e. the chance that the system

as a whole fails instead of a single component, is more important. System reliability was introduced

in chapter 2 on reliability. For example recall that in a series system (i.e. failure of one subsystem

results in system failure), the probability of failure is given by

pf (x) = P

[
n⋃
i=1

{(x, y) : gi(x, y) ≤ z̄i}
]

= P [mini {gi(x, y)− z̄i} ≤ 0] .

(2.2)

For a series system designed for a prescribed system failure probability p̄f , a typical form of the
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RBDO problem is given by

minimize
x

E[f(x, y)]

s.t. P [mini {gi(x, y)− z̄i} ≤ 0] ≤ p̄f
Ax ≤ b.

(4.4)

A similar formulation can be written for parallel or mixed systems.

The RBDO problems in (4.3) and (4.4) are typically difficult to solve for several reasons. First,

they require resolution of stochastic quantities such as expectations and more challenging, proba-

bilities of failure, which are typically small numbers and expensive to resolve accurately. Second, x

and y are typically high-dimensional (n, p > 10) and f(x, y) and g(x, y) are also often nonlinear in a

realistic application which increases both the computational expense of the probability integration

as well as the computational expense of solving the optimization problem. Finally, in many realistic

applications of engineering interest, the objective and/or limit state functions f(x, y) and g(x, y) are

computationally expensive to evaluate. For example in the domain of aerospace engineering a single

coupled analysis (i.e. one function evaluation of f(x, y) and g(x, y)) may require hours or days of

compute time1. As a result, many methods for solving RBDO problems have focused on two areas:

increasing the efficiency of the solution procedure, and when possible also increasing the accuracy

of the solution. Section 4.3 surveys existing RBDO methods.

4.1.3 RBDO Reformulation with Inverse Reliability Analysis

The benefits of using an inverse reliability analysis (i.e. the performance measure approach) instead

of a forward reliablity analysis (i.e. the reliability index approach) were introduced in section 2.1.5

and have been advocated by many [128, 3, 40, 136, 5, 83]. As a reminder, a forward reliability

analysis involves calculating a probability of failure pf for a set of limit state functions g(x, y) with

an associated set of failure levels z̄. The RBDO formulations in equations 4.3 and 4.4 use a reliability

index approach since the problem formulation uses chance constraints, i.e. constraints of the form

pf (x) ≤ p̄f .

On the other hand, the use of an inverse reliability analysis gives rise to quantile constraints

in the RBDO problem formulation, i.e. constraints of the form z(x) > z̄. An inverse reliability

analysis solves for the limit state levels z(x) that yield a prescribed probability of failure p̄f . Using

a performance measure approach can yield a more robust optimization problem, avoid the cost

of evaluating probabilities smaller than p̄f and is potentially easier to solve for certain types of

reliability analysis methods (see section 2.1.5 for a full description).

1For example, the supersonic nozzle problem presented in chapter 5 requires approximately 20–24 core hours
(number of processor units times duration of computation) for a one-way coupled high-fidelity RANS aerodynamic
analysis and FEM thermal and structural analyses. The majority of the cost is in the RANS calculation.
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The RBDO problem with an independent constraint on each component from (4.3) can be rewrit-

ten using a performance measure approach as

minimize
x

E[f(x, y)]

s.t. zi(x; p̄f,i, y) > z̄i i = 1, . . . ,m

Ax ≤ b.

(4.5)

The series system RBDO problem from (4.4) can be rewritten using a performance measure approach

as
minimize

x
E[f(x, y)]

s.t. zi(x; p̄f , y) > z̄i i = 1, . . . ,m

Ax ≤ b.

(4.6)

The only difference between the performance measure approach formulations in (4.5) and (4.6)

is that individual component failure probabilities p̄f,i are prescribed in (4.5) and a system failure

probability p̄f is prescribed in (4.6). For both, a constraint is associated with each limit state,

where zi(x; p̄f , y) or zi(x; p̄f,i, y) is the limit state level resulting from an inverse reliability analysis.

The right-hand side of each constraint z̄i is the failure level for the ith limit state. Note that the

componentwise formulation requires m inverse reliability analyses which can become expensive for

many limit states or a system with coupled limit states whereas the system formulation requires

a single inverse reliability analysis. However, the componentwise formulation has typically been

used due to the lack of an inverse reliability analysis that can solve for multiple limit states [140].

The AKIRA algorithm introduced in chapter 3 overcomes this challenge and allows the system

formulation to be solved instead.

4.2 Traditional Methods for Accounting for Uncertainties

Acknowledging that there are uncertainties in the both the model and environment (i.e. choice of

design variables, random parameters etc.) and properly identifying them is a critical first step in the

design process [76]. Indeed the deterministic optimization problem from (4.1) is an approximation

of the more general RBDO problem that accounts for uncertainties from (4.4). Nevertheless, a good

deterministic design should also somehow take uncertainties into account. To do so, engineers often

build margin into a design to address uncertainties, whether they be unimagined loading scenarios,

rare manufacturing defects, subpar material properties, or other situations typically unaccounted

for in a deterministic mathematical model. Such margins take a variety of forms and can be applied

in different ways. Here, several common techniques used to apply margin in a deterministic fashion

to a design problem are recounted including safety factors, partial safety factors, and basis values (a

statistical method for estimating conservative material properties). It is standard practice to apply
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multiple types of margin in design; for example Acar et al demonstrate that the standard practice

use of basis values, safety factors, and certification tests in aircraft design lead to a compounding

effect of margin in design, ultimately resulting in an estimated probability of failure (per flight) of

approximately 10−7 [2].

4.2.1 Safety Factors

A common approach for building margin into a design is to use a safety factor [107, 139, 89, 38].

The safety factor γ is the ratio of resistance to load, therefore values greater than 1 build margin

into a design. Consider the following constraint which governs failure for a load g(x, y) (for example:

stress) and resistance z̄(y) (for example: yield strength):

g(x, y) < z̄(y). (4.7)

The safety factor γ = γ(y) is defined for a given design x as

γ = γ(y;x) =
z̄(y)

g(x, y)
, (4.8)

where it is clear that the safety factor is itself a random quantity with a dependence on y. However

for ease of use a deterministic value of the safety factor γ̃ is often specified during design. Then the

stochastic load-resistance constraint from (4.7) is replaced with a deterministic constraint, typically

using the mean of the random parameters y:

γ̃g(x,E[y]) < z̄(E[y]). (4.9)

One option for a deterministic safety factor is the central safety factor [56, 38] given by

γc =
Ey[z̄(y)]

Ey[g(x, y)]
. (4.10)

However, the central safety factor is not generally used in conventional design as it is preferable to

use a safety factor assuming a high load and low resistance [56]. Thus, a more pragmatic safety

factor is the general safety factor [38] defined in terms of the fractiles of g(x, y) and z̄(y):

γp,q =
z̄p
gq
, (4.11)

where

P [z̄(y) < z̄p] = p (4.12a)

P [g(x, y) < gq] = q. (4.12b)
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Typical values for p and q are 0.05 and 0.98 [38].

As shown by the safety factor’s dependence on y in (4.8), the value of γ should be informed

by the uncertainties present in the problem. The value of the safety factor is also dependent on

the definition of the resistance [38]. For example, the constraint g(x, y)2 < z̄(y)2 defines the same

load-resistance relationship as (4.7) but requires a safety factor of γ2 instead of γ to be equivalent to

(4.9). Typical values of γ range from 1.2 to 1.5 or higher depending on the application and discipline.

In aerospace engineering, the standard value of 1.5 is commonly used in structural applications2. Its

origin is debatable, but likely arose from a combination of factors ranging from the ultimate to yield

strength ratio of alloyed aluminum to flight experience, design codes, and engineering judgement

around the 1930s [139].

We emphasize again that safety factors should only be used when there is statistical evidence to

back up their value for the relevant application [38]. Unfortunately this seems not to be the case

in general engineering education: several safety factor methods such as the Pugsley method [89] or

Likel method [73] taught in engineering courses and used to calculate a safety factor are based on

qualitative judgements of the uncertainties in the problem (accuracy of material properties, loads,

stress calculation, manufacturing quality etc.), and the impact of design failure on humans and the

economy. Such methods may appear to agree with typical values found in engineering codes, however

they lack objectivity and mathematical rigor.

Probabilistic Sufficiency Factor

Qu and Haftka reintroduced a closely related concept to the safety factor for design, the probabilistic

sufficiency factor [104]. First note that a chance constraint can be formulated in terms of the safety

factor γ as

P [γ(y;x) < 1] ≤ p̄f . (4.13)

The probabilistic sufficiency factor psf is defined implicitly as

P [γ(y;x) < psf ] = p̄f . (4.14)

In other words, psf is the safety factor that yields the prescribed probability of failure p̄f . Qu and

Haftka argue that recasting the design problem in terms of probabilistic sufficiency factors gives a

more intuitive interpretation of how design changes impact reliability. For example when psf = α

for 0 < α < 1, it is immediately clear that decreasing the load g(x, y) by 100α% or increasing the

resistance by 100(1/α− 1)% will approximately satisfy the reliability requirement corresponding to

p̄f [104].

2Although it should be used with care in light of the comments above. As noted by Shanley in 1961: “The 1.5
factor of safety...is not ‘sacred’.” [118]
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4.2.2 Partial Safety Factors

The concept of partial safety factors is used widely in a variety of engineering codes, particularly

within the structural reliability community [38, 11]. Let y be the random variables representing the

uncertainty in the design problem. In particular a chosen deterministic xi may correspond to the

mean of the random variable yi; thus yi describes the variability of the deterministic variable xi. yi

may also be unrelated to the design variables and for instance represent a random parameter in the

design instead.

The idea of partial safety factors is to build margin into a deterministic design by analyzing

the “corners” of the design space to ensure failure does not occur. For example each random input

variable to the design can be fixed at either a code-specified lower characteristic value or upper

characteristic value for example xi/γm,i or xiγf,i where γm,i > 1 and γf,i > 1. Each combination of

characteristic values for the input variables can then be analyzed to approximate a reliable design.

Figure 4.1 illustrates the partial safety factor concept for a 2D design space consisting of design

variables x1 and x2.
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Figure 4.1: Illustration of the partial safety factor concept for a limit state g(x, y) = z̄ in two
dimensions with two design variables x1 and x2 that define the means of two random parameters y1

and y2. The partial safety factors γm,1, γm,2, γf,1, and γf,2 define a box around the current design
point (x1, x2) that encompasses most of the variability in the design at the design point. Any design
for which the four corners of the box (in two dimensions) remain inside the safe region has sufficient
reliability according to the code defining the partial safety factors. Note that partial safety factors
only guarantee increased reliability when the safe region is convex.

Analyzing every combination of characteristic values may be expensive; for n variables there

are 2n combinations of characteristic values. As a result usually only a subset is analyzed. The

subset choice may be aided by physical trends in a given application such as monotonic relationships
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between an input variable and a response (for example, increasing thickness will yield increasing

strength, etc.) [38].

To be useful in assessing reliability, the partial safety factors γm,i and γf,i should be informed

by both the application and variability in the problem. In structural design codes, the values of

partial safety factors are indeed standardized and calibrated for a variety of different structures

and problems [38]. However, generalization of the partial safety factors for a variety of cases over

the entire design domain can lead to unnecessarily conservative designs [11]. In addition, although

partial safety factors may ensure a specified probability of failure for the cases used in calibration,

in general they are only an approximation for other similar designs. For application to complex

systems, non-standard designs, or designs which lack statistically-informed and calibrated partial

safety factors the partial safety factor method leads to uncertain margin in the design.

4.2.3 Basis Values

Basis values are a common technique used in aerostructural design to build in margin to a design

to account for variability in material properties. A basis value b is simply a lower bound on the

100(1− p) percentile of a true material property y with confidence c [30]. The reason for specifying

a confidence bound for a material property’s percentile is that in practice the true distribution, and

therefore percentile, of a material property is unknown since it is only approximated by the samples

used to determine the material property statistics. Thus distribution parameters estimated from a

finite number of material characterization tests are intrinsically random variables. As a result, a

basis value is a conservative underestimate of the likely true material property value. Note however

that although basis values are often taken as conservative deterministic material properties, they

are in fact random variables.

Mathematically a basis value is defined such that the basis value will be less than a fraction p of

the unknown population y with probability c. In the case of a normally distributed random variable,

the basis value b takes the form

b = ȳ − kp,c(N)s(y), (4.15)

where ȳ is the sample average and s(y) is the sample standard deviation of y. The “knock-down”

factor kp,c(N) depends on the percentile 100p, degree of confidence c, and number of samples N

used to estimate the mean and standard deviation of the distribution. The two most commonly

used basis values are A and B basis values [30] and are defined in Table 4.1 with specified values of

p and c.

When perfect information is assumed, i.e. the distribution of the material property is presumably

known exactly via an infinite number of test samples, a basis value is simply the 100(1 − p)th

percentile of the material property. Otherwise, the basis value can be calculated by solving

P [L1−p > ȳ − kp,cs(y)] = c (4.16)
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Table 4.1: Common basis values used in practice.

Basis p c Purpose

A 0.99 0.95 critical component
B 0.90 0.95 redundant component

Figure 4.2: Schematic showing the three main classes of reliability-based design optimization meth-
ods. Left: In a traditional double-loop method the reliability analysis is nested inside of an outer
optimization loop, which is typically an expensive process requiring many function evaluations.
Middle: In a sequential method the optimization and reliability analyses are decoupled and serially
iterated until convergence. Right: In a unilevel method the reliability analysis is decomposed into a
set of conditions, for example equivalent KKT conditions, which are appended to the optimization
problem as constraints. No iteration is necessary.

for kp,c(N) where L1−p is the lower 100(1− p) percentile of the estimated distribution of y. Takano

outlines a solution method for (4.16) [127] for a general distribution. Alternately, A and B basis

values are tabulated for normal, lognormal, and Weibull distributions in [30].

4.3 Survey of RBDO Methods

RBDO methods are typically separated into three categories, double-loop, sequential, and unilevel

methods [3]. Figure 4.2 gives a brief schematic of each method and they are described in more detail

in subsequent sections. In a double-loop method the reliability analysis is nested within an outer

optimization. In a sequential method the reliability analyses and optimizations are decoupled and

a sequence of reliability analyses and deterministic optimizations are solved. Finally in a unilevel

method, the reliability analysis is embedded directly into the optimization as a set of constraints and

additional design variables; for example FORM may be reformulated in terms of its equivalent KKT

conditions. Typically double-loop methods are the most expensive due to their nested structure,

whereas sequential methods and unilevel methods are much more efficient [3, 40].

Another method for making the solution of RBDO problems more efficient is to use surrogate-

based optimization directly for the probabilistic quantities. In this method, a design of experiments
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is first conducted and reliability analyses are conducted for each sample. Then a response surface

is constructed for the probabilistic constraints, for example kriging. Deterministic optimization is

then performed over the response surfaces. This is the approach used by Acar for optimizing the

reliability of an aircraft’s wing and tail system [1]. A similar approach is used by Missoum et al

with support vector machine and kriging surrogates for the design of an airfoil under flutter [87].

Qu and Haftka also consider surrogate-based RBDO using the probabilistic sufficiency factor since

it is typically easier to approximate with a response surface than a probability of failure [104].

Several authors have also investigated the use of evolutionary or genetic algorithms in RBDO.

Hao et al present a double-loop method using particle swarm optimization [67]. They identify

clusters of promising designs with a low-fidelity model and then determine an optimal design from

a kriging response surface built over samples from a high-fidelity model. Alternately Lobato et al

consider the use of the differential evolution and multiobjective differential evolution algorithms for

RBDO [83]. They take probabilistic constraints into account via a penalty function and generate

Pareto frontiers for the objective and the reliability. Naturally the use of such algorithms is more

expensive then even a standard double-loop RBDO method, however the benefits for practical design

include Pareto frontiers and the generation of different options for designs with similar reliability.

There is also considerable interest in incorporating multifidelity methods into RBDO, at least

beyond response surface methods and surrogate-based optimization, however the field is still grow-

ing [101]. Hao et al present a multifidelity RBDO method used in the design of stiffened shells and

while it appears to work well for their application, there is no guarantee of convergence for their

disparate models of differing fidelity [67].

4.3.1 Double-loop RBDO

Reliability-based design optimization has been traditionally approached using a double-loop strategy

(also called nested) in which an outer loop runs the overall optimization and inner loops solve the

reliability analysis problem for each probabilistic constraint [128]. Although the double-loop proce-

dure is intuitive it can become prohibitively expensive – every time the optimization algorithm in the

outer loop needs to query a probabilistic constraint a new reliability analysis must be performed. In

addition, gradient-based optimization requires sensitivity analyses. However, the reliability analysis

and associated sensitivity analysis themselves are usually expensive. For example in a sampling-

based method a large number of function evaluations may be required to resolve a probability of

failure. In a most probable point (MPP) method the reliability analysis is also itself formulated as

an optimization problem.

Most double-loop RBDO methods use MPP-based methods such as FORM or SORM for the

reliability analysis (see section 2.3.1) [128, 8, 41, 67]. The primary reason for doing so is that MPP-

based methods are relatively inexpensive compared to other methods, they have a well-developed

theoretical background, and sensitivities can be easily obtained at the MPP as a byproduct of
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the MPP search. A notable limitation for most MPP-based methods is their inability to find to

multiple MPPs in more complex problems [117]. Another limitation of the First Order Reliability

Method (FORM) is its approximation of the limit state with a hyperplane which will yield incorrect

reliability estimates for nonlinear limit states [128, 83]. On the other hand the use of the Second

Order Reliability Method (SORM) can yield better limit state approximations but requires second

derivative information which is typically not available for limit states. Section 2.3.1 discusses MPP

reliability analysis methods in more detail.

Several strategies have been explored in order to ameliorate the cost associated with double-

loop RBDO while still maintaining the double-loop structure. Two notable examples are the use of

response surfaces [42, 67, 98] and the augmented reliability space [42].

Replacing exact limit state functions with a response surface during the reliability analysis in

the inner loop can reduce the cost of the double-loop procedure. A popular method is to use kriging

surrogates for the limit states [42, 67, 98] and then estimate probabilities of failure directly from the

kriging surrogates. The choice of the kriging surrogate (as opposed to polynomial, neural network

etc.) is typically motivated by the ability of the surrogate to provide information, the kriging

variance, that can be used to adaptively refine the surrogate. Section 2.4.2 and chapter 3 discuss

the use of kriging surrogates for reliability analysis in more detail.

Dubourg et al also propose an interesting double-loop RBDO concept using the augmented re-

liability space [42]. The augmented reliability space combines the space of design variables x ∈ Rn
and random parameters y ∈ Rp; the design variables x are said to augment the uncertainty in the

random variables y. Dubourg et al then build a global kriging model for each limit state over the

augmented reliability space and optimize on the surrogates using a double-loop RBDO method.

They use a quasi-SQP optimization algorithm and subset simulation for the reliability analysis. At

each step of the SQP algorithm the kriging models are refined as necessary to meet an accuracy

requirement. Although the method is a double-loop algorithm it derives efficiency from the use of

the augmented reliability space and the kriging response surface and compares well to equivalent

FORM-based double-loop RBDO.

4.3.2 Sequential RBDO

Sequential methods (also called decoupled or serial-loop3) for RBDO were introduced to reduce the

inefficiencies with a double-loop procedure. The key idea is to separate the solution of the RBDO

problem into a series of reliability analyses and deterministic optimizations. The separation is

typically made by approximating probabilistic constraints at a point, for example the most probable

point (MPP) of failure. At each iteration in the series, the approximation is updated.

Most sequential RBDO methods use MPP methods for the reliability analysis [4, 14, 40, 5]. In

3The word single-loop has also been used in the literature to refer to sequential RBDO methods. Here we side
with the majority and reserve single-loop for unilevel RBDO.
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this case the separation of the original RBDO problem is typically obtained via the approximation

of the location of the MPP during each deterministic optimization. For example Agarwal et al

considered the approximation of the MPP with a first order Taylor series [4, 3] and Ba-abbad et al

considered the approximation of the MPP with a scaling of the reliability index [14].

Approximation of the limit states instead of the MPP can also lead to a decoupling of the relia-

bility analyses and optimization. For example Wu et al propose approximating limit states by fixing

the MPPs at each iteration and shifting the limit state value to promote constraint feasibility [132].

In contrast, Du and Chen propose the Sequential Optimization and Reliability Assessment (SORA)

method. Here they similarly consider approximation of the limit state failure boundaries by fixing

the MPPs each iteration, but they shift instances of the problem’s random variables instead [40].

When limit states are nonlinear, Du and Chen’s approach may be more efficient as it retains the

nonlinearity of the limit states in its approximation.

On the other hand, Zou and Mahadevan consider directly approximating chance constraints

with a first order Taylor series at the current design point [140]. Their approach differs from others

in that it uses a reliability index approach (forward reliability analysis) instead of performance

measure approach (inverse reliability analysis). The use of a forward reliability analysis allows a

greater variety of reliability analysis methods to be used. In addition the authors note that by doing

so, RBDO can be performed with system failure probabilities. We note that the AKIRA method

presented in chapter 3 also enables RBDO with system failure probabilities and at the same time

yields the benefits of an inverse reliability analysis.

Royset et al present another interesting alternative for achieving a sequential RBDO method

using semi-infinite optimization (a semi-infinite optimization problem is one with a finite number of

variables but an infinite number of constraints) [111]. They present a reformulation of three types

of RBDO problems into deterministic semi-infinite optimization problems. The sequential RBDO

method therefore consists of a series of reliability analyses and deterministic semi-infinite optimiza-

tion problems which can be solved using the Polak-He algorithm. The semi-infinite optimization

procedure consists of replacing each chance constraint with functions that match the minimum limit

state within a subset of the random space. By controlling the size of the subsets the sequence of

deterministic optimizations and reliability analyses is directed towards an optimum, although the

authors do not give a convergence proof. The proposed method is exact for limit state functions

that are affine in the standard normal space for a given design x.

Many of the above approaches are shown to work well on a variety of test problems, however they

lack a proof of global convergence [40, 4, 140]. Incorporating trust region methods is a simple next

step to ensure convergence (see section 4.4) [5]. In addition, most methods concentrate on RBDO

for individual limit state reliability as opposed to system reliability. The remainder of this section

presents details for some of the sequential RBDO methods mentioned above.
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Shift in Limit State

Wu et al proposed a sequential RBDO method where the deterministic approximation of the

limit states includes a shift to promote convergence towards feasibility for the probabilistic con-

straints [132]. Consider a single limit state g(x, u) ∈ R. Wu et al proposed replacing g(x, u) in each

deterministic optimization with g(x, uMPP ) where uMPP is the MPP corresponding to the limit

state shifted by a design shift factor s. s is determined from

P [g(xk, u) + s ≤ z̄] = p̄f , (4.17)

where z̄ is the failure threshold for limit state g(x, u), p̄f is the desired probability of failure, and xk

are the deterministic design variables corresponding to the kth iteration. The effect of s is to shift

the mean value of g(x, u) but not otherwise modify the shape of the distribution. s may be readily

calculated by reformulating (4.17) in quantile form and using a MPP method or other reliability

analysis method. The corresponding quantile constraint for use during the deterministic subproblem

is

g(x, uMPP ) ≥ z̄, (4.18)

where uMPP is the MPP corresponding to the shifted limit state. When s = 0, the current design

meets the reliability requirement exactly. Application to multiple limit states requires treating each

limit state separately and finding the MPP for each limit state. Shortcomings of the proposed

method include the application to deterministic design variables only, lack of a convergence proof,

and reliance on MPP methods, in addition to difficulties with approximating nonlinear limit states

with a simple shift.

Shift in Variables: SORA

Du and Chen proposed the Sequential Optimization and Reliability Assessment (SORA) approach

for RBDO where the deterministic approximation of the limit states includes a shift in the design

variables as opposed to the limit state [40]. In this way limit state nonlinearities can be better

taken into account. In addition to the shift in design variables s, the random parameters u are

replaced with their MPP estimates uMPP from an inverse reliability analysis with prescribed failure

probability p̄f . Thus the corresponding quantile constraint in a SORA formulation for the single

limit state g(x, u) ∈ R is

g(x− s, uMPP ) ≥ z̄, (4.19)
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where uMPP is the location in the standard normal space of the MPP for the limit state. The shift

s ∈ Rn is defined as

si =

xc,i − uMPP,j if design variable xi corresponds to the mean of uj ,

0 otherwise,
(4.20)

where xc,i is the ith component of the initial design variables at the start of the deterministic sub-

problem. The effect of the shift is to push the deterministic variables corresponding to a distribution

mean a distance si away from the MPP during the solution of the deterministic subproblem, thereby

encouraging convergence towards a feasible design. Clearly, SORA is able to handle uncertainties in

the design variables. However for application to multiple constraints, it requires finding the MPP

for each limit state. Due to its formulation, it is usually not applied to system reliability problems.

SORA shows improved performance compared to double-loop methods and appears to be one of the

more robust RBDO algorithms [11].

SORA for Series Systems

Ba-abbad et al consider an extension of SORA where they demonstrate application to system re-

liability problems by considering the optimal apportionment of failure probability among different

limit states [14]. To do so they consider the failure probability contribution from each limit state to

be an additional design variable in the optimization problem. Their modified RBDO problem is

minimize
x,β̄i

f(x)

s.t. gi(x, uMPP,i(β̄i)) ≥ z̄i i = 1 . . .m

m∑
i=1

Φ(−β̄i) ≤ p̄f ,

(4.21)

where β̄i is the minimum allowable reliability index for the ith limit state, uMPP,i is the location in

the standard normal space of the most probable point (MPP) of failure for the ith limit state, and

p̄f is the prescribed probability of failure. The lack of a shift s on the design variables implies they

are deterministic, although this is not a necessary assumption.

Since evaluating the constraints gi(x, uMPP,i(β̄i)) requires an inverse reliability analysis for a

prescribed value of β̄i, Ba-abbad et al approximate the location of the MPP as

uMPP,i(β̄i) ≈
β̄i
βc,i

uMPP,i(βc,i), (4.22)

where βc,i is the reliability index corresponding to a specific design xc. Since the approximation is

valid only for designs close to xc, the authors use a trust region method to manage the optimization
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which enables provable convergence (see section 4.4).

Ba-abbad et al show their modified SORA algorithm can generate improved designs over methods

that treat each limit state separately. By considering the system failure probability some limit

states may have a higher chance of failure than others, but the objective can be reduced more.

Note however that the proposed approach still requires finding the MPP for each limit state, and in

addition increases the size of the optimization problem by the inclusion of additional variables. The

method also naturally relies on MPP methods which may be inaccurate for nonlinear limit states,

especially in higher dimensions. Finally Ba-abbad et al make use of Ditlevsen’s first order upper

bound which approximates the upper bound on system failure probability as

pf ≈
m∑
i

pf,i, (4.23)

where pf is the system failure probability, and pf,i is the failure probability associated with the

ith limit state. Note that the upper bound will result in a conservative (larger) estimate of system

failure probability if the failure regions of different limit states have significant overlap.

4.3.3 Unilevel RBDO

In a unilevel method (also called unified, single-shot, or one-level)4, the reliability analysis is for-

mulated in such a way that it is embedded directly into the optimization problem statement. Such

an approach can readily be taken for reliability analysis methods that are formulated themselves

as optimization problems, namely for most probable point (MPP) based methods such as FORM

and SORM. The optimization problem solved in the MPP-based reliability analysis is replaced with

its KKT conditions (see section C.1) which themselves replace the probabilistic constraints in the

RBDO problem.

Kuschel and Rackwitz derived the forms of equivalent unilevel optimizations for RBDO problems

using a FORM reliability analysis for both minimum cost and maximum reliability problems [77].

Their results on structural test problems show the superior efficiency of unilevel RBDO methods

compared to double-loop methods. Later, Agarwal presented a unilevel method for RBDO using

FORM and solving the inverse reliability problem [3]. Agarwal shows that in order for the unilevel

problem to be equivalent to the original double-loop RBDO problem the limit state should be

pseudoconvex in its random parameters y, i.e. that the limit state increases along all directions with

a positive directional derivative. Due to the inclusion of the KKT conditions in the optimization

problem, the size of the unilevel RBDO problem is increased (the original design variables plus

Lagrange multipliers and MPP locations are now included as design variables in addition in the

constraints form the KKT conditions). However, solving the problem can still be more efficient than

4The use of the phrase “single-loop” has also been used to describe unilevel RBDO methods, however this appears
to be in the minority as single-loop predominantly refers to a sequential RBDO method.
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a double-loop method [77, 3].

Shan and Wang also present a unilevel method for RBDO [117]. They recast the RBDO problem

as an equivalent deterministic optimization problem over the so-called Reliable Design Space (RDS),

the space where all the reliability constraints are satisfied. This space is naturally a subset of

the feasible space for the deterministic optimization obtained by fixing the random variables in

probabilistic constraints at their mean values. However, identifying the reliable design space can

be non-trivial. Shan and Wang propose using the KKT conditions for the MPP search problem

(i.e. FORM) to derive an expression for points in the reliable design space as a function of partial

derivatives of the limit state functions. Then the analytic form of the reliable design space is plugged

into the analytic formulae for the limit states and massaged to obtain a mathematical description

of the limit state in the reliable design space. As such, the method does not apply to implicitly

defined limit states. However, when such manipulations can be done the result is a deterministic

optimization problem which can be efficiently solved once and for all.

4.4 Trust Region Methods

The key idea in a trust region method is to solve a series of less expensive optimization subproblems

within a trust region using a locally accurate model such as a corrected surrogate model or a low-

fidelity model. The trust region represents the region of confidence in the accuracy of the local

model. As a result, it constrains how far away from the initial point or trust region center to search

for a solution to the subproblem. Once the solution of the subproblem is obtained, a decision is

made to accept or reject the solution as the next iterate and shrink, expand or retain the trust region

size. Convergence to a local minimum of the original optimization problem is guaranteed when the

locally accurate model is first-order consistent (matches function value and gradients with the original

objective and constraints) and the trust region size and location is updated appropriately5 [6, 31].

Figure 4.3 illustrates a trust region method applied to a simple nonlinear 1D optimization problem.

Trust region methods are frequently used in multifidelity optimization and a trust region model

management (TRMM) framework can be used to manage multiple models of different fidelity to

ensure convergence to an optimum of the highest-fidelity model [101]. By relying on a lower-fidelity

model during the solution of the trust region subproblems, considerable increases in efficiency may

be achieved [48], particularly when the objective and constraints are expensive to evaluate and there

is a good correlation between the low- and high-fidelity models. An overview of a basic trust region

optimization algorithm for two model fidelities is given in Algorithm 4.

There are many guidelines for constructing a successful trust region optimization algorithm and

the remainder of this section discusses available choices and practicalities. Algorithm 4 showcases

5A sufficient decrease condition and appropriate trust region logic is required. In addition the standard assumptions
on continuous derivatives and a bounded objective and Hessian are required to ensure convergence.
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Figure 4.3: Schematic showing the idea behind a trust region optimization method. The first four
iterations of a simple 1D minimization for nonlinear function f(x) (solid black line) are shown using
a trust region method. The trust region center is marked with a blue dot and the extent (size) of
the trust region is shown with the green bar. A low-fidelity model, in this case a first-order Taylor
series expansion at the trust region center, is shown in blue. At each iteration a minimization is
performed on the low-fidelity model within the trust region. At the conclusion of each subproblem
the high-fidelity model is evaluated at the optimum of the low-fidelity model (red dot) and compared
with the low-fidelity objective (red triangle). Since progress is made with the high-fidelity objective
in the first two iterations, the trust region location is updated. However in iteration 3, the low-
fidelity model is a poor predictor of the high-fidelity model and as a result the subproblem optimum
is rejected and the trust region size is shrunk as shown in iteration 4. As shown in this simple
example, by relying on optimization over a (corrected) low-fidelity model convergence to a local
minimum of the high-fidelity model can be achieved.

some of the choices such as the type of correction for the low-fidelity model, the form of the sub-

problem to be solved, and trust region acceptance/rejection and size update logic. In addition we

note that the accuracy and correlation of the low-fidelity model, as well as the selection of the initial

trust region size can have a large impact on the efficiency of the algorithm (although theoretically

it should not impact whether convergence is ultimately achieved [31]). In a practical implementa-

tion, a minimum allowable trust region size should also be specified. Finally careful management

of constraint infeasibilities is required as the trust region may shrink such that no feasible point is

contained within the trust region. In such a situation, the inclusion of a feasibility restoration phase

where infeasibilities are minimized until the subproblem becomes feasible again is necessary [31].

Such a phase is tacitly assumed in the subproblem solution step of algorithm 4.
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Algorithm 4: Simple bifidelity trust region optimization algorithm

Data: initial design x0, initial trust region size ∆0

Result: optimal design x∗

1 fhi(x
0), ghi(x

0)← Evaluate high-fidelity objective and constraints at trust region center x0;

2 for k ← 0 to kmax do

3 ∇xfhi(xk), ∇xghi(xk)← Evaluate high-fidelity objective and constraint gradients at trust

region center xk;

4 if converged then

5 return xk;

6 Calculate flo(x
k), glo(x

k), ∇xflo(xk), ∇xglo(xk);

7 Construct corrected low-fidelity model f̂k(x), ĝk(x);

8 x∗ ← Solve approximate subproblem:

minimize
x

f̂k(x)

s.t. ĝk(x) ≥ 0∥∥x− xk∥∥ ≤ ∆k

9 fhi(x
∗), ghi(x∗)← Evaluate high-fidelity objective and constraints at subproblem

optimum x∗;

10 accepted← Decide whether x∗ should be accepted or rejected as the next iterate;

11 if x∗ accepted then

12 xk+1 ← x∗;

13 else

14 xk+1 ← xk;

15 ∆k+1 ← Update the trust region size (shrink, expand, or retain?);

4.4.1 Application to Multifidelity Models

A major motivation for using trust region methods in design optimization is their straightforward

application to different fidelity models. Alexandrov was among the first to generalize classical trust

region methods to multifidelity models [6]. In doing so she took advantage of the global convergence

properties of trust region methods and applied them to a general model management framework [7].

In many physics-based applications, a variety of computational models are available, some more

accurate (and usually more computationally expensive) than others. For example, in computational

fluid dynamics available models range from the simplest area-averaged 1D Navier Stokes equation
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(easily solved in seconds) to the numerical solution of the Euler equations (minutes), Reynolds-

averaged Navier Stokes (RANS) equations (hours), Large Eddy Simulation (LES) (days), and Direct

Numerical Simulation (DNS) (weeks). By leveraging lower-fidelity models in a multifidelity trust

region optimization like that outlined above in Algorithm 4 much of the optimization work can

be offloaded to faster but less accurate models, and the expensive high-fidelity models need only

be brought in periodically to ensure convergence. In chapter 5, the design of a supersonic nozzle

using a variety of multifidelity models is explored in both a deterministic and reliability-based design

optimization context.

4.4.2 Subproblem Formulation

A variety of approximate subproblems can be formulated. For example in SQP trust region methods,

the objective of the approximate subproblems takes the form of a quadratic approximation to the

Lagrangian and the constraints are linearized. Augmented Lagrangian trust region methods use a

subproblem featuring an augmented Lagrangian objective and no constraints; other modifications

add linearized constraints in an attempt to enhance convergence [48]. Eldred and Dunlavy advocate

a direct surrogate approach where the original objective and constraints are replaced with surro-

gate functions thereby avoiding the need for penalty and multiplier updates and leading to greater

simplicity and potentially increased efficiency in the case of a predictive surrogate model [48]. The

direct inclusion of the typically nonlinear surrogate constraints can also be more helpful at avoiding

infeasible iterates. The original problem and the approximate direct surrogate subproblem are

Original Formulation:

minimize
x

f(x)

s.t. g(x) ≥ 0,

kth Subproblem Formulation:

minimize
x

f̂k(x)

s.t. ĝk(x) ≥ 0∥∥x− xkc∥∥ ≤ ∆k,

(4.24)

where f(x) denotes the objective function and g(x) denotes the nonlinear constraints. f̂k(x) and

ĝk(x) denote the corrected surrogate functions for the objective and constraints. Note the additional

restriction on the design space through the use of a trust region constraint where the center of the

trust region is xkc for the kth iteration and it has size ∆k. A typical choice for the norm is the `∞

norm due to its easy implementation during solution of the subproblems.

4.4.3 Low-fidelity Correction

For provable convergence to a local minimum, the low-fidelity model’s objective and constraints

must be corrected to match both the function values and gradients of the high-fidelity model at the

trust region center xc at the start of each subproblem. First order and second order multiplicative,
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additive, and mixed corrections have been investigated in the literature [48, 49]. A typical proce-

dure for deriving a model correction includes first choosing the form of the correction δ and then

approximating it at the trust region center, for example via a Taylor series which ensures first or

second order consistency. The following derivations closely follow Eldred et al [49].

Additive Correction

Let δa(x) be an additive correction defined as

δa(x) = fhi(x)− flo(x). (4.25)

Let δ̂a be the second order Taylor series approximation of δa(x) at the trust region center xc given

by

δ̂a = δa(xc) +∇δa(xc)
>(x− xc) +

1

2
(x− xc)>∇2δa(xc)(x− xc), (4.26)

where δa(xc) is defined in (4.25) and ∇δa(x) and ∇2δa(x) are obtained from the differentiation of

(4.25). Thus the low-fidelity model with the second order additive correction f̂a can be written as

f̂a(x) = flo(x) + δa(xc) +∇δa(xc)
>(x− xc) +

1

2
(x− xc)>∇2δa(xc)(x− xc) (4.27)

for a given trust region center xc.

Multiplicative Correction

A multiplicative correction δm(x) is defined as

δm(x) =
fhi(x)

flo(x)
. (4.28)

Following the same steps as for the additive correction yields the low-fidelity model with a second

order multiplicative correction f̂m(x) as

f̂m(x) = flo(x)

(
δm(xc) +∇δm(xc)

>(x− xc) +
1

2
(x− xc)>∇2δm(xc)(x− xc)

)
. (4.29)

Two-point Correction

Applying a correction that combines the additive and multiplicative corrections may be desirable as

doing so affords an additional degree of freedom. For example, in addition to achieving first order

consistency at the trust region center, a function value can be matched at another point, say the

previous iterate. The low-fidelity model with a multipoint correction can be written as

f̂(x) = γf̂a(x) + (1− γ)f̂m(x), (4.30)
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where γ is a scalar weight. Simple algebraic manipulations show that

γ =
fhi(xp)− f̂m(xp)

f̂a(xp)− f̂m(xp)
(4.31)

enforces a matched function value at the point xp.

Second Order Information

In most situations second order information is not available and thus calculating ∇2δa(x) and

∇2δm(x) exactly may be prohibitively expensive. In such situations quasi-Newton approxima-

tions may be useful for enhancing the accuracy of the correction. Such approximations update

an approximate Hessian with previously obtained gradient information. For example, the common

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+
yky
>
k

y>k sk
, (4.32)

where Hk is the approximation of the Hessian at iteration k, sk = xk+1 − xk is the step in design

variables between iterations, and yk = ∇f(xk+1) − ∇f(xk). The Symmetric Rank 1 update may

also be used. Eldred et al recommend initializing the Hessian approximation with a scaled version of

the identity matrix and skipping the Hessian update when y>k sk is close to zero to avoid numerical

difficulties [49]. In the case that the iterate xk+1 is rejected by the trust region method, Bryson and

Rumpfkeil recommend still updating the Hessian approximation with information at the rejected

point, but using a reversed step instead, i.e. sk = xk − xk+1 [22].

4.4.4 Iterate Acceptance

At the conclusion of each subproblem a decision is made to accept or reject the new iterate pending

on whether sufficient progress has been made toward the solution. This decision has a direct impact

on the convergence of the trust region algorithm and can stall or otherwise lead to lack of convergence

if not managed appropriately. Two common techniques for gauging iterate acceptance for a general

constrained optimization problem are using a trust region ratio or using a filter.

Trust Region Ratio

The trust region ratio from trust region methods for unconstrained optimization can be used for

constrained problems provided a suitable merit function is used. The trust region ratio ηk for the

kth iterate is

ηk =
Φhi(xc)− Φhi(x

∗)
Φlo(xc)− Φlo(x∗)

, (4.33)
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where Φi(·) is the merit function for model i. The trust region ratio ηk in (4.33) measures the

ratio of realized improvement in the high-fidelity model over the predicted improvement from the

low-fidelity model. A value of ηk close to one shows the low-fidelity model is a good predictor of

the high-fidelity model in the current trust region ∆k whereas a value of ηk less than zero implies

the high-fidelity model has actually regressed in the past iteration and the candidate optimum x∗

should be rejected.

In trust region methods for unconstrained optimization the merit function Φ(·) is the objective

function [109], however in constrained optimization constraint feasibility must also be taken into

account. Penalty or augmented Lagrangian functions can be used for this purpose [109, 48]. For

example, a typical choice of penalty merit function is

Φ(x) ≡ f(x) +
1

2
ρg−(x)>g−(x) (4.34)

where f(x) is the objective function, ρ is a positive penalty parameter, and g−(x) is the set of active

constraints (the − superscript denotes retention of the negative portion of the constraints g(x) ≥ 0

only, implying such constraints are active). Note that the optimal value of the penalty parameter ρ

is a priori unknown and must be estimated. A standard procedure is to tie increases of the penalty

parameter to the outer iteration count of the trust region method [48]. More information on the

augmented Lagrangian function can be found in Appendix C.10 and requires, in addition to the

estimation of a penalty parameter ρ, an estimate of the Lagrange multipliers λ for the optimization

problem.

With a suitable selection of merit function and the trust region ratio defined in (4.33), typical

logic for accepting or rejecting the current iterate proceeds as follows: if the trust region ratio η ≤ 0

then reject the iterate (xk+1 ← xk), otherwise accept the iterate (xk+1 ← x∗).

Filter

Filter methods are an alternative for managing the convergence of an optimization algorithm and

were first introduced by Fletcher in 1996 [53]. They borrow the concept of Pareto dominance from

multiobjective optimization and apply it to the multiobjective goal in constrained optimization of

decreasing both the objective and constraint infeasibility. Filter methods have been successfully

applied in SQP trust region optimization [52] as well as unconstrained optimization [64] and are

competitive with other trust region methods [31].

Consider a set of pairs (f(x), v(x)) for different points x where f(x) is the objective value and

v(x) is a measure of the constraint violation at x (e.g. ‖g−(x)‖, for some chosen norm; `1, `2, and

`∞ norms are common choices). For two points x and y, point x is considered to dominate point

y if f(x) < f(y) and v(x) < v(y). A filter is a set of objective-constraint violation pairs such that

each point is not dominated by any other point in the filter. Figure 4.4 illustrates the concept of a
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Figure 4.4: Illustration of a filter used in trust region optimization methods. Iterates are considered
for acceptance via a filter consisting of objective-constraint violation pairs (f(x), v(x)). In the
example here, five points (black dots) have been included in the filter (solid blue lines). A point is
acceptable to the filter if it is not dominated by any points in the filter, i.e. it lies to the lower left
of the filter. Fletcher et al introduced an envelope for the filter (exaggerated on the plot and shown
in dashed red lines) to help ensure global convergence [52]. The filter is typically initialized with a
lower limit on constraint violation, shown here as the dashed blue line at v(x) = 0.20.

filter. With appropriate updating of the filter and enforcement of acceptance/rejection conditions

based on the filter, a globally convergent trust region algorithm can be obtained [52].

To obtain a globally convergent filter SQP trust region method, Fletcher et al consider several

modifications: 1) a sloping filter envelope, 2) a sufficient reduction criterion, and 3) a feasibility

restoration phase [53].

A sloping envelope on the basic filter can be used to ensure convergence to infeasible points is

avoided. In particular, Fletcher et al [53] consider an iterate xk+1 with objective fk+1 and constraint

violation vk+1 to be acceptable if

vk+1 ≤ αvf , or fk+1 ≤ ff − γvk+1 (4.35)

for all ff and vf in the filter. 0 < α, γ < 1 are constants with typical values γ ≈ 10−5 and α = 1−γ.

The sloping envelope for the filter is compared with a standard filter in Figure 4.4.

A sufficient reduction criterion is also required to ensure that the objective value converges.

The criterion (called a switching condition) specifies that the realized reduction in objective must

be greater than a certain percentage of the predicted reduction in objective when the goal of the

subproblem is to reduce the objective as opposed to decreasing constraint violation. Thus when
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flo(x
∗) < flo(xc), the switching condition

fhi(xc)− fhi(x∗) ≥ σ (flo(xc)− flo(x∗)) (4.36)

should be checked for 0 < σ < 1 where one can observe the similarity with an unconstrained trust

region ratio. A typical value of σ is 0.1.

Finally, Fletcher et al consider a feasibility restoration phase which is entered when the sub-

problem solution is infeasible. A typical reason for an infeasible solution to a subproblem is a trust

region that is too small and thereby excludes any feasible region for the problem’s constraints. In

such a situation Fletcher et al successively minimize the constraint violations until the subproblem

becomes feasible and the trust region algorithm can proceed.

4.4.5 Trust Region Update

The decision to shrink, expand or retain a trust region’s size between iterations is closely coupled

with the decision to accept or reject a trust region which was discussed in section 4.4.4. Typically,

a merit function Φ(·) which accounts for the objective and constraints is used to calculate a trust

region ratio. As a reminder, the trust region ratio ηk for the kth iterate is

ηk =
Φhi(xc)− Φhi(x

∗)
Φlo(xc)− Φlo(x∗)

. (4.33)

The value of ηk can be used to make a decision about updating the trust region. When ηk < 0, the

low-fidelity and high-fidelity models do not match well, and the merit function of the high-fidelity

model has actually increased if the low-fidelity model predicted a decrease. Therefore shrinking the

trust region is appropriate. On the other hand, when ηk ≈ 1 the models match well and expanding

the trust region is appropriate. For 0 < ηk < 1, the trust region may be shrunk or expanded,

depending on proximity to 0 or 1. Finally for ηk > 1, it may be most appropriate to retain the trust

region size even though the models do not match well since the high-fidelity merit function actually

decreased more than expected. Algorithm 5 outlines typical trust region update logic. Note that

the trust region size has an upper limit ∆max and is also limited in expansion when the optimal

point x∗ lies in the interior of the trust region ∆k. Such safeguards have been found to be beneficial

in practice.
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Algorithm 5: Basic trust region update logic

Data: rejected flag, trust region ratio ηk, current trust region size ∆k, maximum allowable

size ∆max

Result: new trust region size ∆k+1

1 if step rejected then

2 ∆k+1 ← 0.25∆k;

3 else if ηk < 0.25 then // poor fit

4 ∆k+1 ← 0.25∆k;

5 else if ηk < 0.75 then // good fit

6 ∆k+1 ← min{1.5 ‖xc − x∗‖ ,∆k};

7 else if ηk < 1.25 then // excellent fit

8 ∆k+1 ← 1.5 ‖xc − x∗‖;

9 else // okay fit but good improvement

10 ∆k+1 ← min{1.5 ‖xc − x∗‖ ,∆k};

11 if ∆k+1 > ∆max then

12 ∆k+1 ← ∆max;

13 return ∆k+1;

4.5 Sequential RBDO via Anchored Decomposition

Section 4.3.2 presented a variety of sequential RBDO strategies each of which decomposed the

RBDO problem into a series of deterministic optimizations. In this section anchored decomposition

is used to separate the deterministic design variables x and random parameters y, thereby enabling

deterministic approximation of chance and quantile constraints. Lower-fidelity models are also in-

corporated into the constraint approximation, which leads to a multifidelity approach for sequential

RBDO.

First the ANalysis Of VAriance (ANOVA) decomposition is introduced, which has close ties

with the anchored decomposition but is generally more expensive to calculate. Next anchored

decomposition is introduced followed by its multifidelity adaptation and application to chance and

quantile constraints. Finally practicalities for the use of the anchored decomposition approximation

in RBDO are addressed and a comparison is made with existing sequential RBDO methods.

4.5.1 ANOVA Decomposition

The ANalyis Of VAriance (ANOVA) decomposition has a long pedigree with widespread use in

the design of experiments and global sensitivity analysis literature [12, 105, 123]. It considers the
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decomposition of the square integrable function f(x) for x ∈ Rn, whose domain is the unit cube

[0, 1]n. f(x) can be decomposed as

f(x) = f(x1, . . . , xn) = f0 +

n∑
i=1

fi(xi) +

n∑
1≤i≤j

fij(xi, xj) + . . .+ f12...n(x1, . . . , xn). (4.37)

where fi1...is , 1 ≤ s ≤ n, are defined by the relationship∫ 1

0

fi1...isdxk = 0 for k = i1, . . . , is. (4.38)

The relationship in (4.37) uniquely defines the fi1...is [122]. For example, integrate (4.37) over the

unit cube to obtain ∫ 1

0

f(x)dx = f0. (4.39)

Similarly integrate over all variables except xi:∫ 1

0

f(x)
∏
k 6=i

dxk = f0 + fi(xi). (4.40)

Next, integrate over all variables except xi and xj :∫ 1

0

f(x)
∏
k 6=i,j

dxk = f0 + fi(xi) + fi(xj) + fij(xi, xj). (4.41)

The process can be repeated until all summands in (4.37) are defined. Note that due to (4.38), all

the terms fi1...is are orthogonal. Unfortunately due to the integration over f(x), their calculation

may be expensive.

The truncated decomposition from (4.37) can be used as an approximation for f(x). For example,

ignoring all but the first order terms yields:

f(x) ≈ f̂(x) = f(x1, . . . , xn) = f0 +

n∑
i=1

fi(xi). (4.42)

The error δ incurred by such an approximation is defined as

δ ≡ 1

D

∫ (
f(x)− f̂(x)

)2

dx, (4.43)

where D =
∫
f2(x)dx − f2

0 is the total variance of f(x). When f̂(x) is selected to be the zeroth

order truncated ANOVA decomposition, i.e. f̂(x) = f0, then δ = 1. Thus an approximation with

error δ � 1 is deemed to be good. Sobol’ derives the error in terms of the Sobol’ indices Si1...is [122]

which are described in detail in Appendix E. The error for a truncated ANOVA decomposition of
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order L < n is given by

δ = 1−
L∑
s=1

n∑
i1<···<is

Si1...is

=

n∑
s=L+1

n∑
i1<···<is

Si1...is ,

(4.44)

which follows since the sum of all the Sobol’ indices is 1. Thus the error is equal to the sum of

the Sobol’ indices of order L+ 1 and higher. Recall the Sobol’ indices are global sensitivity indices

and measure the contribution of input variables xi and their combinations to the variability of a

function f(x) (refer to Appendix E). For the first order approximation in (4.42), if first order effects

dominate f(x) then Si1...is will be small for s > 1, and the approximation will be good. However the

use of the truncated ANOVA decomposition for function approximation is limited due to the need to

estimate the terms fi(xi) etc. via integration. Performing accurate integrations for high-dimensional

functions may be excessively costly.

4.5.2 Anchored Decomposition

The anchored decomposition is more convenient than the ANOVA decomposition for function ap-

proximation due to its direct construction from f(x) rather than from integrals over f(x) which

may be difficult to obtain. Unlike the ANOVA decomposition, which integrates out dependence on

variables xi, the anchored decomposition removes dependence on variables xi by freezing the value

of the variables at an anchor a. The anchored decomposition (also referred to as cut-HDMR for

High Dimensional Model Reduction [105]) for a function f(x) with respect to the anchor a has the

same form as the ANOVA decomposition:

f(x) = f(x1, . . . , xn) = f0 +

n∑
i=1

fi(xi) +

n∑
1≤i≤j

fij(xi, xj) + · · ·+ f12...n(x1, . . . , xn). (4.37)

Let f i1i2...is denote the function f(x) with all input variables xi whose i 6⊂ {i1i2 . . . is} are fixed

at the anchor ai, 1 ≤ s ≤ n. For example f i(xi) = f(a1, a2, . . . ai−1, xi, ai+1, . . . an). The constituent
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functions from (4.37) are then defined as [105]:

f0 = f(a),

fi(xi) = f i(xi)− f0,

fij(xi, xj) = f ij(xi, xj)− fi(xi)− fj(xj)− f0,

. . .

fi1...is(xi1 , . . . , xis) = f i1...is(xi1 , . . . , xis)−
∑

i1<···<is−1⊂{i1...is}
fi1...is−1(xi1 , . . . xis−1)− . . .

−
∑
i

fi(xi)− f0.

With the exception of f0, each term fi1,...,is(xi1 , . . . , xis) has the property that when any component

xi is set to the value of its corresponding anchor ai, the function value is zero.

The truncated anchored decomposition can be similarly used as an approximation of f(x). How-

ever, unlike the ANOVA decomposition, its error δ depends on the choice of the anchor a as well

as the order of the approximation L. Wang showed that the ANOVA decomposition is optimal

for a given order L with respect to the error measure δ defined in (4.43) [131]. As a result, the

anchored decomposition cannot be globally more accurate than the ANOVA decomposition. Sobol’

apparently derived a uniform error bound for the anchored decomposition of order L in terms of

the partial derivatives of f(x), assuming continuous mixed partial derivatives [131]. However in the

general engineering design situation, calculation of the error bound may be difficult. Here we present

Wang’s result for the expected error of the first order anchored decomposition approximation, L = 1,

assuming a uniformly distributed random anchor over [0, 1]n [131]:

E[δ] =

n∑
s=2

bs
∑
i1...is

Si1...is , (4.45)

where bs = s2− s+ 2 and Si1...is are Sobol’ indices (refer to Appendix E). (4.45) shows the expected

error will be small if the Sobol’ indices of order two and higher are small and if the dimension of

the input variables is small. Unfortunately if the dimension is even moderately high, say s = 10,

then b10 = 92 and a 10th order Sobol’ index even as large as 0.01 may induce unacceptable error

(δ ≥ 0.92). Of course, Wang’s derivation is for a random anchor and measures a global error. In

most cases, the anchor is selected to be the only point at which information about f(x) has been

obtained and only a locally accurate approximation of f(x) is required.

In this dissertation, the use of anchored decomposition is primarily considered with separating

two sets of variables, the deterministic design variables x and the random parameters y. Since

there are only two sets of variables, the anchored decomposition truncated to the first order is used

since the full anchored decomposition is only of the second order. Following (4.37) the first order
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approximation of f(x, y) is

f(x, y) ≈ f(xc, y) + f(x, yc)− f(xc, yc), (4.46)

where the anchor a = (xc, yc). The decomposition in (4.46) contains a stochastic component f(xc, y),

a deterministic component f(x, yc), and a constant f(xc, yc).

4.5.3 Multifidelity Adaptation

The use of trust region methods motivates the infusion of multifidelity models into the anchored

decomposition approximation of f(x, y) from (4.46). The idea is to replace the terms in the approxi-

mation with lower-fidelity models flo(x, y) and thereby rely on the trust region machinery introduced

in section 4.4 to ensure convergence to an optimum of the high-fidelity model fhi(x, y). In particular

the low-fidelity model must be corrected to ensure first order consistency, i.e. matching function

values and gradients with the high-fidelity model at the center of the trust region. Thus the anchor

for the deterministic design variables x is taken to be the trust region center xc. Choices for the

anchor of the random parameters y such as E[y] or the most probable point of failure are discussed

in section 4.5.6.

Consider the first order anchored decomposition approximation f̂(x, y) for a single model fidelity:

f̂(x, y) = f(xc, y) + f(x, yc)− f(xc, yc). (4.47)

Inspection of (4.47) shows that it is already first order consistent at the anchor (xc, yc) with respect

to x and thus no correction term is needed.

When two model fidelities are available for a quantity of interest, flo(x, y) and fhi(x, y), an

approximation for fhi(x, y) can be written as

f̂(x, y) = flo(xc, y) + flo(x, yc)− flo(xc, yc). (4.48)

However, (4.48) is not first order consistent with the high-fidelity model at the trust region center.

The additive, multiplicative, or mixed first or second order corrections described in section 4.4.3 can

be applied to (4.48) to ensure first order consistency. To derive the form of the first order additive

bifidelity correction first apply the first order correction from (4.25) to the low-fidelity model for the

deterministic design variables x only. The corrected model is

f̃(x, y) = flo(x, y) + fhi(xc, y)− flo(xc, y) + (∇xfhi(xc, y)−∇xflo(xc, y))
>

(x− xc) . (4.49)
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Next apply the anchored decomposition approximation from (4.46) to the low-fidelity model. Can-

celing terms yields the following corrected low-fidelity model approximation f̂(x, y):

f̂(x, y) = fhi(xc, y) + flo(x, yc)− flo(xc, yc) + (∇xfhi(xc, y)−∇xflo(xc, y))
>

(x− xc) . (4.50)

Similar corrected models can be derived using the multiplicative or mixed first or second order

corrections. The bifidelity function approximation in (4.50) can be substituted for the original

function in the same way as the single-fidelity function approximation in (4.47) during the solution

of an optimization subproblem within a trust region method. Note the additional requirement in the

bifidelity case of calculating fhi(xc, y) and the gradients ∇xfhi(xc, y) and ∇xflo(xc, y) at the trust

region center, all of which in fact are random. The use of (4.50) in chance and quantile constraints

for RBDO is discussed further in sections 4.5.4 and 4.5.5.

4.5.4 Chance Constraints

Simplifying approximations for the chance constraints in a RBDO problem are derived here using

the corrected multifidelity anchored decomposition approximations from (4.47) and (4.50). These

approximations may be substituted for the original chance constraints in order to form a determin-

istic subproblem managed by a trust region optimization method. The following derivation uses a

simplified notation where dependence on the fixed anchor points xc and yc has been dropped from

function arguments. For example glo(x) refers to glo(x, yc), glo(y) refers to glo(xc, y), and glo refers

to glo(xc, yc) etc.

Recall a chance constraint is formulated as:

P [g(x, y) ≤ z̄] ≤ p̄f , (2.13)

where z̄ are the limit state failure levels and p̄f is the prescribed system failure probability. When

two models of varying fidelity are available for the limit state g(x, y), (2.13) may be approximated

using (4.50):

P [g(x, y) ≤ z̄] ≈ P [ĝ(x, y) ≤ z̄]
= P [ghi(y) + glo(x)− glo + (∇xghi(y)−∇xglo(y))

>
(x− xc) ≤ z̄]

= P [ghi(y) + (∇xghi(y)−∇xglo(y))
>

(x− xc) ≤ z̄ − glo(x) + glo].

(4.51)

Evaluating (4.51) requires an integration over the random space whose result varies with x.

Such an approximation would appear to be prohibitively expensive as x changes throughout the

solution of each subproblem and therefore requires multiple integrations. However notice that the

random functions in the integrand in (4.51) are not functions of x due to the anchored decomposition

approximation. As a result, if for example a sampling method such as Monte Carlo is used to perform
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the integration, the sampling only need occur once for the design associated with the trust region

center xc. The samples y(i) and their responses ghi(xc, y
(i)), ∇xghi(xc, y(i)), and ∇xglo(xc, y(i)) can

be saved and then used to efficiently calculate (4.51) for different values of x during the subproblem

solution. In such a scenario, the cost of using the chance constraint approximation in (4.51) is a

reliability analysis for ghi(xc, y) at the trust region center xc, sensitivity analyses for both ghi(xc, y)

and glo(xc, y) at the trust region center xc, and then evaluation of the low-fidelity model glo(x, yc)

during the subproblem solution. Thus the total cost of the subproblem solution is equivalent to a

single reliability analysis and a single deterministic optimization.

When only a single-fidelity model is used (glo = ghi = g), (4.51) requires no gradient calculations

and simplifies to

P [ĝ(x, y) ≤ z̄] = P [g(y) ≤ z̄ − g(x) + g] ≤ p̄f , (4.52)

which requires a reliability analysis for the limit state g(xc, y) at the trust region center and deter-

ministic evaluations of the limit state g(x, yc) throughout the solution of the subproblem.

Aside from the shortcomings of using chance constraints in RBDO as compared to quantile

constraints (refer to section 2.1.5 for an in-depth discussion), using the chance constraints from

(4.51) or (4.52) in gradient-based RBDO requires estimation of ∇xpf (x). Although expressions

were derived in section 2.6 it may be more convenient to use the quantile constraints shown in the

next section.

4.5.5 Quantile Constraints

Simplifying approximations for quantile constraints in a RBDO problem are derived here using the

corrected multifidelity anchored decomposition approximations from (4.47) and (4.50). In prepa-

ration for the derivation we emphasize the difference between the limit state function g(x, y) and

the limit state level z(p̄f , x; y). The latter differs from the former in that it describes a level set

of the limit state g(x, y) for a prescribed probability of failure p̄f . In other words, the equation

g(x, y) = z(p̄f , x; y) defines a level set. The limit state level z(p̄f , x; y) is obtained from an inverse

reliability analysis (see section 2.1.5 and the AKIRA algorithm in chapter 3).

When multiple limit states are present g(x, y) and z(p̄f , x; y) represent a vector of values. Note

that in general g(x0, y0) 6= z(p̄f , x0; y). The previous equation is only true for the limit state gi(x, y)

which at the point (x0, y0) obtains the value zi(p̄f , x0; y).

For notational convenience, let

z(p̄f , x; y) ≡ z(x), (4.53)

where dependence on the fixed prescribed probability of failure p̄f is understood. The procedure

for deriving a simplified version of a quantile constraint is to first approximate the limit state level

for the high-fidelity model with a corrected version of the low-fidelity model’s limit state level as

shown in (4.50). Then the low-fidelity limit state level is approximated with a corrected version of
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the low-fidelity limit state as shown in (4.50).

Recall a quantile constraint for the high-fidelity model is formulated as

zhi(x) ≥ z̄, (2.15)

where z̄ are the limit state failure levels and zhi(x) are the limit state levels for the high-fidelity

model corresponding to design x such that failure occurs with probability p̄f . Replace zhi(x) with

the corrected limit state levels for the low-fidelity model at the point xc:

zhi(x) ≈ zlo(x)− zlo(xc) + zhi(xc) + (∇xzhi(xc)−∇xzlo(xc))> (x− xc). (4.54)

The approximation in (4.54) may be used in place of the original quantile constraint in (2.15)

however it still requires recurring inverse reliability analyses for the low-fidelity model as well as as-

sociated sensitivity analyses during the solution of the subproblem which may be expensive. Instead

zlo(x) can be further approximated by an anchored decomposition approximation of the low-fidelity

model glo(x, yc). The approximation is the same as before, namely

zlo(x) ≈ glo(x, yc)− glo(xc, yc) + zlo(xc) + (∇xzlo(xc)−∇xglo(xc, yc))> (x− xc). (4.55)

Plugging (4.55) into (4.54) and simplifying yields the following approximation for zhi(x):

zhi(x) ≈ glo(x, yc)− glo(xc, yc) + zhi(xc) + (∇xzhi(xc)−∇xglo(xc, yc))> (x− xc). (4.56)

The approximation in (4.56) can be verified to satisfy first order consistency and may also be

derived by skipping the intermediate step and approximating zhi(x) directly with glo(x, yc). Thus

given a single high-fidelity inverse reliability analysis at the trust region center xc and an associated

sensitivity analysis, an approximate deterministic constraint can be written as

glo(x, yc)− s−∇xs>(x− xc) ≥ z̄, (4.57)

where s plays the role of an additive safety margin and is given by

s ≡ glo(xc, yc)− zhi(xc), (4.58a)

∇xs ≡ ∇xglo(xc, yc)−∇xzhi(xc). (4.58b)

4.5.6 Choice of Anchor Point

Although the obvious choice for the anchor of x is the trust region center xc, the choice of anchor

for the random variables y is less obvious. Most sequential RBDO methods choose to approximate

the limit state at the most probable point of failure (MPP) or approximate the MPP itself. However
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when multiple limit states are present doing so requires finding the MPP for each limit state. In

addition if limit states are dependent, as in the case of coupled quantities of interest, then potentially

m2N or greater function evaluations are required where m is the number of limit states and N is

the average number of evaluations required to find a MPP. Thus using a single shared anchor point

can be advantageous for decreasing RBDO expense. Obvious choices include the mean or median.

In this section we discuss the choice of the mean and MPP as anchor points for quantile constraints.

Mean

When the anchor point is chosen to be the mean, i.e. yc = E[y], the safety margin s in the approxi-

mate deterministic quantile constraint becomes

s = glo(xc, E[y])− zhi(xc). (4.59)

In this case s determines the distance in limit state value between the anchor point and the levels

obtained from the inverse reliability analysis at the trust region center.

Most Probable Point (MPP) of Failure

When the anchor point is chosen to be the most probable point (MPP) of failure, the safety margin

s in the approximate deterministic quantile constraint becomes

s = glo(xc, yMPP )− zhi(xc). (4.60)

In the case that only one model fidelity is considered, i.e. ghi = glo = g and yc = yMPP , then

the safety margin s is zero, and likewise its gradient. Thus, the approximate deterministic quantile

constraint simply becomes

g(x, yMPP ) ≥ z̄, (4.61)

which follows since g(xc, yMPP ) = z(xc) by construction, i.e. the MPP(s) reside on the limit state

surface(s) determined by the inverse reliability analysis. Note that (4.61) is valid for any point y on

the limit state surface defined by z(xc), not just yMPP , although the MPP is a convenient choice

with a largely developed theoretical background.

As in other sequential RBDO methods [132, 40, 14], when multiple limit states are present, it

is more appropriate to select the MPP associated with each limit state as the anchor point for

that particular limit state, instead of selecting the global MPP as the anchor point for each limit

state approximation. In such a case, each limit state requires deterministic evaluation at its own

MPP during an optimization subproblem. When many limit states are present and they are also

dependent, evaluation of m limit states for each of m MPPs requires m2 function evaluations for

each set of constraint evaluations which may be quite expensive.
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4.5.7 Algorithm

Algorithm 6 outlines the proposed sequential RBDO method using anchored decomposition and two

model fidelities. The presented algorithm specifically addresses the standard RBDO problem from

(4.4) with a deterministic or expectation objective and quantile constraints, however a reliability

objective can be included in the same manner as the quantile constraints. Design variables x are

deterministic but may parameterize the means of distributions of the random parameters y. In this

case, the SORA shift in design variables from (4.20) is used to encourage convergence [40]. The

AKIRA algorithm presented in chapter 3 is used for the system inverse reliability analysis each

iteration. The associated gradient estimation was discussed in section 3.5. At each iteration a

deterministic subproblem is solved using corrected anchored decomposition approximations of the

low-fidelity model. The entire algorithm is embedded in a trust region method to ensure conver-

gence to an optimum of the high-fidelity model. Both hard and soft convergence are assessed for

termination and are described in detail in Appendix C. If the constraints are feasible and the norm

of the reduced gradient is sufficiently small then hard convergence is achieved. If the previous three

iterations have been accepted by the trust region method but progress has not been made towards

decreasing the objective or constraint infeasibility then soft convergence is achieved.
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Algorithm 6: Multifidelity sequential RBDO with anchored decomposition approximations

Data: initial design x0
c , initial trust region size ∆0, choice of anchor point (mean, MPP or

other), choice of additive/multiplicative/mixed first or second order correction, limit

state threshold z̄

Result: optimal design x∗

1 Solve system inverse reliability analysis for zhi(x
0
c) using AKIRA;

2 Evaluate fhi(x
0
c);

3 for k ← 0 to kmax do

4 Set anchor ykc for random parameters;

5 Evaluate ∇xzhi(xkc );

6 Evaluate ∇xfhi(xkc );

7 if converged then

8 return xkc ;

9 Evaluate flo, ∇xflo, glo, and ∇xglo at anchor (xkc , y
k
c );

10 Construct corrected low-fidelity model with SORA shift if necessary f̂(x), ĝ(x);

11 x∗ ← Solve approximate deterministic subproblem:

minimize
x

f̂(x)

s.t. ĝ(x) ≥ z̄∥∥x− xkc∥∥ ≤ ∆k

12 Solve system inverse reliability analysis for zhi(x
∗) using AKIRA;

13 Evaluate fhi(x
∗);

14 if no progress made in last 3 iterations then

15 return xkc ;

16 Decide whether x∗ should be accepted or rejected as the next iterate;

17 if x∗ accepted then

18 xk+1
c ← x∗;

19 else

20 xk+1
c ← xk;

21 Update the trust region size (shrink, expand, or retain) for ∆k+1;
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4.5.8 Comparison with Existing Methods

The sequential RBDO method presented in Algorithm 6 shares many similarities with other sequen-

tial RBDO methods. However it also has some notable differences from many methods:

Multifidelity optimization. A lower-fidelity model is used during the solution of the subproblem

which potentially decreases the overall cost of the RBDO problem.

Trust Region Model Management. A trust region method is used to ensure convergence to an

optimum of the high-fidelity model.

Anchored decomposition. The use of anchored decomposition motivates quantile constraint ap-

proximations for points other than the MPP. For example taking the mean as an anchor may

have benefits for problems with coupled constraints and is helpful for system RBDO problems.

System inverse reliability analysis. Thanks to AKIRA a system RBDO problem can be solved

using the more robust inverse reliability analysis.

As discussed in section 4.3.2, most sequential RBDO algorithms are MPP-based and/or use a MPP

reliability analysis method. In addition the individual component RBDO problem is usually solved

instead of the system RBDO problem. Finally, the use of multifidelity methods in RBDO is still a

growing area of research.

As sequential methods often operate on the same principles, the presence of similarities is un-

surprising. Here we consider the single-fidelity version of Algorithm 6 which is obtained by taking

fhi = flo and ghi = glo since most algorithms use single-fidelity. When the anchor is taken as the

MPP, Algorithm 6 is essentially the Sequential Optimization and Reliability Assessment (SORA)

proposed by Du and Chen [40] (see section 4.3.2). Thus it may be called a SORA method. When the

design variables are deterministic and do not parameterize the random variables, the anchor is taken

as the MPP, and an additive correction is used for the limit state approximations then Algorithm 6

is also similar to Wu et al’s proposed method with a shift in the limit state [132] (see section 4.3.2).

Algorithm 6 is also similar to Ba-abbad et al’s proposed RBDO method [14] (see section 4.3.2)

with the exception that the most probable point location yMPP is fixed in Algorithm 6 during

the solution of the subproblem. Both methods solve a series system RBDO problem. Ba-abbad

et al do so by introducing an extra set of variables β̄i into the optimization subproblem with the

goal of determining the optimal distribution of probability of failure among different limit states.

As a result they optimize the distribution of failure probability among limit states at the same

time as optimizing deterministic variables x. In order to optimize the distribution of the failure

probability, they allow the MPP for each limit state to change. On the other hand in the present

approach, (4.57) shows an optimal distribution of probability of failure at the trust region center xc

is determined prior to solving the optimization subproblem. The optimal distribution is determined
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Table 4.2: Variables in the short column problem.

Name Variable Distribution Mean CoV

Moment 1 (kN-m) M1 Normal 250 0.3
Moment 2 (kN-m) M2 Normal 125 0.3

Axial load (kN) P Normal 2500 0.2
Yield strength (MPa) Y Normal 40 0.1

Breadth (mm) b Normal x1 0.1
Height (mm) h Normal x2 0.1

via an inverse reliability analysis such as AKIRA which takes multiple limit states into account.

Then the subproblem is solved assuming fixed MPPs from the inverse reliability analysis.

4.6 Demonstration

The algorithm presented in section 4.5.7 is demonstrated on two common structural reliability-based

design optimization problems, the short column problem with a single limit state and 4–6 random

variables, and the cantilever beam problem with two limit states and 4 random variables. Results

for a realistic supersonic nozzle application are presented in chapter 5. The results presented use a

filter method for the acceptance of trust region iterates (see section 4.4.4) with a convergence and

constraint tolerance of 10−3–10−4. Various anchors and corrections are investigated. Comparisons

with results from literature are made when possible. Finally AKIRA is used to solve the system

inverse reliability analysis (chapter 3).

4.6.1 Short Column

Variations of the short column problem are commonly used in the RBDO literature to demonstrate

reliability analysis and RBDO methods [77, 111, 3, 11, 42, 83]. The problem concerns a short column

with rectangular cross-section subject to two bending moments M1 and M2 and an axial load P . In

the version considered here [11], the loading and the column’s yield strength Y are considered to be

independent normal random variables. In addition the breadth b and height h of the column’s cross-

section are considered to be independent normal random variables; thus y = [M1,M2, P, Y, b, h]>.

The deterministic design variables are the means of the geometric parameters; thus x = [µb, µh]>

with initial values of 500 mm each. Table 4.2 describes the variables in the problem.

The normalized limit state (g(x, y) ≤ 0 corresponds to failure) which governs yielding in the

column is

g(x, y) = 1− 4M1

bh2Y
− 4M2

b2hY
−
(

P

bhY

)2

. (4.62)
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The RBDO problem of interest is

minimize
x=[µb,µh]>∈R2

f(x) = x1x2

s.t. pf = P [g(x, y) ≤ 0] ≤ 1.35× 10−3

1/2 ≤ x1/x2 ≤ 2,

(4.63)

where the chance constraint with pf = 1.35× 10−3 corresponds to a system reliability index β = 3.

Table 4.3 compares the RBDO results for the short column problem. The proposed sequential

method from section 4.5.7 performs comparably to SORA and is more efficient than double-loop

RBDO with FORM even when the mean is used as the anchor point. As expected, the use of

the mean as the anchor as opposed to the MPP leads to more function evaluations, at least for

this problem with a single limit state. This is to be expected since the limit state behavior at the

mean is less representative of the behavior in the distribution tails compared to the MPP. However

using an improved low-fidelity correction in the trust region method can help offset the decrease in

performance when the mean is used as the anchor. For example, the number of function evaluations

dropped 8% when a two-point second order correction was used instead of a first order additive

correction with a mean anchor.

Figure 4.5 compares the impact of anchor choice on convergence trajectory. When the MPP is

used as the anchor only a single iteration is required to get close to the optimal solution, whereas

when the mean is used as the anchor, several additional corrective steps must be taken for con-

vergence. However, both methods converge to the same optimum. Figure 4.5b illustrates how the

filter acceptance method used in the trust region method allows an increase in constraint violation

if the objective is decreased. During the mean anchor optimization the initial step increases the

constraint violation by a large amount, but as shown in Figure 4.5a makes progress towards the

optimum regardless. The optimization then quickly recovers and converges to the optimum.

Figure 4.6 compares the convergence history for the MPP and mean anchor optimizations using a

first order additive correction. The optimization using the MPP anchor converges in just 3 iterations,

whereas the mean anchor optimization requires 5 iterations to declare convergence. The use of a

two-point second order approximation can further help enhance optimizations using a mean anchor

as shown in Table 4.3.

4.6.2 Cantilever Beam

The cantilever beam problem was introduced in section 3.7.2 to demonstrate the performance of

AKIRA. Recall there are four independent normal random variables y = [Y,E,H, V ]> (see Table 3.3)

which correspond to the yield stress, elastic modulus, and two random loads. The rectangular cross-

section of the cantilever beam is parameterized by deterministic width w and thickness t. The design

variables x = [w, t]> with initial values [2.35132, 3.32610]> [14]. Two limit states are considered,
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Table 4.3: Comparison of RBDO results for the short column problem specified in (4.63). The
problem is solved without geometric uncertainties, that is with deterministic µb = b and µh = h,
and with geometric uncertainties where µb and µh correspond to the means of normal distributions
as specified in Table 4.2. Several items of interest are compared in this table: 1) the use of the mean
or the MPP as the anchor point for the separable approximation of the limit state, 2) the use of
additive 1st order or two-point 2nd order corrections for the limit state approximations, and 3) the
results from the proposed method with results from SORA (a sequential method and a close cousin
described in section 4.3.2) and inverse FORM with HMV (a popular double-loop method described in
sections 4.3.1 and 2.3.1) from Aoues and Chateauneuf’s benchmark paper [11]. f(x∗) is the optimal
value of the objective function, µ∗b and µ∗h are the optimal mean breadth and height of the column’s
cross section, and N is the number of function evaluations required during the optimization.

Method f(x∗) µ∗b µ∗h N

Without geometric uncertainties
MPP anchor; additive 1st order correction 0.1918 0.3097 0.6194 115
Mean anchor; additive 1st order correction 0.1918 0.3114 0.6160 270

MPP anchor; two-point 2nd order correction 0.1918 0.3097 0.6194 115
Mean anchor; two-point 2nd order correction 0.1918 0.3097 0.6194 248

SORA [11] 0.1915 – – 119
Inverse FORM w/ HMV [11] 0.1913 – – 450

With geometric uncertainties
MPP anchor; two-point 2nd order correction 0.2363 0.3606 0.6554 220
Mean anchor; two-point 2nd order correction 0.2357 0.3459 0.6813 459

SORA [11] 0.2372 – – 252
Inverse FORM w/ HMV [11] 0.2372 – – 570

gS(x, y) which corresponds to failure by excessive stress, and gD(x, y) which corresponds to failure

by excessive deflection. Both are normalized such that gi(x, y) ≤ 0 corresponds to failure.

The system RBDO problem follows Ba-abbad’s formulation [14] and is given by

minimize
x=[w,t]>∈R2

f(x) = wt

s.t. P [g(x, y) ≤ 0] ≤ 1.35× 10−3

1 ≤ w ≤ 4

1 ≤ t ≤ 4,

(4.64)

where g(x, y) = minS,D{gS(x, y), gD(x, y)} which shows the cantilever beam is a series system,

i.e. failure due to either excessive stress or displacement indicates system failure. The chance con-

straint with pf = 1.35× 10−3 corresponds to a system reliability index β = 3.

Table 4.4 compares the results of the cantilever beam optimization using MPP and mean anchors

with the modified SORA approach proposed by Ba-abbad et al and described in section 4.3.2.

Although Ba-abbad et al do not report the cost of their optimization, they use a sequential approach

requiring two inverse reliability analyses each iteration, one for each limit state. AKIRA requires a
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Figure 4.5: Comparison of how the choice of anchor in the separable approximation of the limit state
affects the RBDO process for the short column problem specified in (4.63). The design variables b
and h are deterministic, i.e. geometric uncertainties are not considered. Results are shown for when
the anchor is taken to be the mean of the 4 random variables and for when the anchor is taken to
be the MPP. A first order additive correction is used for the limit state approximation and the filter
method is used for acceptance in the trust region method.
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Figure 4.6: Comparison of convergence for the short column problem when the MPP is used as the
anchor and when the mean of the random variables is used as the anchor. The design variables b and
h are deterministic, i.e. geometric uncertainties are not considered. A first order additive correction
is used for the limit state approximation and the filter method is used for acceptance in the trust
region method.

single inverse reliability analysis, but the overall sequential optimization may require more iterations

as Ba-abbad approximate the location of the MPP during the deterministic optimization. This is
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not done in the proposed sequential approach. Nevertheless, Table 4.4 shows that an optimal reliable

design can be obtained in several hundred function evaluations, and much less when the MPP anchor

is used.

Table 4.4 also shows that all optimizations converge to approximately the same design: (w, t) =

(2.62, 3.64). In fact the optimization using the MPP anchor declares convergence slightly outside

of the optimum found by the other optimizations due to a slightly lax convergence tolerance of

10−3. Nevertheless, the differences are small and can be ameliorated to a certain extent by using

smaller convergence tolerances in the AKIRA algorithm and the RBDO algorithm. This issue

thereby identifies one limitation of using AKIRA within a RBDO method — as a response surface

method using sampling to obtain estimates of probabilities of failure, a certain amount of noise is

present in the limit state level estimates used in the optimization. The noise can be decreased by

refining the kriging model more and increasing the sample count, but only at the expense of more

function evaluations. In practice, an optimization convergence tolerance of 10−3 has been found to

be appropriate for RBDO using AKIRA with nominal settings. The difficulty with using a larger

convergence tolerance, as shown in Table 4.4, is slightly premature convergence on occasion.

Table 4.4: Comparison of RBDO results for the cantilever beam problem specified in (4.64). Results
for RBDO using a MPP anchor and a mean anchor are compared with Ba-abbad et al’s modified
SORA approach described in section 4.3.2 [14]. f(x∗) is the optimal value of the objective function,
w∗ and t∗ are the optimal width and thickness of the cantilever’s cross section, and N is the number
of function evaluations required during the optimization.

Method f(x∗) w∗ t∗ N

MPP anchor; two-point 2nd order correction 9.6809 2.6589 3.6410 179
Mean anchor; two-point 2nd order correction 9.5680 2.6219 3.6492 519

Modified SORA [14] 9.561 2.628 3.639 –

Figure 4.7 compares the convergence of the optimizations using the mean and MPP anchors.

Convergence is declared after just 3 iterations for the optimization using the MPP anchor whereas

the optimization using the mean anchor requires at least 6 iterations for convergence to the optimum.

The results presented for the cantilever beam using the proposed sequential RBDO method with

AKIRA instill confidence for the efficient reliability-based design optimization of a system with

multiple limit states. In the next chapter, AKIRA and the sequential RBDO method are applied to

the design of a supersonic nozzle system.
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Figure 4.7: Comparison of convergence for the cantilever beam problem when the MPP is used as
the anchor and when the mean of the random variables is used as the anchor. A two-point second
order correction is used for the limit state approximation and the filter method is used for acceptance
in the trust region method.
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Chapter 5

Supersonic Nozzle Demonstration

In this chapter the reliability-based design optimization (RBDO) of a military turbofan supersonic

nozzle system is presented. The supersonic nozzle design problem was selected due to its inherent

multiphysics nature requiring aerodynamic, thermal, and structural analyses, as well as the ample

presence of uncertainties ranging from material properties to inlet and atmospheric conditions [51].

In addition the nozzle is an integral component of an aircraft’s propulsion system and thus requires

very high reliability. Together the complexity of the nozzle system and its importance to the overall

reliability of an aircraft make it an ideal application for the demonstration and testing of RBDO

methods on an industrial-type application.

We consider design for a critical top-of-climb design condition where temperatures and stresses in

the nozzle system are the highest. The goal is to minimize the mass of the nozzle while maintaining

a reliable nozzle system in terms of thrust generation and structural failure. 40 random variables

were identified and characterized from experimental data, simulations, or expert judgment and

define the uncertainties present in the design problem. The remainder of this chapter discusses the

modeling and design choices for the supersonic nozzle problem, the RBDO approach, and the design

optimization results. Section 5.1 introduces the nozzle system and section 5.2 describes the basic

physics of supersonic nozzles. Then section 5.3 introduces the computational models used in the

optimization, followed by the geometric and random variable parameterizations in section 5.4. The

formal RBDO problem formulation and a standard practice deterministic optimization formulation

are presented in section 5.5. Finally section 5.6 summarizes the RBDO approach and section 5.7

presents and compares results for the RBDO and deterministic optimizations for different fidelity

models. Comments on nozzle design and the efficacy of RBDO for the nozzle design problem are

given in section 5.8.
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Figure 5.1: Schematic of nozzle components.

Number Component Name
1 thermal layer
2 inner load layer
3 middle load layer
4 outer load layer
5 stringers

6-10 baffles 1-5

Table 5.1: Component numbering.

5.1 Nozzle Components

Figure 5.1 shows the primary components of the non-axisymmetric nozzle system. The nozzle

structure adopted in this dissertation features a multi-layer wall which is attached to the surrounding

aircraft substructure via a series of baffles and stringers. A brief description of each component

follows. Detailed material properties for each component can be found in the appendix, section D.2.

Thermal Layer

The thermal layer (component 1) is the innermost wall layer and is in direct contact with the hot

exhaust gases. It is built from a ceramic matrix composite, a material which possesses a high thermal

stability as well as a low thermal conductivity. Its primary purpose is to inhibit the flow of heat

into the surrounding aircraft structure. Small pinholes in the thermal layer allow the pressure to

equilibrate on both sides of the thermal layer with a negligible increase in heat transfer through the

thermal layer. As a result, the thermal layer does not take any pressure loads; instead these are

transferred to the load layer (components 2-4). However the thermal stresses in the thermal layer

are high due to its direct contact with the hot exhaust gases and must be taken into account.

Air Gap

The air gap separates the thermal layer from the load layers. Although the air gap may appear

to be a seemingly trivial detail, it in fact acts as an additional thermal resistance inhibiting the

flow of heat into the surrounding aircraft structure. The air gap is an effective thermal insulator

because of the low thermal conductivity of air. Here we consider heat transfer across the air gap by

conduction only; convection and radiation are neglected. In industrial applications, the nozzle may

be actively cooled from the outside using the air gap or circumferential conduits thereby increasing

the effectiveness of the thermal insulation of the hot interior nozzle wall.

Load Layer

The load layer (components 2–4) supports the thermal layer and absorbs any structural loads im-

posed on the nozzle. In particular it takes the pressure load from the interior nozzle flow. The load
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layer is modeled as a sandwich composite comprised of a titanium honeycomb core and graphite-

bismaleimide faceskins. The sandwich composite structure is a well-proven concept for lightweight

but strong aerospace applications loaded in bending. The thermal layer is attached to the load layer

via a series of standoffs (not shown) which cross the airgap and are not modeled.

Baffles and Stringers

A series of baffles (components 6–10) and stringers (components 5) support and attach the nozzle’s

load layer to the surrounding aircraft structure. Baffles extend in the plane normal to the nozzle’s

axis until intersection with a side wall or outer mould line. Stringers run along the length of the

nozzle. The baffles are constructed from a sandwich composite structure similar to the load layer,

whereas the stringers are considered to be manufactured from a graphite-bismaleimide composite

layup only.

5.2 Supersonic Nozzle 101

The nozzle is the contoured duct at the aft end of an engine which is responsible for the production

of the forward thrust force. The purpose of a nozzle is to convert the thermal energy from hot

high-pressure combusted exhaust gases from the engine to kinetic energy, thereby generating a

propulsive force. The shape of the nozzle determines how much thrust is generated for given inlet

and atmospheric conditions. In particular the cross-sectional area ratio of the nozzle inlet, throat,

and outlet, as well as the pressure ratio between the inlet and outlet are the governing quantities of

interest in nozzle design. As a result the precise shape of the inner wall of the nozzle (in contact with

the hot exhaust gases) is of great importance for nozzle designers. Figure 5.2 shows a schematic of

a nozzle and illustrates several key parts.

Nozzles generally exhibit flow in a single direction (fore to aft) and for this reason they may

with modest accuracy be analyzed using quasi-1D area-averaged flow. The remainder of this section

assumes 1D area-averaged flow to explain how supersonic nozzles work.

5.2.1 Mass Conservation

In fact the relationship between the nozzle Mach number M and area A, and many related flow

quantities at any streamwise station can be derived by considering the conservation of mass for area-

averaged flow. The following derivation closely follows Cantwell [25] and considers all flow variables

to be functions of the streamwise coordinate, although this is not explicitly shown. Consider the

mass flow rate

ṁ = ρUA, (5.1)
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Figure 5.2: Diagram of a supersonic nozzle illustrating the inlet, outlet and point of minimum
cross-sectional area, the throat. In a converging-diverging nozzle supersonic flow is achieved in the
diverging portion of the nozzle if the inlet stagnation pressure to freestream pressure ratio is large
enough. In such a situation the throat of the nozzle is choked and the Mach number M near the
throat becomes 1. The white contours on the diagram show the sonic lines, where M = 1. The nozzle
wall in the diagram is colored according to temperature (blue = cool, red = hot). Near the inlet the
temperatures are the highest; as the fluid accelerates and expands it decreases in temperature.

where ρ is the density, U is the streamwise velocity, and A is the area of the nozzle. Applying the

equation of state P = ρRT and definition of the Mach number M = U/a, where a =
√
γRT is the

speed of sound, ṁ can be written as

ṁ =
P

RT

√
γRTMA, (5.2)

where P is the pressure, R is the specific gas constant, T is the temperature, and γ is the ratio of

specific heats. Furthermore recall the isentropic relations for stagnation temperature and stagnation

pressure:

Tt = T

(
1 +

γ − 1

2
M2

)
, (5.3a)

Pt = P

(
1 +

γ − 1

2
M2

) γ
γ−1

, (5.3b)

where Tt is the stagnation temperature and Pt is the stagnation pressure. By solving (5.3) for T

and P and plugging into (5.2), the mass flow rate can be expressed as

ṁ =
γ(

γ+1
2

) γ+1
2(γ−1)

(
PtA√
γRT

)
f(M), (5.4)
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where f(M) is the area-Mach relation given by

f(M) =

(
γ + 1

2

) γ+1
2(γ−1 M(

1 + γ−1
2 M2

) γ+1
2(γ−1)

. (5.5)

Equating the mass flow rates at any two points in the nozzle (i.e. ṁ1 = ṁ2) leads to the simple

relationship between any two points in the nozzle for area-averaged flow

Pt,1A1√
Tt,1

f(M1) =
Pt,2A2√
Tt,2

f(M2). (5.6)

In an adiabatic flow, the stagnation temperature Tt is constant. In an isentropic flow, the stagnation

pressure Pt is constant. In such a situation, i.e. the ideal nozzle, the mass flow rate relation simplifies

to

A1f(M1) = A2f(M2), (5.7)

which makes the relationship between area and Mach number apparent. For example suppose the

Mach number is 1 at station 1 corresponding to A1. The area-Mach function is at its maximum

f(M1) = 1, therefore we see that A2 ≥ A1 for all other stations 2. As a result, the Mach number

always becomes critical at the minimum area point of the nozzle first, i.e. the throat. In non-quasi-

1D flow the critical point may be pushed slightly downstream of the throat in a real nozzle due to

3D flow effects.

5.2.2 Converging-Diverging Nozzle

A common nozzle shape, at least in military aircraft and spacecraft is the converging-diverging

nozzle. In the converging-diverging nozzle the hot gases are accelerated through the converging

section of the nozzle and, if the inlet stagnation pressure is high enough, reach the speed of sound

near the throat of the nozzle, i.e. the streamwise point of minimum cross-sectional area. When this

occurs the throat of the nozzle is said to be choked as it permits no greater increase in mass flow rate

As the nozzle diverges after the throat, the gases continue to accelerate beyond the speed of sound,

obtaining supersonic speeds while expanding and thereby cooling down and decreasing in pressure.

For this reason, converging-diverging nozzles can also be called supersonic nozzles.

In fact, the flow in an (ideal) nozzle can be completely characterized in terms of its throat to

exit area ratio At/Ae and its inlet stagnation pressure to ambient pressure ratio Pt/P∞ [25]. Using

the area-Mach relation from (5.5) and the mass flow rate relation from (5.7), the exit Mach number

Me can be expressed in terms of the area ratio At/Ae. Note that there are two solutions for Me, one

subsonic and one supersonic. The isentropic pressure relation from (5.3) can then be used to relate

Me to the inlet stagnation pressure to ambient pressure ratio Pt/P∞. A nozzle will typically exhibit

a range of states during operation: the over expanded, fully expanded and under expanded states.
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5.2.3 Heat Transfer and Friction

In a word, the presence of heat addition and/or friction tends to drive a channel flow towards Mach

1. Fanno flow (1D adiabatic constant area flow with friction) and Rayleigh flow (1D frictionless

constant area flow with heat addition) can be examined to confirm this property [25]. In a nozzle

flow, typically heat is extracted from the flow through the nozzle walls leading to a decrease in

stagnation temperature, whereas the presence of friction at the wall leads to a decrease in stagnation

pressure. In an off-design case where a shock in the nozzle occurs, the loss in stagnation pressure

can be very large.

The governing equation of motion for quasi-1D area-averaged flow in differential form [25] is(
1−M2

2(1 + γ−1
2 )M2

)
dM2

M2
=
−dA
A

+
γM2

2

(
4Cfdx

D

)
+

(
1 + γM2

2

)
dTt
Tt

, (5.8)

where M is the Mach number, γ is the ratio of specific heats, A is the cross-sectional area of the

nozzle, Cf is the friction coefficient of the nozzle wall, D is the diameter of the nozzle, Tt is the

stagnation temperature at the wall of the nozzle, and x is the coordinate along the length of the

nozzle. (5.8) shows that when friction (Cf ) and heat addition dTt > 0 is present, the tendency is to

lower the Mach number in supersonic flows and increase the Mach number in subsonic flows.

5.3 Computational Models

An automated suite of coupled multidisciplinary analysis tools for the static aero-thermal-structural

analysis of supersonic nozzles called MULTI-F was developed with Victorien Menier and Phil Avery.

MULTI-F is written in Python and calls the open source codes SU2 [45] and AERO-S [50] for fluid

and thermal/structural analyses. It features a hierarchy of model fidelity levels, ranging in both the

physical fidelity (Quasi-1D/Euler/RANS for fluids and linear/nonlinear for structures) and mesh

discretization. Users can easily run coupled aero-thermal-structural analyses for user-specified nozzle

geometries, material combinations, and environmental parameters by managing a configuration file

and associated input file specifying variable values. Figure 5.3 shows the workflow and capabilities

of MULTI-F.

First an aerodynamic analysis is performed from which the inner wall temperature and thrust

force are extracted. Next a thermal analysis is performed which estimates temperatures in the

structural components of the nozzle. Then a structural analysis is performed which takes into

account thermal strains due to the temperature increase. The multidisciplinary analysis has one-way

coupling, i.e. displacements from the structural analysis do not feed back into a new aerodynamic

analysis, since convergence of the fully coupled problem would increase the analysis expense.
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Figure 5.3: Workflow and capabilities of the multifidelity supersonic nozzle aero-thermal-structural
analysis suite MULTI-F. The user provides a configuration file specifying the problem and a corre-
sponding input file specifying design variable values. MULTI-F then performs the required analyses
and outputs results to a file.

5.3.1 Aerodynamic Models

MULTI-F features three physical fidelities of aerodynamic models; two are discussed below (referred

to hereafter as the low- and high-fidelity models) and used in RBDO of the nozzle system.

Low-Fidelity Model

The low-fidelity aerodynamic model solves the quasi-1D area-averaged Navier Stokes equation pre-

viously shown in (5.8) using ode45, a 4th-order accurate Runge-Kutta method for ODE integration.

Since the governing flow equations are area-averaged, the low-fidelity model assumes all flow proper-

ties are homogenous in each cross-sectional slice of the nozzle. The integration requires the definition

of the friction coefficient Cf and stagnation temperature Tt at the nozzle wall. An initial guess is

made for both quantities and a fully coupled aerothermal analysis is carried out with Gauss-Seidel

updates until convergence. A simplified thermal analysis is used where each wall layer is modeled

as a group of equivalent thermal resistances; as a result only conduction in the radial direction is

taken into account. Convergence of the fully coupled aerothermal analysis typically occurs in 6 to 7

iterations; the entire analysis for the low-fidelity aerodynamic model takes approximately 1 second.

High-Fidelity Model

The high-fidelity aerodynamic models solve the steady, compressible Euler in 3D using SU2, an

open-source software suite for multiphysics simulations [45]. The finite volume method is employed
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in SU2 with median-dual, vertex-based control volumes [45]. The method is implemented using a

standard edge-based data structure on a dual grid. Convective fluxes are evaluated at the midpoint

of each edge; here the fluxes are discretized using the second-order accurate Jameson-Schmidt-

Turkel (JST) scheme [74]. Time integration is performed using an Euler implicit method and the

discretized linear system is solved using the Generalized Minimum Residual (GMRES) method [112].

In addition, SU2’s agglomeration multigrid method is employed to accelerate convergence.

Since even small changes in the nozzle shape can have a dramatic impact on the flow physics, par-

ticularly near the throat of the nozzle, the aerodynamic model must be robust in addition to accurate

and reasonably fast.1 A set of three high-quality increasingly refined meshes, one for each fidelity,

were constructed for a baseline nozzle shape. Hereafter they are referred to as coarse, medium, and

fine. During optimization each mesh is deformed to fit the nozzle geometry by analytically projecting

the baseline mesh onto the new geometry and then running the SU2 mesh deformation module to

ensure a good quality volume mesh.

The baseline meshes are shown in Figure 5.4 and were initially generated using Gmsh with dif-

ferent levels of refinement in the nozzle interior, exit, plume, mid-field and far-field regions [57].

A postprocessing step using the Feflo.a-AMG Inria library ensures the mesh satisfies size require-

ments [85].

(a) Coarse Euler mesh (b) Fine Euler mesh

Figure 5.4: Coarse and fine meshes for high-fidelity aerodynamic model (Euler). Courtesy: Victorien
Menier

5.3.2 Thermal and Structural Models

The nozzle thermal and structural analyses are calculated using AERO-S, an open-source finite

element method (FEM) analysis software [50]2. The thermal analysis solves a Poisson boundary value

problem representing steady state heat transfer through the nozzle walls from the hot exhaust gases.

1Credit for mesh generation and extensive tuning of flow solver parameters to ensure robust aerodynamic high-
fidelity models is due to Victorien Menier.

2Credit for thermal and structural FEM mesh generation and construction of robust thermal and structural models
is due to Philip Avery.
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The structural analysis solves an elastostatic boundary value problem representing the equilibrium of

internal and external forces in the nozzle structure. Both analyses are variable fidelity. We consider

three increasingly refined meshes, hereafter referred to as coarse, medium, and fine (see Figure 5.5).

In addition, the structural model has the option to perform a nonlinear analysis which does not

make the simplifying assumption of small displacements which the standard linear analysis makes.

Figure 5.5: FEM mesh for structural model. Courtesy: Philip Avery

Thermal Analysis

The thermal model models the thermal layer, air gap, and load layers using conventional 8-node

hexahedral finite elements and applies a static linear analysis. The geometries and mesh are gen-

erated using the OpenCascade library and the transfinite meshing algorithm of Gmsh [57]. The

wall temperature from the aerodynamic analysis is interpolated onto the inner wall of the thermal

model and serves as a fixed temperature boundary condition. A convection boundary condition is

applied to the exterior of the outer load layer and is parameterized with a generalized heat transfer

coefficient. The thermal model considers conduction only; convection in the air gap is neglected, as

well as heat transfer due to radiation.

Structural Analysis

The structural model models the thermal layer and load layers as a multi-layer elastic shell and

applies either a static linear or nonlinear analysis. The shell elements are modeled using standard

Kirchhoff thin-plate theory; both the mid-surface in-plane strains and curvatures are assumed con-

stant. Layered composite finite elements with three nodes and six degrees of freedom per node are

used [69] and constructed by superposing a membrane triangle with drilling degrees of freedom [9]
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and an assumed natural deviatoric strain (ANDES) bending triangle [86]. Lastly, to account for large

displacements and associated geometric nonlinearity in the high-fidelity model, the co-rotational for-

mulation is used [94]. This projection-based technique filters out the potentially large rigid body

component of each element’s motion, leaving only a relatively small elastic deformation to which the

theory of linear elasticity can be applied.

The geometries and mesh are obtained in the same manner as for the thermal analysis. The

wall pressure from the aerodynamic analysis is interpolated onto the inside of the inner load layer

and furnishes a pressure boundary condition. Temperatures in the thermal layer and load layers are

extracted from the thermal analysis and contribute to thermal strains which is the dominant source

of stress. The stringers and baffles do not consider thermal strains as their temperature does not

vary greatly. Baffles have a fixed and zero displacement at their exterior edges. The inlet of the

nozzle is unconstrained in the model as this would lead to excessive strains due to thermal expansion;

the problem of the attachment of the nozzle inlet to the turbine exit of the engine is viewed as an

important but complicating factor left for a more detailed design study.

5.3.3 Validation and Robustness

Although SU2 and AERO-S have been independently validated and verified there is little to no openly

available data for the validation and verification of the full coupled aero-thermal-structural nozzle

model presented above. However, several studies were performed which allowed for the qualitative

assessment of performance as well as quantitative assessment of robustness. The most useful study

involved random parameter sweeps in the combined domain of both the nozzle problem’s geometric

deterministic variables and random parameters. A point and direction was randomly picked from

the augmented reliability space (including the deterministic variables x and random parameters y)

and a series of equally-spaced points were evaluated along the direction until the geometry of the

nozzle violated the set of linear constraints characterizing reasonable nozzle shapes. In doing so,

each set of sweep data could be examined for numerical noise or discontinuities indicative of lack of

convergence, software bugs, or possibly discontinuous physical phenomena.

5.4 Parameterization

In this section the parameterization of the problem and the model is discussed. First the choice of

the critical operating condition for the nozzle is discussed, which leads to the definition of mission pa-

rameters which inform some of the uncertainties present in the problem. Next, the parameterization

of the nozzle geometry is discussed in preparation for shape optimization of the nozzle system. Fi-

nally, the identification and parameterization of the uncertainties in the nozzle problem is discussed

in preparation for reliability analysis.
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Figure 5.6: Schematic of typical reconnaissance mission with critical top-of-climb segment circled.

Table 5.2: Mission parameters.

Parameter Units Nominal Value

Altitude ft (km) 40,000 (12.192)
Mach 0.511

Required thrust N 21,500

5.4.1 Operating Condition

In order to characterize the critical operating condition for the nozzle, a typical reconnaissance

mission was analyzed for a small high-subsonic unmanned military aircraft. The mission includes

climbing as fast as possible to a cruise altitude of 43,000 ft, cruising at Mach 0.92 for a specified

distance to an observation point, say 500 km, loitering at an altitude of 43,000 ft and Mach 0.5

for 2 hours and then returning to the takeoff point. On the return, the aircraft descends to 10,000

ft and cruises at Mach 0.9 in a high-speed dash segment lasting several kilometers before landing.

Figure 5.6 illustrates the described mission profile.

The analysis of the mission in Figure 5.6 unsurprisingly shows that the climb segment is the

most critical for nozzle performance since maximum thrust is required at all altitudes leading to

the highest temperatures and pressures at the inlet of the nozzle. In particular, the state of climb

right before beginning the cruise segment is the most critical in terms of stresses and temperatures

experienced by the nozzle. Table 5.2 summarizes the mission parameters used in the nozzle analysis.

5.4.2 Geometry

The nozzle inlet (circular) and outlet (elliptical), and aircraft outer mould line are considered fixed.

However each structural component of the nozzle is fully parameterized for the shape optimization

of the nozzle. The shape of the inner wall of the nozzle which corresponds to the inside of the

thermal layer directly in contact with the fluid is parameterized by elliptical cross-sections in the ŷẑ

plane which are centered along a nonlinear nozzle axis (the centerline) connecting the center of the
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nozzle inlet to the center of the nozzle outlet. The centerline and the major and minor axes of the

elliptical cross sections are parameterized with 3rd degree basis splines (B-splines). Manipulating

the location of the B-spline control points gives effective control of a flexible inner wall shape. Here

we consider a fixed knots vector for the B-splines. Figure 5.7 shows the B-splines parameterizing

the inner wall shape. More information on B-splines can be found in the appendix in section D.1.

Figure 5.7: Schematic showing the parameterization of the inner nozzle wall using three 3rd degree
B-splines. The B-splines and their control points are shown. The coordinates of the B-splines are
used as design variables to manipulate the shape of the nozzle. Since the control points also form a
convex hull for the B-spline, a simple set of linear constraints can formulated in terms of the control
points in order to ensure control points are well spaced and steep changes in geometry are avoided.

The thermal layer and load layers are parameterized with piecewise bilinear functions defined

using a polar coordinate system in x̂θ̂ where θ̂ sweeps through the ŷẑ plane. The thickness of the

load layer t is defined in the wall normal direction n̂ for a given (x, θ) pair. Each wall’s normal n̂

is defined relative to the underlying layer; for the thermal layer the wall normal is perpendicular to

the inner wall shape. θ coordinates are considered fixed, however the x location of the piecewise

bilinear breaks and the thickness t at each break are variable allowing the thickness of each layer to

change.

The air gap and the baffles are parameterized with a uniform thickness that is allowed to vary.

The axial location of each baffle, with the exception of the first and last is also allowed to vary.

Finally the thickness of the stringers are parameterized with piecewise linear functions defined along

the axial direction x̂. Both the break locations x of the piecewise linear functions and the thickness

of the stringers at each break location are allowed to vary. Two stringers are considered on the top

and the bottom of the nozzle.
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5.4.3 Uncertainties

Forty sources of aleatory uncertainty were identified in the nozzle system for consideration during

RBDO. These sources include material properties (34), heat transfer uncertainties (2), and inlet (2)

and atmospheric (2) conditions. Each source of uncertainty was parameterized using a probability

distribution whose parameters were characterized from experimental data, simulations, or expert

judgment. The parameterization for each uncertainty is listed in Table 5.3, with the exception of

the material properties which are listed in detail in the appendix in section D.2.

The 34 material properties correspond to the ceramic matrix composite (thermal layer), graphite

bismaleimide (load layer, stringers, and baffles), and titanium honeycomb (load layer and baffles)

materials. They include constitutive and thermal properties as well as strength-related properties

such as maximum strain or yield strength and maximum service temperature. When appropriate,

the lognormal distribution was fit to test data available from manufacturer datasheets. Otherwise,

a uniform distribution was chosen to parameterize the uncertainty in the material properties with a

typical coefficient of variation for the given property.

The two heat transfer uncertainties considered are the thermal conductivity of the air in the

air gap and the generalized heat transfer coefficient defining the rate of rejection of heat from the

exterior nozzle wall to the ambient aircraft structure. The thermal conductivity of air is a function

of temperature, however this relationship is not modeled due to simplicity and thus this uncertainty

could be considered as epistemic. The uniform distribution was chosen due to its maximum entropy

property. The generalized heat transfer coefficient was characterized via Monte Carlo on a simple

1D thermal resistance model and a lognormal distribution was found to be a suitable fit.

The inlet stagnation pressure and temperature of the nozzle are area-averaged and therefore

homogenous across the inlet area. They were characterized by propagating turbofan engine param-

eter uncertainties and atmospheric uncertainties through a simple F100-PW-220 engine model using

Monte Carlo and fitting a lognormal distribution to the nozzle inlet conditions.

Finally the nominal and mean values of the atmospheric pressure and temperature were obtained

from the 1976 standard atmosphere model. A typical coefficient of variation for day-to-day pressure

and temperature fluctuations was then assumed for a lognormal distribution characterizing these

uncertainties.

5.5 Optimization Statements

Minimum mass optimization is considered for the nozzle problem subject to constraints on per-

formance criteria such as thrust and failure criteria such as maximum temperatures and stresses.

In this section the quantities of interest in the nozzle problem are identified as objective and con-

straints, and standard practice deterministic design optimization and reliable design optimization

problem formulations are presented. A reduced reliable design optimization problem formulation is
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Table 5.3: Heat transfer, inlet and atmospheric aleatory uncertainty parameterizations. Material
uncertainties are described in detail in the appendix in section D.2.

Parameter Units Nominal Value Distribution

Thermal conductivity W
m-K 0.0425 U(0.0320, 0.0530)

Heat transfer coefficient to environment W
m2-K 12.62 lnN (2.5090, 0.2285)

Inlet stagnation pressure Pa 97,585 lnN (11.5010, 0.05792)
Inlet stagnation temperature K 955.0 lnN (6.8615, 0.01192)

Atmospheric pressure Pa 18,754 lnN (9.8386, 0.03232)
Atmospheric temperature K 216.7 lnN (5.3781, 0.02822)

also presented based on the dimension reduction undertaken in the section 5.5.3. It is the solution

of the reduced problem that is presented and compared in the results section 5.7.

5.5.1 Quantities of Interest

The quantities of interest in the nozzle design optimization problem include the mass of the nozzle

M(x, y) as a surrogate for cost, as well as the thrust F (x, y) and component temperatures Ti and

structural failure criteria Si for the ith nozzle component (refer to Figure 5.1 for component num-

bering). Each quantity is a function of both the deterministic design variables x related to geometry

and the random parameters y.

Expected Mass Objective

Since the geometry of the nozzle governed by design variables x is considered to be deterministic,

the expected mass objective is easily calculated. The mass is formulated as a sum over N finite

elements, each with deterministic volume Vi and random density ρi:

E[M(x, y)] = E

[
N∑
i=1

ρiVi

]

=

N∑
i=1

E[ρi]Vi

= M(x,E[y]).

(5.9)

Thrust Constraint

The nozzle thrust is a primary performance requirement for the nozzle. Per Table 5.2 it must remain

above 21,500 N. The thrust F is calculated via a integration over the exit area of the nozzle. Failure

due to insufficient thrust occurs when
F (x, y)

21, 500
< 1. (5.10)

148



CHAPTER 5. SUPERSONIC NOZZLE DEMONSTRATION

Temperature Constraints

Temperature constraints are not implemented for the thermal layer, or for the middle or outer load

layers. This follows from the following considerations:

1. A steady-state problem is being analyzed. As a result heat cannot accumulate anywhere.

2. The fluid temperature is highest at the inlet. As a result no measure can be taken in the

model to decrease the maximum temperature in the thermal layer short of decreasing the inlet

temperature. The inlet temperature distribution and material properties of the thermal layer

are designed prior to optimization to ensure failure due to excessively high temperatures does

not occur in the thermal layer.

3. If the inner load layer is cool enough, then the middle and outer load layers will also be cool

enough as the temperature decreases towards the exterior nozzle walls.

Thus thermal failure for the ith node in the inner load layer occurs when

T (x, y)i ≡
T2,i (x, y)

Tmax,2(y)
≥ 1, (5.11)

where T (x, y)i is the temperature ratio for the ith node in the inner load layer, T2,i is the temperature

at the ith node in the inner load layer (component 2), and Tmax,2 is the maximum allowable service

temperature for the inner load layer’s graphite-bismaleimide material.

Structural Failure Criteria Constraints

The structural failure of each nozzle component is analyzed and constrained. The notation Sj(x, y)i

is used to denote the structural failure criterion for the jth component (see Figure 5.1 for component

numbering) at the ith finite element node. Since each component uses different material properties,

different failure criteria must be considered for each. For clarity the dependence of nodal stresses

and strains on the component number j has been dropped in the following descriptions.

The structural failure constraint for the thermal layer’s ceramic matrix composite material uses

a failure criterion based on maximum principal strain. In other words failure is assumed to occur

when at any FEM node, εI ≥ εf where εI is the maximum (tensile) principle strain and εf is the

maximum allowable principal strain. The principle strains are denoted by εI ≥ εII ≥ εIII . Failure

under compression is assumed to not occur. Structural failure at the ith node in the FEM thermal

layer mesh occurs when

S1(x, y)i ≡
εI,i(x, y)

εf (y)
≥ 1. (5.12)

The structural failure constraints for the load layer’s graphite-bismaleimide composite material

use a failure criterion based on maximum in-plane strains ε1 and ε2 in the local in-plane material
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coordinate system (denoted by subscripts 1 and 2). In other words failure is assumed to occur when

the in-plane strain in directions 1 or 2 exceeds the maximum allowable in-plane strain εf,1 or εf,2.

Note that εf,1 and εf,2 differ for tensile and compressive strains. In addition, failure by in-plane

shear is assumed to occur when the in-plane shear strain γ12 ≥ γf . Failure due to out-of-plane

strains is neglected for consistency with the shell-element approximation. As a result, failure in the

inner load layer, outer load layer, stringers, and faceskins of the baffles occurs for the ith FEM node

and jth component when

Sj(x, y)i ≡ max{1,2,12}{S1
j (x, y)i, S

2
j (x, y)i, S

12
j (x, y)i} ≥ 1, (5.13)

where S1
j (x, y)i, S

2
j (x, y)i, and S12

j (x, y)i correspond to failure due to tensile or compressive strain

in the two local in-plane material directions and failure due to in-plane shear strain:

S1
j (x, y)i ≡


ε1,i(x, y)

εf,1,tension(y)
when ε1,i ≥ 0, (5.14a)

ε1,i(x, y)

εf,1,compression(y)
when ε1,i < 0, (5.14b)

S2
j (x, y)i ≡


ε2,i(x, y)

εf,2,tension(y)
when ε2,i ≥ 0, (5.15a)

ε2,i(x, y)

εf,2,compression(y)
when ε2,i < 0, (5.15b)

S12
j (x, y)i ≡

γ12,i(x, y)

γf (y)
. (5.16)

The structural failure constraints for the titanium honeycomb material uses the von Mises failure

criterion. In other words failure is assumed to occur when σvm ≥ σy where σvm is the von Mises

stress and σy is the yield strength. Structural failure at the ith node in the FEM mesh occurs when

S3(x, y)i =
σvm,i(x, y)

σy(y)
≥ 1. (5.17)

For the nozzle baffles, a symmetric composite panel material with fixed layer thickness ratios is

assumed. It consists of a top and bottom graphite-bismaleimide layer and a middle titanium hon-

eycomb layer. The maximum in-plane strain failure criterion is used for the graphite-bismaleimide

layer and the von Mises stress failure criterion is used for the titanium honeycomb layer as mentioned

above.
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Local Constraint Approximation via One Global Constraint

Constraints 5.11 through 5.17 are defined at every node in the finite element mesh which results

in a large number of local nonlinear constraints. A standard approach taken to reduce the num-

ber of constraints is to replace each batch of local constraints with a single global constraint [15].

The global constraint is chosen to approximate the behavior of the most critical local constraints.

Kresselmeier-Steinhauser functions [15] and modified p-norm functions [70] are common choices. In

this dissertation the modified p-norm function is chosen to form a global constraint approximation

for each batch of local temperature or structural failure criteria constraints. Here a batch refers to all

the local temperature constraints or failure criteria constraints for a single component (i.e. thermal

layer, inner load layer, etc.) in the nozzle model. The modified p-norm function g(q) is given by

g(q) =

(
1

N

N∑
i

qpi

) 1
p

, (5.18)

where p is a constant usually chosen to be around 8 and q is a vector with each local constraint value in

a batch of N local constraints. For ≤ constraints, the modified p-norm function under approximates

the constraints (in contrast to the Kresselmeier-Steinhauser function which over approximates the

constraints). As p increases, g(q) approaches the value maxi{qi}, however numerical difficulties

ensue with too large a value of p.

Linear Constraints

A set of linear constraints Ax ≤ b is used to enforce a well-posed geometry during the course of the

optimization. It includes constraints on the control point coordinates of the B-splines parameterizing

the inner wall shape, as well as constraints on the break locations and thicknesses of the piecewise

bilinear and linear parameterizations of the wall layers, stringers, and baffles. In addition, the set of

linear constraints also inherently includes the bounds on the design variables x. The set of geometric

constraints includes minimum separation distances between B-spline control points or break locations

as well as limits on the slopes between break locations and control points. The former ensures the

parameterization remains well-defined whereas the latter effectively ensures sharp changes in nozzle

geometry do not occur.
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5.5.2 Reliability-Based Design Problem

The chance constraints for the nozzle reliability-based design optimization (RBDO) problem can be

specified independently, each with a prescribed probability of failure p̄f :

P

[
F (x, y)

21, 500
< 1

]
≤ p̄f , (thrust)

P [T (x, y) ≥ 1] ≤ p̄f , (load layer temperature ratio)

P [S1(x, y) ≥ 1] ≤ p̄f , (thermal layer failure crit.)

P [S2(x, y) ≥ 1] ≤ p̄f , (load layer inside failure crit.)

P [S3(x, y) ≥ 1] ≤ p̄f , (load layer middle failure crit.)

P [S4(x, y) ≥ 1] ≤ p̄f , (load layer outside failure crit.)

P [S5(x, y) ≥ 1] ≤ p̄f , (stringers failure crit.)

P [S6(x, y) ≥ 1] ≤ p̄f , (baffle 1 failure crit.)

P [S7(x, y) ≥ 1] ≤ p̄f , (baffle 2 failure crit.)

P [S8(x, y) ≥ 1] ≤ p̄f , (baffle 3 failure crit.)

P [S9(x, y) ≥ 1] ≤ p̄f , (baffle 4 failure crit.)

P [S10(x, y) ≥ 1] ≤ p̄f . (baffle 5 failure crit.)

(5.19)

However it is more useful to consider the nozzle as a series system and specify a single system

failure probability constraint. In this case, recall the system failure probability pf (x) is given by

pf (x) = P [{(x, y) : F (x, y) < 21, 500} ∪ {(x, y) : T (x, y) ≥ 1}
∪ {(x, y) : S1(x, y) ≥ 1} ∪ . . . ∪ {(x, y) : S10(x, y) ≥ 1}], (5.20)

where the probability is calculated over the support of the random parameters y for a given design

x. Thus the series system RBDO problem is formulated as

minimize
x∈R96

E[M(x, y)]

s.t. pf (x) ≤ p̄f
Ax ≤ b,

(5.21)

where pf (x) is defined in (5.20). In this thesis we consider a prescribed failure probability p̄f = 10−6

which approximates stringent military reliability requirements (i.e. one failure per million climb

segments).

The chance-constrained problem can alternately be formulated with quantile constraints whose

152



CHAPTER 5. SUPERSONIC NOZZLE DEMONSTRATION

benefits were enumerated in sections 2.1.5 and 4.1.3:

minimize
x∈R96

E[M(x, y)]

s.t. zF (x; p̄f )/21500 ≥ 1

zT (x; p̄f ) ≤ 1

...
...

zS1
(x; p̄f ) ≤ 1

...
...

zS10(x; p̄f ) ≤ 1

Ax ≤ b.

(5.22)

The problem formulations in equations 5.21 and 5.22 require the calculation of 13 coupled quan-

tities of interest, reliability analyses for 12 of the 13 over a 40-dimensional random space, and

optimization in a deterministic space with 96 design variables. In the next section Sobol’ indices are

used to motivate a reduction in the size of the design problem.

5.5.3 Dimension Reduction

A reduction of the full RBDO problem is motivated by the facts that 1) some quantities of interest

are consistently very far from their failure region for large variations in design and 2) some random

variables have little effect on the “important” quantities of interest. Here “important” refers to

a quantity of interest that has a non-zero chance of failure for any geometrically possible nozzle

design. Once the solution of the reduced RBDO problem has been obtained, the stochastic response

of neglected quantities of interest along with the inclusion of neglected random variables may be

estimated to ensure the dimension reduction was appropriate.

In the nozzle problem, three quantities were determined to have high impact on the nozzle

performance in terms of failure: thrust F , temperature ratio in the inner load layer T , and failure

criteria in the thermal layer S ≡ S1. An inadequately shaped nozzle can easily lead to an insufficient

amount of thrust being generated due to constriction of the mass flow rate. The inner load layer

can easily become too hot if the thermal layer or the air gap is too thin. Finally, the strains in the

thermal layer can easily become too large due to thermal strains which depend on the temperature

and layer thickness. Finally, the mass is also considered as it is included in the objective function.

Thus, the reduced nozzle problem only considers four quantities of interest: mass, thrust, inner load

layer temperature ratio, and the thermal layer structural failure criterion. The reduction decreases

the number of deterministic design variables x from 96 to 54.

With the four critical quantities of interest identified through means of engineering experience
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Figure 5.8: Total order Sobol’ indices for the 17 random variables which contribute most to the
variance of the four quantities of interest considered in the nozzle problem. Eliminating variables
with indices less than 10−5 reduces the problem’s random dimension from 40 to 14. First order Sobol’
indices (not shown) are nearly the same implying interaction effects can be neglected. The Sobol’
indices are calculated using a sparse grid level 1 polynomial chaos expansion with three anisotropic
adaptive refinement iterations, resulting in a total of 3,405 function evaluations for the 3D Euler
nozzle model and FEM thermal and structural models.

and expert judgement, the number of random parameters can then be reduced via inspection of

Sobol’ indices (see Appendix E). The results of the Sobol’ index calculation is shown in Figure 5.8

for the 17 random parameters with the largest maximum total-order Sobol’ index (i.e. value greater

than 10−6). Clearly, the variability in densities only affect mass, whereas thermal conductivities,

and inlet and atmospheric pressures and temperatures and heat transfer coefficients have a large

impact on the remaining quantities.

5.5.4 Reduced Reliability-Based Design Problem

Following the motivation presented in section 5.5.3, a reduced RBDO formulation can be made for

the nozzle problem. We consider 54 deterministic design variables and 14 random parameters. The

quantities of interest include the mass of the nozzle M , the thrust of the nozzle F , the temperature

ratio in the inner load layer T , and the strain failure criterion in the thermal layer S. The reduced
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chance constrained design problem is

minimize
x∈R54

E[M(x, y)]

s.t. pf (x) ≤ p̄f
Ax ≤ b,

(5.23)

where the system failure probability pf (x) is given by

pf (x) = P [{(x, y) : F (x, y) < 21, 500} ∪ {(x, y) : T (x, y) ≥ 1} ∪ {(x, y) : S(x, y) ≥ 1}]. (5.24)

The reduced quantile constrained design problem is

minimize
x∈R54

E[M(x, y)]

s.t.
zF (x; p̄f )

21, 500
≥ 1

zT (x; p̄f ) ≤ 1

zS(x; p̄f ) ≤ 1

Ax ≤ b.

(5.25)

5.5.5 Standard Practice Deterministic Design Problem

A standard practice deterministic design of the nozzle is carried out for comparative purposes with

the reliability-based nozzle designs. Safety factors γ (see section 4.2.1) and conservative material

properties ỹ i.e. basis values (see section 4.2.3) are used. B basis values are calculated assuming

the distribution of the random parameters y are exactly known as this is the case considered in

the reliability-based design optimization procedure in this thesis. In other words, variability in the

distribution parameters for y are assumed to be negligible which corresponds to an ideal situation

where characterization of the random parameters of the problem such as material properties, etc. is

based upon an infinite number of physical samples. In such a situation, the B basis value is simply

the 10th percentile of the distribution for yi.

The reduced problem described in section 5.5.4 with 14 random parameters and 4 quantities of

interest is considered here. The random parameters corresponding to loads on the nozzle system are

taken to be fixed at their means. These include the inlet stagnation pressure and temperature Pin

and Tin and the atmospheric pressure and temperature P∞ and T∞. The effect of the variability

of the loads on the nozzle system is accounted for by a safety factor γ in the nozzle responses for

thrust F , inner load layer temperature ratio T , and thermal layer structural failure criterion S. The

random parameters corresponding to properties of the nozzle system are replaced by deterministic

B basis values. These include the remaining 10 parameters such as densities, failure strains, thermal
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Table 5.4: Fixed random parameters for the standard practice nozzle design. Load variables are
fixed at their mean whereas property variables are replaced with a B basis value. The B basis value
assumes the exact distribution of the random variable is known; variables leading to a critical nozzle
quantity of interest response at lower values are replaced with their 10th percentile whereas variables
leading to critical response at high values are replaced with their 90th percentile. Material property
key: CMC : ceramic matrix composite, Gr-BMI : graphite-bismaleimide, Ti-honeycomb: titanium
honeycomb.

Name Variable Value Units Type

CMC density ρCMC 2,449.463 kg
m3 B basis

CMC failure strain εCMC 5.776×10−2 – B basis
Inlet stagnation pressure Pin 98,980.308 Pa mean

Inlet stagnation temperature Tin 954.866 K mean
Atmospheric pressure P∞ 17,753.237 Pa mean

Atmospheric temperature T∞ 216.697 K mean

Heat transfer coefficient h∞ 6.662 W
m2-K B basis

CMC Poisson ratio νCMC 0.41 – B basis

CMC thermal conductivity kCMC 1.442 W
m-K B basis

CMC thermal expansion coef. αCMC 2.496×10−7 – B basis

Gr-BMI density ρGR 1,572. kg
m3 B basis

Gr-BMI max allowable temperature TGR 501. K B basis

Ti-honeycomb density ρTC 181.01 kg
m3 B basis

Air thermal conductivity kair 0.0509 W
m-K B basis

conductivities, etc., as well as the heat transfer coefficient to the ambient environment. Table 5.4

gives the fixed values ỹ used in the deterministic design problem.

The standard practice deterministic design problem is

minimize
x∈R54

M(x, ỹ)]

s.t.
F (x, ỹ)

21, 500γ
≥ 1

γT (x, ỹ) ≤ 1

γS(x, ỹ) ≤ 1

Ax ≤ b,

(5.26)

where ỹ are the fixed B basis values for the random parameters y and γ is a safety factor. In this

dissertation the safety factor is varied between 1.2 and 1.5.
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5.6 RBDO Approach

The multifidelity sequential approach discussed in section 4.5 and described in Algorithm 6 is used

to solve the reduced RBDO problem with quantile constraints from (5.25). The Adaptive Kriging

Inverse Reliability Analysis (AKIRA) method discussed in chapter 3 is used to provide estimates

of and sensitivities for the high-fidelity quantile constraints. Together the methods are an efficient

strategy for tackling large-scale RBDO problems where nonlinear phenomena, many uncertainties,

and small failure probabilities are present and function evaluations are expensive.

As discussed in section 5.3, a variety of model fidelities are available for analyzing the nozzle.

In the multifidelity sequential approach (section 4.5), the high-fidelity quantile constraints are ap-

proximated using the anchored decomposition of a lower-fidelity model. Anchored decomposition

(section 4.5.2) motivates approximation of stochastic constraints by fixing the random parameters

y at a fixed instance yc, i.e. the anchor point. In the nozzle application the anchor point is chosen

as the mean of the random parameters since the nozzle system is coupled; other choices would lead

to a larger number of function evaluations (section 4.5.6). In addition the low-fidelity approxima-

tion is corrected using a first-order additive correction to satisfy global convergence requirements

(section 4.4.3).

A series of deterministic optimizations using the corrected and decomposed low-fidelity model

are then managed within a trust region to provide a solution to the high-fidelity RBDO problem

(section 4.4). SNOPT, an SQP-based optimization algorithm is used to solve each subproblem [60].

Gradients are estimated for the coupled nozzle system via finite difference. Both step sizes and

convergence tolerances are estimated from the parameter sweeps used to assess model noise.

To ensure convergence, reliability analyses must be periodically performed using the high-fidelity

model. These reliability analyses are performed using AKIRA which solves the system-level inverse

reliability analysis problem for a prescribed probability of failure p̄f = 10−6 (section 3.4). AKIRA

models the constraints using independent kriging response surfaces and adaptively adds points to the

kriging models to decrease uncertainty in the estimated quantiles yielding the prescribed probability

of failure.

When a single-fidelity model is used, the described RBDO approach is still valid but the same

model fidelity is used for both the subproblem optimizations and the reliability analyses.

5.7 Results

Table 5.5 summarizes and compares the solutions of the standard practice deterministic design

problem from (5.26) and the reduced reliability-based design optimization problem from (5.25) for

various model fidelities. Probabilities of failure have been estimated for deterministic designs via

a post-processing step using a kriging-based forward reliability analysis. A detailed discussion and

interpretation of the results is given in the remainder of this chapter, however several trends are
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immediately clear:

1. The standard practice deterministic design using safety factors and basis values does not

achieve the desired reliability. In some cases, e.g. the low-fidelity model, the reliability is

lower for the deterministic design, however in other cases, e.g. the high-fidelity model, the

reliability is much greater than required. Basis values and safety factors are unable to directly

control system reliability.

2. The computational cost of the RBDO problem is an order of magnitude greater than the de-

terministic problem. The additional cost is due to the need to perform multiple deterministic

optimizations interspersed with reliability analyses to solve the RBDO problem.

3. The number of high-fidelity model evaluations exceeds the number of low-fidelity model eval-

uations. In contrast to most multifidelity methods, the low-fidelity model does not appear

to substantially decrease the number of high-fidelity model evaluations. The reason is that

reliability analyses must be performed using the high-fidelity model to ensure convergence to

an optimum for the high-fidelity model, and such reliability analyses constitute the majority

of the cost of solving the RBDO problem. In addition the subproblem optimizations for the

nozzle problem using the low-fidelity model are usually easily solved within the trust region

bounds.

4. The critical constraints in the nozzle problem are the thrust and temperature in the inner load

layer. The structural failure criteria in the thermal layer is not an active constraint due to the

high performance of the ceramic matrix composite.

5.7.1 Low-Fidelity Model Optima

The optimization results for the low-fidelity model are interesting in their own right due to a polar-

ization of the design variables over a small transition in system reliability. In addition, examination

of the low-fidelity model gives intuition as to the behavior of the reliable nozzle design problem.

Figure 5.9 qualitatively compares the optimal standard practice deterministic design nozzle geom-

etry with the optimal reliable design nozzle geometry corresponding to p̄f = 10−6. Figure 5.10

compares the optimal inner wall geometry for the standard practice design and two reliable designs,

one specifying p̄f = 10−5 and the other specifying p̄f = 10−6. The standard practice design uses a

safety factor γ = 1.5 and B basis values.

As shown in Table 5.5, the standard practice deterministic low-fidelity design is actually fairly

reliable with an estimated system failure probability of 2.58× 10−5. However this reliability is still

lower than the desired 10−6, and the insufficient reliability of the standard practice design allows it

to achieve a lower mass, 330 kg instead of 1,033 kg for the reliable design. The cause of the large
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Table 5.5: Comparison of standard practice deterministic and reliability-based design optimization
(RBDO) results for the nozzle problem. The deterministic optimization results use conservative
material properties (B basis values) and safety factors to account for uncertainty. The RBDO results
directly account for uncertainty and use the multifidelity sequential method presented in chapter 4
with the AKIRA method presented in chapter 3 for reliability analyses. In the table, “Fidelity”
refers to the highest fidelity model used in the optimization; for example “Low” refers to a single-
fidelity optimization using the low-fidelity nozzle models, whereas “High” refers to multifidelity
optimizations using the high-fidelity model. The total number of function evaluations Neval and
gradient evaluations Ngrad are shown. In multifidelity optimizations the number corresponding to
the low-fidelity model is shown on the left, and the number corresponding to the high-fidelity model
is shown on the right separated by “/”. The optimization objective is expected mass, and p̂f is
the nozzle system failure probability estimated using AKIRA or a kriging-based forward reliability
analysis. Finally, the active constraints at the optimum are listed: F refers to thrust, T refers to the
inner load layer temperature ratio, and S refers to the thermal layer structural failure criterion.

Optimization Fidelity Neval Ngrad Objective p̂f Critical Constraints
Det. Low 51 49 329.16 2.58× 10−5 F, T

RBDO Low 386 26 341.73 10−5 F, T
RBDO* Low 916 70 1,033.11 1.19× 10−6 F, T

Det. (γ = 1.5) High 8 7 384.17 < 2.31× 10−8 F
Det. (γ = 1.2) High 5 4 380.18 < 2.31× 10−8 F

RBDO High 8 / 317 6 / 7 297.51 10−6 F, T

*problem is slightly infeasible for p̄f = 10−6

increase in mass for the reliable design is illustrated well by Figure 5.11 which compares the shapes

of the nozzle exit for the standard practice design and the reliable design with p̄f = 10−6. First,

the throat area of the reliable design is larger, which allows a larger mass flow rate and therefore

increased thrust, thereby ensuring reliable thrust generation. Second, the thermal layer and the air

gap are very thick in order to decrease the temperature in the load layer. As a result, the mass of

the nozzle is greatly increased.

Figure 5.12 compares the optimal values of the 54 design variables in the low-fidelity optimiza-

tions. It clearly shows that the deterministic design chooses the thinnest possible walls and baffles

in order to minimize mass and manages the thickness of the air gap to ensure a feasible temperature

constraint. On the contrary, the reliable design with p̄f = 10−6 (red circles) chooses wall layers

with the maximum possible thickness and a maximum air gap thickness. In fact, the temperature

constraint is the driving constraint for the low-fidelity RBDO problem and maximizing wall layer

thickness and the air gap is the only way to decrease the temperature in the inner load layer enough.

In fact, the air gap is the most effective means to decrease the temperature in the inner load layer

with small increases in mass since the air does not contribute to the weight of the nozzle. For this

reason, the reliable design with p̄f = 10−5 (green circles) chooses to increase the air gap to meet the

temperature constraint while retaining wall layer thicknesses at their lower bounds.

Comparing the reliable designs for p̄f = 10−5 and 10−6, it becomes clear why the two designs,
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(a) Standard practice design. (b) Reliable design.

Figure 5.9: Comparison of optimal nozzle geometry for the low-fidelity model. The inlet of the
nozzle is shown. The left half of the nozzle shows the structural model (darker = less stress, lighter
= more stress), and the right half shows the thermal model (blue = cooler, red = hotter). The color
scales for both nozzles are the same, which enables a qualitative comparison between the optimal
geometries.

although only an order of magnitude apart in reliability, are so different in terms of expected mass

(342 vs. 1,033 kg). The 10−5 design features minimum gauge wall layers and a modest air gap,

whereas the 10−6 design features maximum gauge wall layers and a maximum thickness air gap.

Between the system failure probabilities of 10−5 and 10−6 there is a fast transition in the nozzle

design from thin to thick layers, i.e. a phase transition where the input uncertainties, in particular

temperature and thermal material properties, dominate any geometry change that might be used to

decrease the load layer temperature and reduce failure.

Figure 5.13 shows the convergence of the low-fidelity nozzle RBDO with p̄f = 10−6. In fact, the

RBDO problem is slightly infeasible for the prescribed probability of failure, however the nonlinear

infeasibilities are decreased as much as possible. A total of 916 low-fidelity model evaluations and 8

trust region iterations are required before the algorithm terminates at a slightly infeasible point.

5.7.2 High-Fidelity Model Optima

The results for the high-fidelity model show the potential for excessive conservatism with well-

intentioned deterministic design procedures. Table 5.5 shows the deterministic design using a safety

factor γ = 1.5 and B basis values has an expected mass of 384 kg with a system failure probability

at least two orders of magnitude smaller than the desired reliability. On the other hand, the reliable
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Figure 5.10: Comparison of optimal inner wall geometry for the low-fidelity model. Note the in-
creased throat radius for the reliable designs as compared to the standard practice deterministic
design.

design features 22.6% reduction in mass while still meeting the requested reliability p̄f = 10−6. Using

a smaller safety factor, γ = 1.2, which may be more appropriate for military aircraft, does little to

ameliorate the overdesign of the deterministic optimization. Figure 5.14 qualitatively compares the

optimal standard practice deterministic design (γ = 1.2) with the optimal reliable design nozzle

geometry and Figure 5.15 compares the optimal shapes of the inner nozzle walls. The obvious larger

diameter of the standard practice design is reflected by its increased mass compared to the reliable

design.

Figure 5.12 compares the optimal design variable values for the two deterministic designs and

the reliable design. In nearly all cases, minimum gauge thickness wall layers are chosen to minimize

mass. Most of the variability between the designs is found in the shape of the inner wall. As shown

in Figures 5.14 and 5.15, the standard practice designs feature a very large throat in order to boost

mass flow rate and therefore thrust. In the deterministic optimizations the thrust constraint is the

driving constraint and therefore has a dominant role in sizing the nozzle geometry. This effect was

not seen in the low-fidelity model optimizations because the Euler aerodynamic model predicts lower

thrust than the quasi-1D area averaged aerodynamic model.

The air gap also plays a pivotal role for managing the temperature in the load layer — both
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Figure 5.11: Comparison of temperature distribution in nozzle for the optimal standard practice
design (left half) and the optimal reliable design (p̄f = 10−6; right half) as seen from the exit
of the nozzle looking towards the inlet. The temperature scales are the same allowing qualitative
comparison. The thermal FEM mesh is shown in order to distinguish between the wall layers. Note
the increased throat radius of the reliable nozzle, as well as increased thermal layer and air gap
thickness, which leads to decreased temperatures in the load layer, as shown by its darker blue color.

standard practice designs choose the maximum thickness air gap in order to decrease temperatures.

They also increase the thickness of the thermal layer near the inlet, where the temperatures are high-

est, to additionally decrease the load layer temperature. Figure 5.16 compares the nozzle geometry

and temperature distributions at the inlet of the nozzle. The higher temperatures in the reliable

nozzle indicate that the standard practice nozzle designs are more conservative than required.

The RBDO with the high-fidelity nozzle model uses the multifidelity sequential approach outlined

in chapter 4. Only three iterations are required for convergence, requiring 8 low-fidelity model

evaluations and 317 high-fidelity model evaluations. Despite the use of a multifidelity approach, the

larger number of high-fidelity model evaluations is due to the need to perform reliability analyses

with the high-fidelity nozzle model. All 317 high-fidelity model evaluations were required by AKIRA

during four reliability analyses.

5.8 Discussion

The optimization results for the nozzle system presented in section 5.7 show that reliability-based

design optimization can be successfully applied to complex large-scale engineering systems. When

efficient reliability analysis and optimization algorithms are used, such as those proposed in this
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(a) Low-fidelity model.
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(b) High-fidelity model.

Figure 5.12: Comparison of optimal design variables for the low-fidelity model and the high-fidelity
model. For the low-fidelity model a standard practice deterministic optimum is compared with two
reliable designs, one with prescribed failure probability p̄f = 10−5 and one with p̄f = 10−6. Note
the quick transition in optimal reliable nozzle geometry between a probability of failure 10−5 and
10−6, where the less reliable design (p̄f = 10−5) features thin wall layers and a moderate air gap,
and the more reliable design (p̄f = 10−6) features thick wall layers and a maximum air gap. For the
high-fidelity model two standard practice deterministic designs (design 1 with safety factor γ = 1.5
and design 2 with γ = 1.2) are compared with a reliable design with p̄f = 10−6. Nearly all designs
choose minimum gauge thickness wall layers; however the wider nozzle geometry for the standard
practice designs leads to increased mass.
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Figure 5.13: Convergence of the low-fidelity nozzle RBDO using the multifidelity sequential RBDO
approach (chapter 4) with AKIRA (chapter 3) for system probability of failure p̄f = 10−6. The mean
of the 14 random parameters is used as the anchor. 54 geometric deterministic design variables are
considered. The low-fidelity model consists of a quasi-1D area-averaged aerodynamic analysis and
coarse mesh FEM thermal and structural analyses. For a specified probability of failure of 10−6

the RBDO problem is actually not feasible as shown by the incremental improvements towards
decreasing constraint infeasibility.
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(a) Standard practice design.

(b) Reliable design.

Figure 5.14: Qualitative comparison of optimal nozzle geometry for the high-fidelity model and its
effect on temperature and Mach number. The coupled aerothermostructural analysis is performed
for the optimal nozzle geometry at the most probable point (MPP) of failure for the 14 random
variables, i.e. for the combination of random variables that is most likely to yield system failure.
The nozzles are shown split down their centerline with flow from left to right. Temperatures in
the nozzle wall are shown (blue = cooler, red = hotter), as well as the Mach number (darker =
smaller, lighter = larger). The color scales for both nozzles are the same, which enables a qualitative
comparison between the optimal geometries. The sonic lines which mark where the Mach number
is 1 in the fluid flow are shown as white contours. Since the inlet flow is subsonic, the flow after the
sonic lines is supersonic. Note that a shock begins to form at the center of the nozzle behind the
throat for the standard practice design in the off-design conditions at the MPP.

dissertation, the cost of solving such problems can become manageable. For the nozzle problem, the

expense of the RBDO problem solution was only an order of magnitude more than that required

for a deterministic optimization. At the same time, the solution of the RBDO problem yields a

design that meets specified reliability requirements, which is generally difficult to reliably achieve

with standard practice margin-based techniques such as safety factors and basis values. The optimal

nozzles shown in section 5.7 were designed for a target probability of failure of 10−6. In comparison,
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Figure 5.15: Comparison of optimal inner wall geometry for the high-fidelity model.

a safety factor and basis value approach led to under conservative designs for the low-fidelity model

and over conservative designs for the high-fidelity model since these methods do not directly control

reliability, although they do build in margin.

Why do the low-fidelity and high-fidelity models lead to different designs? While fundamentally

both models are derived from the same physics, they differ in their approximation of the physics. The

low-fidelity model features an area-averaged flow which is effectively 1D whereas the high-fidelity

model features a fully 3D flow, although without viscous effects. The low-fidelity thermal and

structural models are also coarser than the high-fidelity model. These differences lead to different

predictions of the quantities of interest which ultimately affect the optimal design. For example,

the thrust for the high-fidelity nozzle is lower than for an equivalently shaped low-fidelity nozzle.

Since the high-fidelity model features a fully 3D flow, flow velocities in the nozzle have both an axial

and radial component. The radial component does not contribute to the forward thrust force, and

thus the estimated thrust is lower for the high-fidelity model. This is why the high-fidelity nozzle

is more thrust critical than the low-fidelity nozzle, leading to its overdesign using standard practice

methods.

The benefits of dimension reduction for the nozzle problem should also not be overlooked. The

full nozzle RBDO problem featured 96 design variables, 40 random parameters, and 13 quantities of

interest. Using AKIRA to build 13 kriging models in a 40 dimensional space, while possible, would
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Figure 5.16: Comparison of temperature distribution in nozzle for the optimal standard practice
design (left half) and the optimal reliable design (p̄f = 10−6; right half) as seen from the inlet
of the nozzle looking towards the exit. The temperature scales are the same allowing qualitative
comparison. Note the decreased throat area of the reliable nozzle, as well as the increased thickness
of the nozzle wall for the standard practice design. The standard practice design is overbuilt, and
actually experiences lower temperatures at the most probable point of failure (MPP) as well as
increased thrust, as compared to the reliable design.

be challenging and certainly quite expensive. In addition, the optimization itself would be larger

with more constraints and design variables, which would lead to increased expense when calculating

finite difference gradients. Calculating Sobol’ sensitivity indices to motivate dimension reduction

by fixing random parameters that contributed a negligible variance to quantities of interest was a

key step in making the solution of the nozzle RBDO problem possible. In doing so, the number of

random variables dropped from 40 to 14 making the problem’s solution more manageable.

AKIRA and the multifidelity sequential RBDO algorithm performed well on this larger more

complex problem. Convergence of the optimization was relatively fast, requiring 8 iterations for the

low-fidelity optimization and only 3 for the high-fidelity optimization. Even though all optimizations

started with an initially infeasible design, and the low-fidelity RBDO problem was in fact infeasible,

infeasible iterates did not pose any difficulties for the trust region method managing the RBDO

algorithm.

An interesting feature of the multifidelity sequential RBDO algorithm for the nozzle problem

is the large ratio of high-fidelity model evaluations compared to low-fidelity model evaluations.

Typically one would expect the low-fidelity model to be used more frequently in order to minimize
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Figure 5.17: Convergence of the high-fidelity nozzle RBDO using the multifidelity sequential RBDO
approach (chapter 4) with AKIRA (chapter 3) for system probability of failure p̄f = 10−6. The mean
of the 14 random parameters is used as the anchor. 54 geometric deterministic design variables are
considered. The high-fidelity model consists of a 3D Euler aerodynamic analysis and FEM thermal
and structural analyses. Convergence is achieved in just three iterations.

the use of the more expensive higher-fidelity model. Although the low-fidelity model is used in

this manner in the sequential RBDO method, a comparison of the function evaluation counts is
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obfuscated since a reliability analysis must be performed each trust region iteration using the high-

fidelity model in order to ensure convergence. No such reliability analysis need be performed for

the low-fidelity model due to the nature of the anchored decomposition approximation. For the

nozzle problem, the deterministic subproblems turn out to be relatively easy to solve (typically 2–

5 outer SQP iterations are required for convergence), likely as a result of the many active bound

constraints in the optimization. Thus, the majority of the RBDO cost is in the reliability analysis

using AKIRA, which requires on the order of 100 high-fidelity function evaluations — a large number

compared to the 5 function evaluations required during the solution of the subproblem using the

low-fidelity model. For other problems, the behavior is different; for example in the cantilever beam

problem from section 4.6.2, the majority of the RBDO cost lies in the solution of the deterministic

subproblems.

The optimal nozzle designs, both for the low- and high-fidelity models, are qualitatively consistent

with physical intuition, in general requiring larger throat areas to increase thrust as well as an

increased air gap thickness to lower temperatures in the load layer. In addition minimum thickness

wall layers are desired wherever possible in order to decrease mass. The phase transition in the

optimal reliable low-fidelity nozzles between probabilities of failure 10−5 and 10−6 is particularly

interesting. Such behavior highlights the importance of properly characterizing the input random

variable distributions, which have a direct impact on the uncertainty in quantities of interest, as

well as the importance of specifying appropriate reliability requirements. An improperly specified

requirement, for example pf ≤ 10−6 instead of 10−5 in the nozzle problem, has a large impact on

the mass objective.

Indeed, the behavior observed for the optimal nozzle designs suggests a recipe for nozzle design:

1. Begin with minimum gauge wall layers, minimum air gap thickness, and a baseline nozzle

shape.

2. Optimize the shape of the nozzle inner wall for minimum mass with respect to a reliability

constraint on thrust.

3. Increase the air gap until the reliability constraint on temperature is met.

4. If the air gap reaches its maximum thickness, increase the thickness of the wall layers until the

reliability constraint on temperature is met.

Of course, the recipe is dependent on the design and material properties but it effectively captures

most of the “logic” of the reliability-based design optimizations presented in section 5.7.
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Chapter 6

Conclusions

This dissertation has focused on exploring and solving the problem of designing reliable engineering

systems. The question is often not so much how do we design a reliable system — engineers excel at

adding margin to a design — but how do we design a system that meets a specific set of reliability

requirements while maintaining or improving system performance. An overdesigned system may

be extremely safe but also may have decreased performance and an underdesigned system may be

hazardous to human life and livelihood. Design is about an appropriate balance between competing

constraints and requirements, and reliability is a key aspect of that balance.

However, as was shown in chapters 1 and 2, estimating the reliability of a complex engineering

system, which is necessary for its use in design, is expensive, even without performing a design

optimization. For this reason, reliability-based design optimization has tended to focus on academic

test problems and single-discipline applications, although there are exceptions [8, 5, 87]. This dis-

sertation has made a modest contribution to the field of reliability-based design optimization by

proposing a new Adaptive Kriging Inverse Reliability Analysis (AKIRA) algorithm for use in sys-

tem RBDO, and a new method for multifidelity sequential RBDO using anchored decomposition;

both are appropriate for complex systems. Both methods have been tested and demonstrated on

academic test problems as well as a near industry-strength coupled supersonic nozzle design problem

and have shown improvements over other commonly accepted methods used in RBDO.

In chapter 2 the concept of reliability was introduced and a survey of reliability analysis methods

was made. Methods were separated into random sampling methods, most probable point (MPP)

methods, response surface methods, and hybrid methods. Sampling methods, while accurate, can

be prohibitively expensive for complex engineering systems due to the need for many limit state

evaluations for the accurate estimate of a small probability of failure. However, they can be effectively

used with response surface methods where limit states are approximated with a surrogate model

and then cheaply sampled to obtain failure probability estimates. The kriging response surface

is particularly promising due to the presence of an empirical error estimate, the kriging variance,
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which can be used to guide response surface refinement. For this reason, the kriging response

surface method was selected for use with AKIRA. However, the primary weakness of response surface

methods is that the response surface may not accurately represent the limit state and can therefore

lead to an incorrect failure probability estimate. As a result, hybrid methods were introduced

which rely on the exact limit state function in regions where the response surface is deemed to be

inaccurate. Classical MPP methods were also introduced for reliability analysis; they have a strong

mathematical background and are an excellent choice for reliability analysis but are limited to linear

(or quadratic) limit state surfaces, typically with a single MPP. Their accuracy degrades with limit

state nonlinearities, especially in higher dimensions.

Chapter 2 also introduced the concept of the forward reliability analysis (reliability index ap-

proach) and the inverse reliability analysis (performance measure approach), the latter being more

robust for application in RBDO. For this reason, AKIRA uses the inverse reliability analysis. The

concept of multiple limit states was also addressed. In most engineering systems, reliability is de-

fined with respect to several limit states and the failure probability of the system is often a key

quantity of interest. For this reason, AKIRA also solves a system reliability analysis. Finally, design

sensitivities for the probability of failure and quantile function were presented, as well as a derivation

for design sensitivities when the technique of directional simulation is used for probability of failure

integration.

Chapter 3 proposed the Adaptive Kriging Inverse Reliability Analysis algorithm for use in RBDO.

The method builds independent kriging models of each limit state and adaptively refines them in

regions contributing the most to the system failure probability estimate. Although a variety of

methods could be used, the technique of directional simulation was chosen for failure probability

integration since as a byproduct it yields a set of samples exactly on the limit state surface, which can

be later used for limit state and design sensitivity approximation. Existing kriging-based reliability

analysis methods were also surveyed, nearly all of which have been used to solve the forward reliability

analysis problem. They differ primarily in their method of adaptive refinement for the kriging models.

A new heuristic for model refinement inspired by directional simulation was also proposed for use with

AKIRA and showed enhanced efficiency over EGRA, a commonly accepted kriging-based reliability

analysis algorithm. The calculation of design sensitivities using AKIRA was also presented, including

an adaptive cokriging method, which uses the refined limit state models from AKIRA to assist in the

approximation of limit state sensitivities. Finally AKIRA was demonstrated on several academic test

problems as well as a coupled supersonic nozzle problem in 14D. Comparisons with other reliability

analysis methods show AKIRA has either increased accuracy or efficiency when solving the inverse

reliability analysis problem. In addition, AKIRA solves the system inverse reliability analysis, which

is uncommon among reliability analysis algorithms.

In chapter 4, the field of reliability-based design optimization was introduced. The formulation

of the common minimum expectation RBDO problem was presented with both chance and quantile
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constraints. Traditional methods for accounting for uncertainties were also discussed, including

safety factors, partial safety factors, and basis values. Such methods do build margin into a design,

but are unable to directly control the reliability of a system, unless the safety factors, basis values

etc. are tailored for a specific design. In such situations, a reliability analysis or RBDO might as well

be used. RBDO methods were also surveyed and classified as double-loop, sequential, and unilevel

methods. Classical double-loop methods are usually the most expensive as they require a reliability

analysis for each function evaluation in an outer optimization loop. On the other hand sequential

methods separate the optimization and reliability analysis and solve a series of reliability analyses

and deterministic optimizations until convergence. As a result, they tend to be more efficient.

Finally unilevel methods decompose the reliability analysis into a set of equivalent conditions and

embed this directly in the optimization formulation; they have been shown to be very efficient.

Chapter 4 also reviewed trust region methods for optimization which form an integral part of the

proposed multifidelity sequential RBDO method. By relying on a corrected low-fidelity model during

the solution of a series of optimization subproblems, an optimum of the high-fidelity model can be

obtained. Trust region methods lend themselves well to multifidelity optimization as a cheaper

lower-fidelity model can be used for the majority of the optimization. Finally a new method for

sequential RBDO was proposed based upon the use of the anchored decomposition. The truncated

anchored decomposition approximation effectively separates the deterministic design variables and

the random parameters in the problem at an anchor point, thereby decoupling the reliability analysis

and optimization. When embedded in a trust region method, the method has provable convergence.

The algorithm was demonstrated on two academic test problems and shown to have comparable

performance with other sequential RBDO methods, as well as being more efficient than double-

loop methods. In addition, when the anchor point is chosen to be the MPP, the SORA method is

recovered. However, other choices of anchors such as the random parameter means may be beneficial

for coupled limit states in system reliability problems.

Finally chapter 5 introduced a coupled multidisciplinary supersonic nozzle design problem. The

problem considered aerodynamics, heat transfer, and structures and designed the geometry of the

complex nozzle system for minimum mass subject to a constraint on the system probability of

failure, pf ≤ 10−6. The physics of supersonic nozzles, the hierarchy of multifidelity models, and

the parameterization of the geometry and 40 random variables were discussed. A full optimization

problem with 13 quantities of interest, 96 design variables, and 40 random parameters was reduced

with the aid of Sobol’ sensitivity indices to a RBDO problem with 4 quantities of interest, 54

design variables, and 14 random parameters, thereby demonstrating an effective use of dimension

reduction. The solution of the nozzle RBDO problem for various model fidelities was compared

against designs using a standard practice deterministic approach for optimization consisting of basis

values and safety factors to build in margin. The results for the nozzle RBDO problems demonstrate
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the effectiveness of AKIRA and the multifidelity sequential RBDO algorithms on a realistic, high-

dimensional problem, while also motivating the importance of RBDO as compared to standard

deterministic design practices.

6.1 Contributions

Chapter 2 introduced the widely acknowledged benefits of performing the inverse reliability analysis

over the forward reliability analysis during RBDO, however little work had been done on solving

the inverse reliability analysis for the system reliability problem. The reason is likely because there

is no guaranteed unique solution of the inverse problem when multiple limit states are present.

As a result, many RBDO algorithms do not solve the system design problem, rather they solve

a design problem with individual reliability constraints for each limit state. However the solution

of the system design problem can lead to a design with better performance for equivalent system

reliability. As a result, solving the system design problem is desired in many cases. The Adaptive

Kriging Inverse Reliability Analysis (AKIRA) algorithm proposed in this dissertation addresses the

gap described above: an inverse reliability analysis is performed for the system.

AKIRA mitigates the challenges above by using a constrained least squares problem that ensures

a well-behaved solution to the inverse problem, even if it is not unique. The result can then be effec-

tively used in quantile-constrained RBDO. AKIRA also takes advantage of several other techniques.

As a kriging-based response surface approach to reliability analysis, it is efficient and demonstrates

comparable performance to other kriging-based reliability analysis methods. A new heuristic for

adaptive refinement of the kriging model for use in reliability analysis was also proposed and shown

to give either more accurate or more efficient (less function evaluations) estimates of failure prob-

abilities compared to EGRA, a well-accepted kriging-based reliability analysis method. Finally an

adaptive cokriging method for design sensitivity estimation was also proposed. The new method

enables efficient estimation of design sensitivities when limit state gradients are expensive to obtain,

and when the most probable point is not sufficiently representative of the limit state contributions

to the failure probability.

Chapter 2 also introduced a method for failure probability integration called directional sim-

ulation. Directional simulation appears to have not received as much notice as other integration

methods such as importance sampling or subset simulation, likely due to the difficulty of robustly

and cheaply performing the required linesearch for each simulated direction in the random space.

The use of directional simulation in this dissertation for reliability analysis is not new, however the

use of its results, namely a set of samples that lie exactly on the limit state surface(s) appears to

be novel. These samples are used as an approximation to the limit state surfaces and aid in the

calculation of design sensitivities during AKIRA. A new method for approximating the gradients of

failure probability as a Riemann sum using the directional simulation samples was also proposed.
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Finally the technique of directional simulation inspired the new adaptive kriging refinement heuristic

used in AKIRA.

Chapter 4 presents a new multifidelity sequential method for RBDO based on anchored decom-

position. The derivation of the sequential method is new and generalizes the idea of a limit state

approximation based on a single point. Many sequential RBDO methods consider the approximation

of the limit state at a single point, namely the MPP. Doing so requires a separate reliability analysis

for each limit state to find each limit state’s MPP. However, motivated by anchored decomposition,

a shared point of approximation can be used instead such as the mean, thereby avoiding the need for

multiple reliability analyses when there are multiple limit states. When the anchor (the point about

which the approximation is based) is chosen to be the MPP in the proposed method, the existing

Sequential Optimization and Reliability Assessment (SORA) method is recovered.

The proposed sequential RBDO method is further enhanced by using a trust region method to

ensure convergence. Another enhancement is the introduction of lower-fidelity models to decrease

overall RBDO cost, which leads to a multifidelity method. As a result, a high-fidelity reliability

analysis need only be performed once every outer iteration. The proposed method was demon-

strated on two academic test problems and shown to be more efficient than double-loop RBDO and

comparable to existing sequential RBDO methods. Finally, the method was tested, in combination

with AKIRA, on a coupled supersonic nozzle problem.

Finally, chapter 5 demonstrates the proposed algorithms in this dissertation on a coupled mul-

tidisciplinary supersonic nozzle design problem. The problem furnishes a fertile testbed for AKIRA

and the multifidelity sequential RBDO method and shows that high-fidelity, complex RBDO prob-

lems can be solved in a reasonable amount of time with appropriate algorithm choice. In addition,

the supersonic nozzle RBDO results are compared with standard practice deterministic designs and

are shown to more effectively address reliability requirements, for only an order of magnitude increase

in solution expense. Finally, the results obtained from the supersonic nozzle RBDO are informative

for nozzle designers considering reliability and illustrative of the multidisciplinary behavior of the

coupled nozzle system.

6.2 Future Work

The work presented in this dissertation is a stepping stone towards the application of reliability-

based design optimization for complex engineering systems such as those found in industry. Here

are a few thoughts regarding opportunities for improvement as well as future directions of research.
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6.2.1 Philosophical Considerations

The question of what the reliability target for a given design should be must be answered prior to

using RBDO. In this dissertation the question has largely been glossed over and reasonable char-

acteristic failure probabilities have been prescribed in optimization formulations. Nevertheless, the

determination of an appropriate reliability target for design warrants further serious investigation if

the application of RBDO is to be useful [38]. Closely related is the identification and characterization

of the uncertainties in a given design problem that give rise to uncertainty in a design’s performance

or safety. How do we account for the so-called “unknown unknowns” or even just the uncertainty

in the estimated parameters of a probability distribution? Initial work in this direction co-authored

by the author [36] has proposed a precision margin approach for RBDO which builds just enough

margin into a design to meet reliability targets with a user-specified degree of confidence while ac-

counting for parameter uncertainties. Distribution parameters aside, the choice of an uncertainty’s

chosen parameterization requires more investigation as well. Traditional methods use statistical

tests such as the Anderson-Darling test [30] to determine goodness-of-fit, however even innocent

changes to an uncertainty’s parameterization as a lognormal or normal random variable (both of

which might be statistically “good” fits) can have a significant impact on the optimal solution of a

RBDO problem [38, 83]. As a result properly characterizing the uncertainties is paramount to the

successful application of RBDO and requires further investigation.

The uncertainties present in a design problem also take a variety of forms — of course they can

be separated, at times ambiguously, into aleatory and epistemic uncertainties [76], but in a real

design problem they also often occur at different stages in design. It is well and good to account for

uncertainties in a design’s operating environment, material properties, and mathematical models,

but what about uncertainties in the design process itself and its various stages? Acar takes an

initial step in this direction by investigating the impact of flight tests on the design and reliability

of aircraft, in addition to accounting for standard uncertainties in the engineering design such as

material properties [1]. A more holistic view and use of RBDO is likely to yield better performing

and more reliable designs in practice.

6.2.2 Directional Simulation

This dissertation has relied heavily on the technique of directional simulation for probability of

failure integration, most notably during the AKIRA algorithm. Although directional simulation has

improved convergence compared to Monte Carlo, a convenient interpretation in the standard normal

space, and generates a set of samples exactly on the limit state surface, its use in this dissertation

could benefit from several improvements.

Further investigation of methods for solving the linesearch in directional simulation is required.

Fortunately in this dissertation, an exhaustive linesearch could be performed on a kriging surrogate

model that was cheap to evaluate, but even then efficiency improvements to the linesearch could have
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large benefits for the speed of the directional simulation procedure. Reliably finding multiple roots

during the linesearch is key for directional simulation to be competitive with methods such as Monte

Carlo when limit states are highly nonlinear. In this dissertation a pattern search was employed

for the line search with 200 points sampled along each direction. For applications with limit state

functions that are expensive to evaluate or to increase efficiency, more advanced linesearch techniques

can be used. For example, efficient global optimization [75] or other methods could enhance both

the efficiency and accuracy of directional simulation by finding multiple root locations with a small

number of limit state evaluations.

Further investigation for enhancing the convergence rate of directional simulation is also required.

Ditlevsen and Madsen suggest that the convergence of the directional simulation estimate can be

enhanced by adjusting the mean of the sampling distribution, however no general rule for doing so

currently exists [38]. In addition, directional importance sampling has been previously studied [20,

37, 88] and can be used to increase convergence rate. Further research in this area would be welcome.

Finally, deterministic point sets could be used for integration and could reduce the variance of the

directional simulation estimate [91, 92]. Methods for efficiently generating deterministic point sets

and/or incorporating them in a hybrid adaptive importance sampling framework could be beneficial.

6.2.3 AKIRA

The Adaptive Kriging Inverse Reliability Analysis (AKIRA) algorithm presented in this dissertation

has shown that system inverse reliability analysis problems can be solved for use in RBDO problems.

However there are a variety of opportunities for improvement of the algorithm. First and foremost

is speed — AKIRA requires additional computation time compared to other reliability analysis

methods due to the need to perform multiple probability of failure integrations on a kriging response

surface during the solution of the inverse reliability analysis problem. Improved failure probability

integration strategies can help alleviate some of the burden; the investigation of subset simulation is

particularly interesting due to its robust and efficient method for approximating small probabilities

of failure [13]. However, intelligent reuse of samples in areas where the kriging model has not

substantially changed between iterations may also lead to greatly increased performance.

AKIRA is also currently limited to solving the system reliability analysis problem. Its extension

for solving component reliability analysis problems is fairly straightforward and will be investigated in

the future. AKIRA has also chosen to model individual limit states with independent kriging models.

In fact, limit states may be correlated and approximating their correlation can lead to an improved

kriging model for system reliability analysis. For example the Efficient Kriging Surrogate modeling

Approach (EKSA) recently proposed a method for accounting for these correlations through the

SVD of the sample data matrix [72]. Similar ideas can be used within AKIRA.

Finally the investigation of different refinement strategies for the kriging models in AKIRA,
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beyond what was presented in this dissertation, is an important direction for future work. The pro-

posed heuristic inspired by directional simulation can be further improved by the use of a clustering

mechanism for simulated directions. Instead of selecting the sampled direction with the greatest

contribution to the failure probability estimate, select a direction that corresponds to a cluster of

directions which contribute the most to the probability of failure estimate. Such an improvement

can additionally help avoid excessive refinement in regions where the limit state model is fairly ac-

curate but also contributes a lot to the probability of failure. The further investigation of Stepwise

Uncertainty Reduction (SUR) strategies for adaptive refinement is also necessary, as these methods

promise an optimal refinement strategy although with increased expense [16, 26, 28].

6.2.4 Reliability-Based Design Optimization

The proposed multifidelity sequential method for RBDO has shown comparable or enhanced per-

formance to existing RBDO methods. However there are several interesting areas for further in-

vestigation that could yield additional benefits. The first is reformulating the RBDO problem in

the reliable design space [42] where the random space and deterministic design space are combined.

Doing so would require modifications to AKIRA which would then build kriging models over the

augmented reliability space instead of the random space. Such an augmented kriging model would

yield more easily obtained design sensitivities and also potentially make solving the RBDO problem

less expensive. As a result, a separate reliability analysis, which otherwise would require building

a kriging model from scratch for each new design iterate, would not be needed each iteration —

instead the existing kriging model could be refined each iteration. The challenge of working in

the augmented reliability space however are its increased dimension due to the combination of the

deterministic and random spaces.

The proposed sequential method for RBDO could also be further extended by considering mul-

tiple anchor points, either for when multiple MPPs are present in the random space, or simply for

increasing the number of information sources used to guide the solution of the deterministic sub-

problem. The selection of multiple anchor points for RBDO and their weights is currently an open

question. The anchor points could also be allowed to vary during the solution of the deterministic

subproblem as was the case in [14] where the MPP was replaced with an approximation dependent

on the design variables. Allowing the anchor point(s) to vary can possibly enhance convergence by

providing a better estimate of limit state behavior during the solution of the deterministic subprob-

lems. Finally, the bifidelity sequential RBDO algorithm could be extended to incorporated multiple

models with different fidelity, as well as consider different trust region implementations. Of partic-

ular interest are improved corrections for the lower-fidelity models. Multipoint kriging corrections

for example could further enhance convergence of the RBDO algorithm by incorporating the design

history of the optimization.
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6.2.5 Application to Realistic Design Problems

Finally, the benefits of RBDO and its applicability for design today require further illustration

through the demonstration of more RBDO methods on additional realistic design problems, thereby

further motivating its use in industrial applications. This dissertation showcases a coupled supersonic

nozzle application, however additional details could be added to make a more convincing case for

RBDO. A fully coupled nozzle analysis would be ideal; this dissertation only considers a one-way

coupled analysis, although this appears to be common practice in industry. In addition, the inclusion

of geometric uncertainties and additional characterization of uncertainties such the inlet temperature

distribution as a function of nozzle radius etc. are important improvements for an even more realistic

RBDO problem. In addition, a multipoint optimization problem considering different design points

in the flight envelope is a practical next step for realistic applications. The use of coupled adjoint

gradients would greatly enhance the capabilities of the optimization; however their investigation and

use is left for other dissertations.

The use and role of dimension reduction in the RBDO process has not been extensively inves-

tigated in this dissertation, however it is also an important aspect of applying RBDO to realistic

design problems. Further investigation of methods such as active subspaces [32], proper orthogonal

decomposition, etc. and their inclusion in the RBDO problem is a fertile area for future research.

If indeed a wide variety of physical problems have low-dimensional structure [105] as appears to be

the case in many instances [32], the opportunities for accelerating RBDO with dimension reduction

techniques are considerable.
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Appendix A

Applications

A.1 Short Column

Variations of the short column problem are commonly used in the RBDO literature to demonstrate

reliability analysis and RBDO methods [77, 111, 3, 11, 42, 83]. The problem concerns a short column

with rectangular cross-section subject to two bending moments M1 and M2 and an axial load P . In

the version considered here [11], the loading and the column’s yield strength Y are considered to be

independent normal random variables. In addition the breadth b and height h of the column’s cross-

section are considered to be independent normal random variables; thus y = [M1,M2, P, Y, b, h]>.

The deterministic design variables are the means of the geometric parameters; thus x = [µb, µh]>

with initial values of 500 mm each. Table A.1 describes the variables in the problem.

The normalized limit state (g(x, y) ≤ 0 corresponds to failure) which governs yielding in the

column is

g(x, y) = 1− 4M1

bh2Y
− 4M2

b2hY
−
(

P

bhY

)2

. (A.1)

Table A.1: Variables in the short column problem.

Name Variable Distribution Mean CoV

Moment 1 (kN-m) M1 Normal 250 0.3
Moment 2 (kN-m) M2 Normal 125 0.3
Axial load (kN) P Normal 2500 0.2

Yield strength (MPa) Y Normal 40 0.1
Breadth (mm) b Normal x1 0.1
Height (mm) h Normal x2 0.1
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Table A.2: Variables in the steel column problem.

Name Variable Distribution Mean Std. Dev.

Yield stress (MPa) Fs Lognormal 400 35
Dead weight load (kN) P1 Normal 500 50

Variable loads (kN) P2, P3 Gumbel 600 90
Flange breadth (mm) B Lognormal 200 3

Flange thickness (mm) D Lognormal 17.5 2
Profile height (mm) H Lognormal 100 5

Initial deflection (mm) F0 Normal 30 10
Elastic modulus (GPa) E Weibull 21 4.2

A.2 Steel Column

The steel column problem considers the yielding of a T-shaped steel column with geometric un-

certainties when subjected to several uncertain loads [77]. There are nine random variables y =

[Fs, P1, P2, P3, B,D,H, F0, E]> described in table A.2. The length of the column is fixed at 7.5 m.

This problem can pose difficulties for reliability analysis methods as the limit state is poorly behaved

when D is small and P1, P2, and P3 are large.

The limit state (g(y) ≤ 0 corresponds to failure) which governs yielding in the column is given

by

g(y) = 1− Fs − P
(

1

2BD
+

F0

BDH

Eb
Eb − P

)
, (A.2)

where P and the Euler buckling load Eb are given by

P = P1 + P2 + P3, (A.3a)

Eb =
π2EBDH2

2L2
. (A.3b)

A.3 Cantilever Beam

Figure A.1: Schematic for the proposed cantilever beam problem subject to a lateral and vertical
load [132, 126]. Elastic modulus E, yield strength Y , and horizontal and vertical loading H and V
are uncertain. L = 100 inches and w and t are deterministic design variables.

The cantilever beam problem is illustrated in Figure A.1 [132, 126]. Its four random variables y =

[Y,E,H, V ]> are summarized in Table A.3. The width w and thickness t of the beam’s rectangular
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Table A.3: Random parameters in the cantilever beam problem.

Name Variable Distribution Mean CoV

Yield strength Y Normal 40,000 0.05
Elastic modulus E Normal 2.9× 107 0.05
Horizontal load H Normal 500 0.2

Vertical load V Normal 1,000 0.1

cross-section are considered as deterministic design variables. Two limit states are considered: one

related to stress and one related to displacement. The stress S in the beam is given by

S(x, y) =
600

wt2
V +

600

w2t
H, (A.4)

whereas the displacement of the beam D is given by

D(x, y) =
4L3

Ewt

√(
V

t2

)2

+

(
H

w2

)2

. (A.5)

Failure occurs when the stress S exceeds the yield stress Y or the displacement D exceeds D0 =

2.2535 inches. The limit states are normalized such that a value less than zero corresponds to failure.

The normalized limit states gs(x, y) and gD(x, y) are given by

gS(x, y) = 1− S(x, y)

Y
, (A.6)

gD(x, y) = 1− D(x, y)

D0
. (A.7)

A.4 Convex Limit State

This convex limit state in the standard normal space was introduced by Borri and Speranzini [21]:

g(u) = 0.1(u1 − u2)2 − u1 + u2√
2

+ 2.5. (A.8)

A.5 Highly Nonlinear Limit State

The following limit state was introduced by Grandhi and Wang [65]:

g(y) = 2.5 + 0.00463(y1 + y2 − 20)2 − 0.2357(y1 − y2), (A.9)

where yi ∼ N (10, 32), i = 1 . . . 2 and are uncorrelated.

183



184



Appendix B

Kernels

B.1 Squared Exponential

A common choice for the covariance kernel in engineering applications due to its suitability for

representing smooth functions is the squared exponential [108] or radial basis function covariance

function

k(x, y) = σ2
fexp

(
−1

2
(x− y)>M(x− y)

)
, (B.1)

where M is a symmetric matrix and the hyperparameters are defined as θ = (M,σ2
f ). When M =

`−2I, the radial basis function is isotropic, that is it makes an assumption of isotropy on the charac-

teristic length scale ` variation in all dimensions of the input space. When M = diag
(
[`1 . . . `n]>

)−2
,

a different characteristic length scale `i is associated with each dimension and the radial basis func-

tion covariance matrix is anisotropic.

B.2 Matérn

The Matérn kernel is given by [108]:

k(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)
, (B.2)

where ν, ` > 0 are hyperparameters, r is the distance between the points whose covariance is being

estimated, and Kν is a modified Bessel function. ν is a smoothness parameter; when ν = 1.5 an

assumption of a once differentiable function is made. In this case

kν=1.5(r) =

(
1 +

√
3r

`

)
e−
√

3r
` . (B.3)
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B.3 Multivariate Matérn

The bivariate Matérn kernel is constructed from univariate Matérn kernels k(r | ν, `) [62, 29] as

k11(r) = σ2
1k(r | ν1, `1) (B.4a)

k22(r) = σ2
2k(r | ν2, `2) (B.4b)

k12(r) = ρ12σ1σ2k(r | ν12, `12), (B.4c)

where |ρ12| must satisfy the conditions stated in [62] of the form |ρ12| ≤ f(ν1, ν2, ν12, `1, `2, `12).

There are a total of 9 hyperparameters in the bivariate Matérn model, not including nugget effects.

The full bivariate Matérn model is

k(r) =

[
k11(r) k12(r)

k12(r) k22(r)

]
. (B.5)
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Appendix C

Optimization Theory

This appendix accompanies chapter 4 and reviews general concepts from optimization theory. The

necessary conditions for optimality are briefly reviewed as well as a practical discussion on termina-

tion criteria for algorithms. Then basic concepts for common gradient-based optimization algorithms

are introduced including augmented Lagrangian methods and SQP methods. Algorithms based on

the SQP method have been used in both the solution of AKIRA’s inverse reliability analysis problem

as well as the reliability-based design optimization problems presented in chapters 4 and 5. For a

broad overview of optimization theory including detailed derivations and algorithm spefications, the

reader is referred to any general text on optimization theory; see for example Nocedal and Wright

[93] or Conn, Gould, and Toint [31].

C.1 Optimality Conditions

Here the necessary conditions for optimality are stated for reference as they are used to assess

termination of optimization algorithms used in later chapters. We consider optimality conditions

for the inequality constrained optimization problem from (4.1) restated below:

minimize
x

f(x)

s.t. g(x) ≥ 0.
(4.1)
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The first order optimality conditions, also known as the Karush-Kuhn-Tucker (KKT) condi-

tions [93], are

∇xf(x∗) = ∇xg(x∗)>λ, (C.1a)

gi(x
∗) ≥ 0 for all i = 1 . . .m, (C.1b)

λi ≥ 0 for all i = 1 . . .m, (C.1c)

gi(x
∗)λi = 0 for all i = 1 . . .m, (C.1d)

where∇xg(x) is them×n Jacobian matrix of the constraints and λ is a vector of Lagrange multipliers.

The first condition in (C.1a) is known as stationarity and requires that the gradient of the Lagrangian

is zero at an optimum. (C.1b) states that the solution must be feasible at an optimum and (C.1c)

requires non-negativity of the Lagrange multipliers. Finally, (C.1d) is the complementary slackness

condition. A point that satisfies the conditions in (C.1) is known as a first-order KKT point.

Note that the first condition in (C.1a) shows the objective gradient can be written as a linear

combination of constraint gradients at an optimum. An equivalent condition is thus that the ob-

jective gradient be perpendicular to the null-space of the constraint gradients. This is succinctly

written using the reduced gradient Z>∇xf(x) where Z is a matrix whose columns form a basis for the

null-space of the active constraint gradients ∇xg(x). Thus the stationarity condition is equivalent

to requiring Z(x∗)>∇xf(x∗) = 0 at an optimum.

Note that the KKT conditions given in (C.1) are valid only when first-order perturbations are

sufficient for assessing optimality [31]. For application to nonlinear optimization they require a

constraint qualification; the two commonly used are the linear independence constraint qualification

(LICQ) and the weaker Mangasarian-Fromovitz constraint qualification (MFCQ) [93]. The LICQ

specifies that at a feasible point the gradients of the active inequality constraints should be linearly

independent which means the Jacobian matrix has full row rank. The MFCQ specifies that at a

feasible point a direction exists where all active constraint gradients are positive.

Unless the optimization problem is convex, second-order optimality conditions must be included

for nonlinear optimization problems to ensure optimality. Such a condition uses the Hessian of the

Lagrangian defined as

H(x, λ) = ∇2f(x)−
m∑
i=1

λi∇2gi(x). (C.2)

The second-order optimality condition is

p>H(x∗, λ∗)p ≥ 0 for all p such that ∇xf(x∗)>p = 0, (C.3)

which is equivalent to requiring the reduced Hessian of the Lagrangian Z(x∗)>H(x∗, λ∗)Z(x∗) to be

positive semidefinite [61].
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C.2 Termination Conditions

Practical termination conditions for an optimization should be robust and account for a variety of

situations including the precision τf in the user-provided objective and constraint functions. The

termination criteria stated here primarily come from [61].

A tolerance on the constraint violation should be specified to ensure feasibility:

‖g(x)‖ ≤ τc. (C.4)

Likewise a tolerance on the the optimality should be specified:

∥∥∇xf(x)−∇xg(x)>λ
∥∥ ≤ √τf , (C.5)

where the norm of the reduced gradient for active constraints g(x) should be less than the square

root of the function precision τf . In the case that no constraints are active, i.e. the optimum lies in

the interior of the feasible region, the optimality condition may be expressed as

‖∇xf‖
1 + |f | ≤

3
√
τf , (C.6)

where Gill et al recommend the relaxed cubed root instead [61]. The normalization of the objective

gradient avoids difficulties when the objective is poorly scaled. It is also beneficial to include a check

on the size of the objective gradient if the initial point of the optimization is close to the optimum:

‖∇xf‖ ≤ τf . (C.7)

C.2.1 Soft Convergence

So-called soft convergence termination criteria measure for diminishing returns in the optimization

progress. A standard cause of such issues are noisy or incorrect gradients or function evaluations.

A measure of the progress for the objective function is helpful.

fk−1 − fk
1 + |fk| < τf , (C.8)

as well as a measure of the progress in the design variables such as

‖xk−1 − xk‖
1 + ‖xk‖

<
√
τf . (C.9)

In certain cases requiring the soft convergence criteria to be met for several consecutive iterations

(2 or 3) prior to termination can help ensure soft convergence has been achieved [48].
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C.3 Augmented Lagrangian Methods

An augmented Lagrangian algorithm incorporates a problem’s constraints into the objective func-

tion to yield an unconstrained optimization problem while avoiding the ill-conditioning and lack of

differentiability issues that occur with penalty and barrier methods [61, 31]. In doing so, existing

efficient solvers for unconstrained optimization can be used to solve the constrained problem.

The most common augmented Lagrangian function LA is

LA(x, λ, ρ) ≡ f(x)− λ>g(x) +
ρ

2
g(x)>g(x), (C.10)

where g(x) is the vector of the active nonlinear constraints. λ is the vector of Lagrange multipliers

associated with each active constraint and ρ is a positive penalty parameter. For a sufficiently large

but finite value of ρ, a local unconstrained minimum x∗ is guaranteed to exist for LA(x, λ∗, ρ) where

λ∗ are the Lagrange multipliers at the optimum [61]. Since λ∗ and the required sufficiently large

value of ρ are a priori unknown, any augmented Lagrangian method must develop estimates of both.

Algorithm 7 outlines a simple augmented Lagrangian algorithm based on [61].

Algorithm 7: Basic augmented Lagrangian optimization algorithm

Data: initial guess x0, initial penalty parameter ρ0, initial multiplier estimate λ0, initial set

of active constraints g0, α ∈ (0, 1], β ∈ (1, 10+]

Result: x∗, f(x∗)

1 for k ← 0 to kmax do

2 if xk optimal then

3 return xk, f(xk);

4 xk+1 ← Minimize the augmented Lagrangian given (x, λk, ρk);

5 gk+1 ← Update the active set of inequality constraints;

6 λk+1 ← Update the Lagrange multipliers;

7 if
∥∥gk+1(x)

∥∥ ≥ α ∥∥gk(x)
∥∥ then // sufficient decrease condition

8 ρk+1 ← βρk;

9 else

10 ρk+1 ← ρk;

11 return xk+1,f(xk+1);

The Lagrange multipliers λk may be estimated using a variety of different methods; first-order

and second-order methods are covered in [61] however note that second-order convergence will require

a second-order estimate [61, 59]. The choice of α and β can affect convergence if the initial penalty

parameter ρ is non-optimal as they govern the rate at which ρ is adjusted. α = 0.9 and β = 10 seem

to be typical values.
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The solution of the subproblem minimizing the augmented Lagrangian LA can be obtained

using any standard nonlinear unconstrained minimization algorithm. In particular, if the Hessian

of the objective and constraints are available, efficient Newton-type methods can be used leading to

quadratic convergence close to the optimum.

C.4 Sequential Quadratic Programming

In sequential quadratic programming (SQP) methods a series of subproblems consisting of a quadratic

approximation to the Lagrangian subject to linearized constraints are solved. SQP methods may

also be viewed as solving the KKT system via application of Newton’s method [93]. They are gen-

erally considered to be one of the most efficient optimization methods for nonlinearly constrained

optimization problems [93]. For the inequality-constrained optimization problem specified in (4.1)

with objective f(x) and constraints g(x) each subproblem is typically written as [61, 93]:

minimize
p

∇xf(xk)>p+
1

2
p>H(xk, λk)p

s.t. ∇xg(xk)>p+ g(xk) ≥ 0,

(C.11)

where xk is the current iterate, λk are the associated Lagrange multipliers, and H(xk, λk) is the

Hessian of the Lagrangian which is often replaced with a quasi-Newton approximation of the Hessian

such as a BFGS update. A variety of methods exist for solving the quadratic subproblem in (C.11);

for example the null-space approach is popular in many implementations. Additional details can

be found in [93] or [61]. Algorithm 8 gives the basic form of an SQP algorithm. A practical

implementation additionally requires a strategy for dealing with non-positive definite H(xk, λk) as

well as a choice of merit function to ensure progress towards an optimal point. These details may

be reviewed in any standard optimization text, see for example [61, 93, 31].

Algorithm 8: Basic sequential quadratic programming algorithm

Data: initial guess x0, initial multiplier estimate λ0, initial set of active constraints g0

Result: x∗, f(x∗)

1 for k ← 0 to kmax do

2 Evaluate objective and constraint values, gradients, and Hessian at xk;

3 if xk optimal then

4 return xk, f(xk);

5 pk, λk+1 ← Solve the quadratic programming subproblem;

6 xk+1 ← xk + pk;

7 gk+1 ← Update the active set of inequality constraints;

8 return xk+1,f(xk+1);
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Appendix D

Nozzle Details

This appendix describes various details related to the implementation and parameterization of the

nozzle model used in the nozzle design problem from chapter 5.

D.1 Basis-Splines

The inner wall of the nozzle is parameterized using a 3rd degree basis spline (B-spline). Although

determination of a B-spline’s shape requires the numerical solution of a recursive algorithm, B-

splines have several nice properties including 1) they are a generalization of all splines, 2) in general,

overfitting is avoided, and 3) any segment lies in the convex hull of neighboring control points [102].

A B-spline s(t) is defined as

s(t) =

N∑
i

ciN
n
i (t), (D.1)

where there are N control points ci and N basis functions Ni of order n. The basis functions depend

on the additional definition of a knots vector and can be determined using de Boor’s algorithm

[102]. In this work, the knots vector is assumed to be fixed and equally spaced. The nozzle’s shape

is changed by altering the coefficients ci of the B-spline.

D.2 Material Properties

Material properties are specified using the local coordinate system in figure D.1. An incomplete set of

material properties was gathered from a variety of experimental data sources. Missing macroscopic

properties are either determined through fundamental physical analysis of the material’s structure or

are approximated by values for similar materials. Table D.1 provides the properties for the ceramic

matrix composite (CMC) material, table D.2 for the graphite/bismaleimide (GR-BMI) material,
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Figure D.1: Local coordinate system for specification of material properties in shell materials.

Table D.1: Isotropic material properties for the thermal layer’s ceramic matrix composite.

Property symbol Units Value Distribution

Density ρ kg
m3 2410 lnN (7.7803, 0.01822)

Elastic modulus E GPa 67.1 lnN (4.2047, 0.05512)
Poisson ratio ν 0.33 U(0.23, 0.43)

Thermal conductivity k W
m-K 1.41 U(1.37, 1.45)

Thermal expansion coefficient α K−1 × 10−6 0.24 U(0.228, 0.252)

Max service temperature Tmax K 973 U(963, 983)
Failure strain* εf % 0.07 lnN (−2.6694, 0.14212)

table D.3 for the titanium honeycomb (TI-HC) material, and table D.4 for the air gap. Lastly,

D.5 gives the distribution for the assumed yield stress of the composite panel material used for the

baffles.

D.3 Design Variable Bounds

Table D.6 records the nominal values and bounds of all necessary geometric parameters.
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Table D.2: Laminate material properties for the load layer’s graphite/bismaleimide composite layers.

Property Symbol Units Value Distribution

Density ρ kg
m3 1568 U(1563, 1573)

Elastic moduli E1 = E2 GPa 60 U(57, 63)
In-plane shear modulus G12 GPa 23.31 U(22.6, 24.0)

Poisson ratios ν12 = ν21 0.344 U(0.334, 0.354)
Mutual inf. coef. (first kind) µ1,12 = µ2,12 0.0 U(−0.1, 0.1)

Mutual inf. coef. (second kind) µ12,1 = µ12,2 0.0 U(−0.1, 0.1)

Thermal conductivity k1 = k2
W

m-K 3.377 U(3.208, 3.546)

Thermal conductivity k3
W

m-K 3.414 U(3.243, 3.585)

Thermal expansion coef α1 = α2 K−1 × 10−6 1.200 U(1.16, 1.24)

Thermal expansion coef α12 K−1 × 10−6 0.0 U(−0.04, 0.04)

Max service temperature Tmax K 505 U(500, 510)
Failure strain (tension)* εf,1 = εf,2 % 0.75 U(0.675, 0.825)

Failure strain (compression)* εf,1 = εf,2 % -0.52 U(−0.572,−0.494)
Failure strain (shear)* γf % 0.17 U(0.153, 0.187)

Table D.3: Isotropic material properties for the load layer’s titanium honeycomb core.

Property Symbol Units Value Distribution

Density ρ kg
m3 179.57 U(177.77, 181.37)

Elastic modulus E GPa 1.90 lnN (0.6441, 0.07792)
Poisson ratio ν 0.178 U(0.160, 0.196)

Thermal conductivity k W
m-K 0.708 U(0.680, 0.736)

Thermal expansion coefficient α K−1 × 10−6 2.97 U(2.88, 3.06)

Max service temperature Tmax K 755 U(745, 765)
Yield stress σY MPa 12.9 lnN (2.5500, 0.12052)

Table D.4: Properties of air in air gap between thermal and load layers.

Property Symbol Units Value Distribution

Density ρ kg
m3 0 N/A

Thermal conductivity k W
m-K 0.0425 U(0.0320, 0.0530)

Table D.5: Properties of panel structure used in baffles.

Property Symbol Units Value Distribution

Yield strength σY MPa 324 lnN (5.7736, 0.11962)
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Table D.6: Bounds for nozzle design variables

Parameter Units Value Lower Bound Upper Bound

Wall B-spline coefs m varies min(-10%,0) +10%
All layer thickness locations (non-dim) 0,0.5,1 0 1

Thermal layer thickness m 0.03 0.01 0.05
Air gap thickness m 0.005 0.003 0.01

Inside load layer thickness m 0.002 0.0005 0.006
Middle load layer thickness m 0.013 0.0064 0.0159
Outside load layer thickness m 0.002 0.0005 0.006

Number of stringers 4 2 12+
Stringer thickness locations (non-dim) 0,0.5,1 0 1

Stringer thickness m 0.01 0.002 0.01
Stringer height m N/A N/A N/A

Number of baffles 6 2 6+
Baffle location (non-dim) 0,0.2,0.4,0.6,0.8 0 1

Baffle thickness m 0.01 0.0074 0.0359
Baffle height m N/A N/A N/A
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Appendix E

Sobol’ Indices

Dimension reduction in a problem can be motivated by the outcome of a global sensitivity analysis,

for example by fixing input variables that do not contribute to variation in a function’s output. Sobol’

sensitivity indices provide a method for variance-based global sensitivity analysis of a function and

have a close relationship with Analysis of Variance (ANOVA) techniques [12]. In a variance-based

sensitivity analysis the effect of a function’s input variables x = [x1 . . . xn]> on the variation of the

function’s output f(x) is analyzed. The effects of input variables xi are characterized by several

types. Main (or first order) effects characterize the impact of varying xi by itself on variation in

f(x). Higher order effects characterize the impact of varying groups of xi on variation in f(x). Total

order effects characterize the total impact of varying xi either by itself or in combination with other

xj on variation in f(x). As a result, total effects for each variable xi are the quantity of interest

when motivating dimension reduction. When a variable’s total effect is zero, it effectively does not

contribute to variation of f(x) and it can be fixed at a nominal value without loss in accuracy.

Sobol’ indices can be motivated by considering the decomposition of the function f(x) for x

defined on the unit cube in Rn, i.e. xi ∈ [0, 1] for all elements xi of x. f(x) can be decomposed as

[12]:

f(x) = f(x1, . . . , xn) = f0 +

n∑
i=1

fi(xi) +

n∑
1≤i≤j

fij(xi, xj) + . . .+ f12...n(x1, . . . , xn). (4.37)

The decomposition in equation 4.37 is the same as the well-studied ANOVA decomposition from

design of experiments literature and is also referred to as a Hoeffding decomposition [114]. It is valid

if f0 is constant and the integral of each term over its variables is zero [12]:∫ 1

0

fi1,...is(xi1 , . . . , xis)dxk = 0 for k = i1, . . . , is. (E.1)
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Now, let us consider the total variance D of the function f(x), defined as

D =

∫
f(x)2dx− f2

0 . (E.2)

The relationship between the total variance D and the ANOVA decomposition from equation 4.37

is made clear by squaring both sides of equation 4.37 and integrating1 over the unit cube [123]. The

total variance D has the same decomposition

D =

n∑
i=1

Di +

n∑
1≤i≤j

Dij + . . .+D12...n, (E.3)

where Di1...is is given by

Di1...is =

∫
f2
i1,...,isdxi1 . . . dxis . (E.4)

The Sobol indices Si1...is where s is called the order of the index are defined as

Si1...is ≡
Di1...is

D
. (E.5)

From the definition in equation E.5 it is clear that the Sobol’ indices represent the fraction of the

total variance contributed by the term Di1...is . Thus variables or combinations of variables with

larger indices Si1...is are more important. Examination of the Sobol’ indices shows that 1) they are

nonnegative since they are the ratio of two variances and 2) they sum to 1.

Several methods for the calculation of Sobol’ indices can be used. Clearly, simple Monte Carlo

can be used to estimate the integrals defining Di1...is . Archer et al proposed a more efficient Monte

Carlo-based method for estimation of first order, higher order, and total order Sobol’ indices using a

resampling approach [12]. They also discuss a bootstrap approach for estimating confidence intervals

on the obtained indices. Sobol’ also discusses similar Monte Carlo-based methods for estimation of

Sobol’ indices [123]. Saltelli et al provide a general review of best practices for estimating first and

total order indices using sampling methods [114]. Sudret introduced a method for calculation of

Sobol’ indices as an analytic postprocessing step once a polynomial chaos expansion (see section

2.4.1) of the function f(x) has been constructed [125]. The method, whose cost is equivalent to that

of constructing the polynomial chaos expansion, has been shown to be cheaper than Monte Carlo

sampling methods.

1Doing so requires the assumption that f(x) is square integrable.
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