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Abstract

This dissertation presents approaches for surrogate based optimization of supersonic

vehicles analyzed with high fidelity flow simulations. It integrates several develop-

ments in surrogate modeling to enable a robust regression procedure in the presence of

sparse data and inaccurate gradients. A series of hyperparameter constraints are de-

veloped which encourage the learning process to generate a physically representative

fit of the data. It identifies the existence of subspaces based on linear combinations

of inputs called “active subspaces” that reasonably model the behavior of objec-

tives within aerospace design problems such as lift coefficient, drag coefficient and

an equivalent area functional. Coherent physical features were found across several

design problems for both two and three dimensional geometries. This dissertation

further proposes an approach for adaptive refinement by conditioning the traditional

expected improvement sampling criterion to avoid exploration of the design bounds.

To begin work on applying active subspaces to optimization, inverse maps were devel-

oped to enable the linking of separate active subspaces for objectives and constraints,

enabling surrogate based optimization in high dimension. Several design problems

are explored, and it is shown that surrogate based optimization in active subspaces

could enable the optimization of problems otherwise intractable via gradient based

optimization alone.
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Nomenclature

Aerodynamic quantities of interest

CD Drag coefficient

CL Lift coefficient

∆Ae Equivalent area functional

Design spaces

RD Set of real numbers of dimension D

lb, ub Lower and upper bounds

x Full-space design vector

y Active subspace design vector

X Space of x

Y Space of y

f(·) Scalar function in full space

g(·) Scalar function in active subspace

∇(·) Gradient of scalar function

Active subspace formulation

C Average outerproduct of the gradient with itself

E [·] Expected value of a random quantity

W Column matrix of eigenvectors

Λ Diagonal matrix of eigenvalues

U Active subspace basis, column matrix

V Inactive subspace basis
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m Design full-space dimension size

n Active subspace dimension size

Surrogate modeling

Cov [·, ·] Covariance between two random quantities

R Response surface estimator

N Normal distribution

µ Mean

[σ] Standard deviation

k(·, ·) covariance function

s Estimated variance

θ Hyperparameter

≈ Approximation

∼ Less accurate Approximation

M Number of training samples

N Number of predicted samples

Subscript

i, j, p, q Variable number

∂ Gradient model

ε Noise model

Superscript

∗ Estimated variable

Design Vector Subscripting

x = xj, j = {1, ..., N}

Design Matrix Subscripting

X = xi = xi,j, i = {1, ..., N}, j = {1, ...,M}
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Chapter 1

Introduction

Optimization is a fundamental tool in aircraft design. It drives improvements in

performance metrics by iteratively changing design parameters, allowing algorithms

to automatically find a favorable design. In the context of engineering, tools like

these identify non-intuitive results during the early stages of design. Traditionally

in the “preliminary” design stage, broad stroke choices are made using handbook

correlations and analytical relationships. High fidelity analysis was not appropriate

here because it was slow and expensive by comparison. But when a truly unique

configuration is needed to solve a real world problem, high fidelity simulations almost

become a requirement.

This dissertation is concerned with enabling high fidelity design optimization in

the preliminary design phase. Such an application is possible today because simula-

tion tools have matured in efficiency both in terms of designer time and computer

time. The time required of a designer to move a napkin sketch to computer mod-

eled geometry and then to discretized fluid ready for simulation is considerably short,

thanks to interfaces that help one express more design information with fewer mouse

clicks. The time required to run a simulation on modern clusters is also considerably

short, and it is now reasonable to simultaneously run multiple multi-million cell fluid

simulations.

But resources are still limited, and pressure grows stronger to discover new designs

faster, which drives a need to remain efficient. Furthermore, in the conceptual design

1



2 CHAPTER 1. INTRODUCTION

stage it is important to explore the global space of designs, lest one misses an island of

significantly better performance. This is why the community is investigating methods

for efficient global design optimization.

1.1 Motivation

For five years, NASA has sponsored an advanced concept study for commercial super-

sonic transports entering service in the 2018-2020 period. A cornerstone objective for

the project was to validate integrated airframe and propulsion technologies, as well

as validate design methodologies to realize a supersonic vehicle capable of meeting

the “N+2” environmental and performance goals [1].

The motivating problem of this thesis is the shape design of the N+2 Supersonic

Passenger Jet. The N+2 goals specify it is to be capable of flying over land at Mach

1.6-1.8, with a range of at least 4000 nmi and a capacity of approximately 35-70

passengers. The loudness target is a perceived loudness level of 85 PLdB, which is

slightly quieter than a power lawnmower [2]. The cruise emissions target is lower than

10 grams of nitrous oxides per kilogram of fuel burned, and the fuel efficiency target

is more than 12 passenger-kilometers per kilogram of fuel burned (20 passenger-miles

per gallon) [1].

These criteria have been built out of a concerted effort by the community to

restore civil supersonic transport capability since the retirement of Concorde. Before

its final flight in 2003, this vehicle could carry between 92 and 120 passengers at

twice the speed of sound from London to the Caribbean. Only 14 were sold, short

of a goal of at least 100 [3]. Two major reasons hampered its widespread sale. First

was its expensive level of fuel consumption at 8 pax-km/kg-fuel (15 pax-MPG). For

comparison the Boeing 737 can fly at 45 pax-km/kg-fuel. Perhaps most importantly

however was Concorde’s very loud sonic boom, which led governments to ban it from

flying over land. Even while cruising at 50,000 feet, its perceived loudness on the

ground of 120 PLdB was comparable to listening to a jackhammer one meter away,

which was unacceptable for routine flights over populated areas.
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To advance the design of low-boom supersonic passenger jet technology, Stan-

ford University collaborated with the Lockheed Martin Corporation as part of the

N+2 Supersonics Project. Stanford University contributed to this effort by develop-

ing an aerodynamic optimization framework capable of identifying aircraft designs

that demonstrate increased fuel efficiency by reducing drag and reduced sonic boom

loudness using techniques for optimal shape design. The work presented in this dis-

sertation has grown within the supersonics project to demonstrate a real application

for new optimization methods.

1.2 Low-Boom Design

As an aircraft flies supersonically, it sheds a system of shock waves that generate

a signature of compressed and rarefied pressure. As depicted by Figure 1.1, these

shocks propagate through the atmosphere, and under various processes will coalesce

and stretch as they travel to towards the ground. If this behavior is unaccounted for

in design, when the pressure signature reaches the ground it will have an N-shape

wave, with two very strong shocks. These disturbances travel along cones character-

istic to the flight Mach number, which reduces the spatial attenuation of noise. For

example in a constant medium the signature would attenuate in amplitude only as

a function of the square root of the distance from the vehicle. This is much slower

compared to spherical attenuation which would occur subsonically, a function of the

cubic root of distance. Noise propagation through a layered atmosphere is consider-

ably more complex, as temperature and density changes contribute to attenuation.

However the combination of coalescing shocks and reduced spatial attenuation mean

that supersonic pressure disturbances can still be quite strong by the time they reach

the ground.

Boom reduction literature has grown with a rich history of contributions starting

in mid-1900. The genesis of sonic boom design is accredited to the collective works of

Jones [4], McLean [5], Seebass [6], and George [7], who extended linearized supersonic

theory of Whitham [8] and Hayes [9] to predict pressure signatures in the nearfield

based on equivalent bodies of revolution, and then apply non-linear shock steepening
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Figure 1.1: Schematic of CFD-based Supersonic Boom Propagation Simulations

methods to estimate the evolution of the signatures as they reach the ground. For a

time, it was thought that the N-wave was an inevitable result of supersonic flight, but

an important realization by McLean identified that in a stratified atmosphere with

isothermal regions it is possible to find signatures that propagate slowly enough such

that they only evolve partially before reaching the ground (noted by the midfield

region shown in Figure 1.1). This enabled many early efforts to propose nearfield

signatures optimized to reduce boom noise on the ground [7, 10, 11].

Propagating pressure signatures is an important component of sonic boom analysis

and has been extensively studied. Most modern approaches build from an algorithm

originally proposed by Thomas [12]. Relevant implementations today include PC-

BOOM [13], and NFBOOM [14], among others [13]. In general this propagation

procedure is executed for multiple azimuthal angles, and is used to characterize a full

“boom carpet” on the ground. This carpet is typically not evaluated past 60 degrees

from the symmetry plane because non-linear atmospheric effects actually refract the

signature upward into space.
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Quantifying boom loudness is an on going area of research, though the community

has begun settling on a measure of “perceived loudness in decibels”, or PLdB, as with

for example the work by Morgenstern [15], Wintzer [16], Haas [17] and others [1, 18,

19, 20, 21]. Several flavors of percieved loudness exist [14, 22, 23, 24]. In general it

is measured by extracting a pressure signature, processing it with Fourier analysis to

find its power spectrum, and mapping this through a regularization strategy that is

shown to correlate with the subjective human perception of loudness [25].

For applying supersonic boom theory to high-fidelity design, the community in

general is currently separating the problem into two sub-problems. The first identifies

nearfield pressure signatures that correspond to favorable perceived loudness [15,

26, 27], and the second identifies aircraft geometries that demonstrate a reasonable

match to this signature [26, 28]. This decoupling allows the use of gradient-free

optimization techniques on the propagation problem, which can identify optima even

in the presence of noisy design spaces for example identified by Chung [29], while also

allowing efficient use of high-fidelity flow simulation in the nearfield.

This dissertation will operate primarily in the nearfield, and use inverse shape

design on an azimuthal series of target equivalent area distributions. An equivalent

area distribution can represent the aircraft’s pressure signature as a body of revolution

that would generate the same signature, in a one-to-one and on-to mapping under

linearized supersonic theory at a given azimuthal location[6]. Applying the equivalent

area formulation integrates the pressure signature through an Abel transformation,

and has the favorable effect of smoothing out the design space. The application of

equivalent area is accordingly fundamental to the design approach executed in this

dissertation.

The shape of the aircraft is changed to drive its equivalent area distribution to

match the target, defined by the baseline design in this work. Flow analyses are

evaluated all the way to a near-field location, typically between 2 and 3 body lengths

beneath the aircraft, where the pressure signature is extracted. It is now common

to not only apply Computational Fluid Dynamics (CFD) simulations to predict the

nearfield equivalent area, but to also apply adjoint methods to efficiently calculate

gradients needed for optimization algorithms. This has been demonstrated by the



6 CHAPTER 1. INTRODUCTION

community for various design problems in supersonics [30, 31, 32, 33].

Many efforts have been built around these various simulation approaches to accom-

plish mission level design of supersonic vehicles especially by Kroo et al. [16, 34, 26].

The application of the approaches presented in this dissertation are within the con-

text of aerodynamic design, and applications to mission level design and are left as an

area of future work. For additional context of the background of supersonic design,

many reviews of the literature are available [1, 35, 36].

1.3 Optimization Approaches

In the field of optimal shape design, the goal is to iteratively change an aerody-

namic shape in order to improve the performance of an aircraft. In realistic three-

dimensional design problems, it is typical for shape optimizations to require hundreds

of design variables [31, 37]. The core impetus for these large dimension spaces is that

one cannot know a-priori which variables are needed to most efficiently optimize the

design. Thus parameterizations are constructed with many variables in order to finely

control the shape of the vehicle. However, this increases the cost required to find an

optimum, and increases the possibility that multi-modality appears in complex design

problems.

Today’s optimization techniques manage this “curse of dimensionality” in differ-

ent ways. Local optimizers such as gradient-based optimization techniques efficiently

find local minima when paired with adjoint-based sensitivity analyses, but are not

guaranteed to return a global minimum [38]. Global optimizers including Genetic Al-

gorithms (GAs) and Covariance Matrix Adaptation (CMA) can identify local basins

that may contain the global minimum, but require large numbers of function evalu-

ations, and are intractable in high-dimensional design spaces [39]. Surrogate-Based

Optimization (SBO) approaches seek to strike a balance between global and local

optimizers by building an inexpensive response surface approximation. The commu-

nity has been especially interested in these methods recently because they promise

to be an efficient global optimization approach, useful for high-fidelity preliminary

design [40, 41, 42].
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To address the high computational cost of the CFD simulations and to enable

global design space optimization, this dissertation presents surrogate modeling with

gradient-enhanced Gaussian Process Regression (GPR), adapted for high dimensional

problems using the Active Subspace Method (ASM). Gradient information available

from an adjoint solution is used to increase the accuracy of the surrogate at low

computational cost.

Alternatively to global optimization, there are many approaches built on Gradient

Based Optimization (GBO) to solve for local minima. Compared to SBO, GBO can

require fewer function evaluations in higher dimensional design spaces at the cost

of performing local optimization. As a baseline method, this dissertation applies a

sequential quadratic programming (SLSQP) optimizer built into the Scientific Python

(scipy) toolbox [38, 43, 44]. At every iteration, this code chooses a search direction

based on the constrained optimization of a second-order least-squares response surface

(the quadratic program). It then performs a line search in this direction to find a point

that satisfies first and second order constrained optimality conditions. At each major

iteration the response surface is updated with the BFGS update rule. Convergence is

declared when improvement of the objective, or norms of the gradients and Hessian

fall below a tolerance [38, 44].

The optimization methods in this dissertation rely on the calculation of sensitiv-

ities of the objective and constraints in the design space. Adjoint formulations and

finite differencing are investigated as part of the goal of examining their effect on

optimization efficiency. Finite differencing is generally associated with high compu-

tational costs. If all objectives are solved in a single flow solution, the sensitivity

of n objectives to m design variable requires the solution of m additional mesh per-

turbations and flow solutions for a first order approximation. The finite differencing

approach is commonly used as a reference for gradient accuracy in the absence of

discrete adjoint or complex step methods. It is a more expensive approach but nu-

merically similar to the discrete adjoint. An important parameter to be chosen for

finite differencing is the order of the step size.

In comparison, adjoints are efficient and accurate, but build on discretization ap-

proximations. Two formulations for adjoints currently exist. Both reformulate the
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direct solution to solve for the sensitivity of functions of the flow to an input such as

geometric variations. The “discrete” adjoint is built completely on top of the direct

discretized solution. This results in a numerical model of the sensitivity in the dis-

cretized flow solution. The“continuous” adjoint is built from the original governing

partial differential equations (PDE). This results in a numerical model of the sensi-

tivity of the physical flow. While it still depends on the direct solution, the result of

a continuous adjoint is expected to be more physically exact than the discrete adjoint

because it relates to the actual solution and gradients of the continuous PDE[45].

In the case of an infinitely refined mesh, the continuous and discrete adjoints will

yield the same solution and gradient information. However, most design problems

will only allow a practically-refined mesh. In this case, the discrete adjoint will be a

better estimate for the sensitivity in the numerical flow solution, and the continuous

adjoint will be a better estimate for the sensitivity in the physical flow [46]. It will be

shown through this work the inaccuracy expected in continuous adjoints is sufficient

to interfere with the construction of surrogate models, but that it can managed within

the surrogate formulation so as to mitigate interference.

1.4 Surrogate Modeling

Instead of using the output of CFD-based function values and adjoint gradients di-

rectly as an input to a gradient based optimizer, it is possible to use the predictions

and their gradients with respect to user-specified design parameters to create inex-

pensive representations of the behavior, known as surrogates models. These surrogate

models can be adaptively improved to guide optimization efforts in a way that mini-

mizes the overall computational cost required to complete an optimization run.

A large body of work has been built around surrogate modeling techniques, espe-

cially using a stochastic modeling technique known as Kriging [47, 48] and its gradient

enhanced relative known as Co-Kriging [29, 41]. GPR is a superset of Kriging, and is

formulated by conditioning a probability distribution over random functions. In gen-

eral both GPR and Kriging result in the same mathematical fitting models [48, 49].
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However, GPR is built within the context of machine learning, which allows more flex-

ibility when dealing with complex design spaces [50]. Additional background for these

approaches and further review of the surrogate modeling literature will be provided

in Chapter 3.

To generate an initial response surface, a set of designs are sampled using a Design

of Experiment (DOE) technique such as Latin Hypercube Sampling. Because the

locations of these points are not dependent on each other, they can be evaluated in

parallel, dramatically reducing wall-clock time if the resources are available. After this

initial sample, additional design points can be chosen using Infill Sampling Criteria

(ISC). It is common to take advantage of the uncertainty information available from

stochastic response surface models like GPR to efficiently add points to improve the

accuracy of the model near regions of optimal design [51].

An equally large body of work has been built around applying surrogate models to

Surrogate Based Optimization (SBO). Jones and Forrester each provide a thorough

summary of different infill sampling criterion [51, 52]. Several studies describe its

application to aircraft design problems [42, 19, 16, 32]. In this work, the use of ISCs

was explored to further improve the SBO process using a hybrid infill sampling criteria

with expected improvement and estimated optimum [40].

A key assumption in gradient-enhanced surrogate modeling important to the cur-

rent work is that the correlation of all input information can be modeled by a covari-

ance function [53]. Typically when performing gradient enhanced surrogate modeling

with Kriging or GPR, an exact correlation model is used to relate the function and

its gradients [41]. As identified by Dwight [54], violations of this model have adverse

effects on the quality of the fit. Decorrelation of objectives and gradients can affect

gradient based optimization as well. However, many modern methods use approxi-

mate Hessians with an under-fitting surrogate model such as a quadratic polynomial,

which expresses a weak assumption of the behavior of the data in small regions. Along

with various relaxation techniques, this makes GBO more robust, but not insensitive,

to gradient errors.

A key problem that will identified, explored and addressed in this dissertation is

the quality degradation of optimization methods that occurs when using function and
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gradient data that are decorrelated because they possess varying levels of exactness.

In the case of a practically refined mesh, the sensitivity from the continuous adjoint

will not be well correlated to the direct flow solution because it is based on the

physical, not the numerical flow solution. Moreover, surface formulations for the

computation of the gradients can greatly reduce the computational cost (by avoiding

the need for perturbing the volume mesh) but can also introduce slight errors in finite-

size meshes. This factor will negatively effect the performance of a response surface

and can hamper the convergence of SBO and GBO optimizations without methods

to manage gradient inaccuracies.

1.5 Active Subspaces

Surrogate modeling techniques such as Gaussian Process Regression are useful for

SBO, because they make few assumptions about the trends of the objective’s response

surface. However, training these surrogate models require additional overhead and

complexity when working with even modest numbers of design variables, to the point

that they struggle to be predictive for complex design problems.

The solution proposed in this dissertation works around these dimensionality is-

sues by finding a low-dimension subspace that captures the global trends in the objec-

tive function using the Active Subspace Method (ASM) [55]. The approach learns the

linear subspace that best describes the average response of the objective to perturba-

tions of the input using an eigenvalue decomposition of the objective’s gradients. The

input vectors are projected onto this subspace, and the outputs can be mapped in

these new coordinates. These coordinates are referred to as the “active coordinates”.

This approach bares well on design problems where aircraft shapes are described

by high-dimensional geometric parameterizations, but the majority of the variability

in the objective functions resides in a low-dimensional subspace of the parameters.

The ASM discovers and exploits this subspace for design optimization and surrogate

modeling.

The approach is contrasted to Principal Component Analysis (PCA), also known

as Proper Orthogonal Decomposition (POD) [56]. PCA is typically used to either
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reduce the dimension of the output space (for example the objectives of a multidi-

mensional optimization), or the dimension of an input space that has been conditioned

by some process (for example on the optimized samples on a pareto-front) [57]. The

ASM is different in that it reduces the input space with a non-conditioned evenly-

spread set of training data using only the model’s gradients.

By defining useful inverse-maps, multiple subspaces can be used for different ob-

jectives, such as lift and drag coefficients for a constrained optimization problem.

This takes advantage of the case that the input dimension reduction is intimately

tied to the chosen quantity of interest. The function can be visualized if the reduced

space is of dimension one or two. If the quantity of interest varies monotonically

along the reduced coordinate, the trend will be apparent in plots. In the presence of

such a trend, the optimization becomes much simpler: find the point in this active

subspace that minimizes the quantity of interest. Surrogates can be constructed, for

example using Gaussian process regression, if one is willing to accept additional in-

accuracies associated with collapsing dimensions. It will be shown that in aerospace

problems that these additional inaccuracies are generally small enough to admit a

useful surrogate that can accelerate optimization.

1.6 Contributions

This section provides a high-level summary of the primary contributions of this dis-

sertation. The central theme of this work is to develop methods to accelerate opti-

mization with high fidelity simulations.

First, this dissertation contributes the perspective that inaccurate gradients can

and should be taken into account within gradient enhanced surrogate modeling. To

that end a methodology is presented that can use inaccurate gradients under a new

configuration of noise hyperparameters within Gaussian Process Regression (GPR).

More broadly this enables the use of continuous adjoint gradients from computational

fluid dynamics (CFD) simulations for surrogate based optimization of aerospace de-

sign problems.
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Second, this dissertation builds upon existing surrogate based refinement strate-

gies to suggest an algorithm for efficient optimization composed of two phases: a

global refinement and a local refinement of the surrogate. A heuristic is developed

for transitioning from the first phase to the second phase, and declaring convergence

in the second phase.

Third, in applying the active subspace method this dissertation discovers the

presence of active subspaces for supersonic design problems, enabling the reduction of

large dimensional design spaces of order 200 variables to low dimensional subspaces

of order 5 variables, and further enabling the construction of surrogate models for

high dimensional design problems. This contribution continues on to characterize

the physical behaviors found in these active subspaces and verifies their existence by

drawing connections to fundamental aerodynamics.

Fourth, an algorithm is proposed for optimization in high-dimension with sur-

rogate models built in reduced dimension using active subspaces. A core part of

this algorithm is the construction of several inverse maps that enable the coupling

of individual subspaces for each quantity of interest. This contribution identifies the

potential for active subspaces to breach the curse of dimensionality within surrogate

based optimization.

Finally, many of the algorithms of this dissertation have been deposited in open

source, including interfaces for automatic evaluation of flow simulations, a new pack-

age for Gaussian process regression, and contributions to an existing package for

active subspace methods.

1.7 Outline

This chapter has introduced the primary motivation and background of the disserta-

tion. The remainder of the dissertation will proceed in the following manner.

Chapter 2 will present the relevant background information and configuration for

analytic test cases, as well as cases simulated in two and three dimensions, which are

interrogated for optimization in this dissertation.

Chapter 3 will present additions to the Marginal Likelihood Maximization learning
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algorithms for Gaussian Process Regression that increase the robustness of surrogate

model generation, and enable the use of inaccurate gradients.

Chapter 4 will identify and characterize active subspaces for supersonic problems,

including their connections to fundamental aerodynamics. Three levels of complexity

within supersonic design are considered: a two dimensional airfoil, a simplified three

dimensional business jet, and a fully complex three dimensional passenger jet.

Chapter 5 will present two optimization algorithms. First, an algorithm for effi-

cient global optimization in low-dimension using surrogate models, composed of two

phases: a global refinement and a local refinement of the surrogate. And second, an

algorithm for efficient global optimization in high-dimension with active subspaces,

using inverse maps that enable the coupling of multiple subspaces that are embedded

in a full space.
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Chapter 2

Design Cases

This dissertation will visit several classes of design problems. They are introduced

here, including their setup, baseline solutions, and optimization problem formulations.

There are three classes of examples - analytic functions, two dimensional flow prob-

lems, and three dimensional flow problems. The analytic examples contain standard

test functions like the Rosenbrock and Rastrigin functions, as well as two functions

constructed to demonstrate active subspaces. The two dimensional flow problems

include the NACA 0012 and Biparabolic airfoils. The three dimensional flow prob-

lems include the ONERA M6 wing, the Langley supersonic business jet, and the N+2

supersonic passenger jet.

For all flow simulation work, this dissertation uses the open-source solver SU2

developed in the Aerospace Design Laboratory at Stanford University [58]. SU2 is

a general purpose partial differential equation solver equipped with tools for optimal

shape design including flow and adjoint solvers, free-form mesh deformation, and

a constrained optimization environment. These tools are wrapped in the Python

language to efficiently manage the input and output of data and the exchange of

information between the different modules in the SU2 suite.

15
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2.1 Supersonic Boom Relationships

A design goal that is incorporated in several cases of this dissertation is to improve

the drag performance of an aerodynamic shape, while maintaining a similar level of

boom loudness on the ground. In order to avoid evaluating a full boom propagation

analysis, this dissertation employs a formulation that maintains the boom loudness

implicitly by constraining the nearfield equivalent area.

As introduced in the previous chapter, a significant amount of historical work

has led to a strong understanding of the relationship between boom loudness and

equivalent area. Specifically, it addresses the case that there are several nearfield

pressure signatures that can map to a particular boom loudness. To an approxima-

tion, changes in the equivalent area distribution are known to correlate with changes

in the boom loudness. A second level benefit of the equivalent area is that it smooths

out the nearly discontinuous changes in nearfield pressure signatures. Several target

equivalent area distributions that account for volume and lift requirements have been

proposed based on linear supersonic potential theory. Recent efforts in the community

have executed design studies in which have identified aircraft with favorable boom

performance [18].

The equivalent area relationship is given as an Abel transformation on the static

pressure disturbance p over freestream static pressure p∞,

Ae(x, φ; r) =
4
√

2βr

γp∞M2
∞

∫ x

0

(p(t, φ; r)− p∞)(x− t)1/2dt, (2.1)

where β =
√
M2
∞ − 1 is the Prandtl-Glaurert factor, and M∞ is the freestream

Mach number [35]. The integral is evaluated along a line of interest parallel to the

freestream, displaced along the line with distance x, at the radius r typically from the

moment reference center, and azimuthal angle φ from the aircraft symmetry plane.

In the case of a two-dimensional airfoil, the azimuthal angle is zero.

If an appropriate functional is constructed on equivalent area, it is possible to

apply automatic shape design approaches to improve performance without compro-

mising boom. In the case of CFD simulations within this dissertation, it is a primary
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requirement to have access to efficient gradients. Through the work of Palacios [31],

an equivalent area formulation was constructed based on the equivalent area difference

from a target distribution,

∆Ae =
1

2ΓL

∫ Γ

−Γ

∫ L

0

[Ae(x, φ)− At(x, φ)]2 dx dφ, (2.2)

which is evaluated along the nearfield sampling cylinder with radius r, between az-

imuthal bounds Γ typically at ±60◦. This cost function is an L2 norm of the current

and target equivalent area, and becomes zero when the equivalent areas match.

It is possible to construct many other types of nearfield boom constraints. In

the case of the work of Palacios, it was found that the above formulation made the

development of a continuous adjoint much more tractable. Having such an adjoint

capability is crucial as it makes the calculations of all surface sensitivities comparable

to that of the direct flow solution.

In practical optimization studies, the equivalent area cost function ∆Ae is im-

plemented as an inequality constraint in order to provide the optimizer freedom to

explore designs. The threshold of the constraint is chosen by hand to indirectly con-

trol the azimuthal and streamwise equivalent area errors Ae(x, φ)− At(x, φ). A rule

of thumb used through this thesis is that an error of approximately 0.1% between the

equivalent area and target at any streamwise and azimuthal location will result in a

negligible change in boom loudness.

2.2 Analytic Examples

These analytic test functions are used to quickly evaluate the surrogate modeling and

active subspace analysis methods. In general, analytic gradients are available, which

provide smooth and noise-free results.
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2.2.1 Test Functions

Rosenbrock

A standard analytical test case is the Rosenbrock function [59]. It is a function

built of polynomials with a basin that is bent in a shape of a banana. Optimizers

sometimes struggle with the differences in scales that occur around the minimum.

The Rosenbrock function used in this dissertation is defined as follows:

f(x) =
d−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
,

−2.0 < xi < 2.0, i = {1, ..., d}
(2.3)

over a design vector x with dimension d and scalar components xi. Further, it has

gradients defined as:

∂f

∂xi
=
[
−400

(
xi+1 + x2

i

)
xi − 2 (1− xi)

]
if i<d

[
+ 200

(
xi − x2

i−1

)]
if i>1

. (2.4)

Below four dimensions this function provably has a single minimum. Between four

and seven dimensions it provably has two minima. Above seven there is no analytical

proof for minima.

An example of the Rosenbrock surface in two dimensions is presented Figure 2.1a.

Rastrigin

The Rastrigin function is a highly multi-modal function, with small scale variation

driven by a cosine term, and large scale variation driven by a parabolic term [59].

This function is modified to serve as a constraint for the analytic SBO experiments.

The function as modified is given with [59]:

f(x) =
d∑
i=1

[
x2
i − 10 cos(πxi)

]
,

−2.0 < xi < 2.0, i = {1, ..., d}.
(2.5)
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The gradient is defined with:

∂f

∂xi
= 2xi + 10π sin(πxi) (2.6)

An example of the Rastrigin surface in two dimensions is presented in Figure 2.1b.

It is modified from the original Rastrigin function to have four local minima in the

range of −2.0 < xi < 2.0, and to have the mean of the high frequency variation

centered around f = 0, which will later serve as the constraint threshold.

(a) Rosenbrock function in two dimen-
sions.

(b) Modified Rastrigin function in two di-
mensions.

Figure 2.1: Example test functions in two dimensions.
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Rotated Functions

These following two test functions were designed to have one global direction of

variability, and one direction of no variability, rotated in the coordinate system.

(a) Visualization of Equation 2.7. (b) Visualization of Equation 2.10.

Figure 2.2: Relevant geometry for the biparabolic design problem.

The first is a cosine function with a linearly increasing mean, rotated by 45◦ in

the x1 − x2 plane. The sine behavior provides multiple local minima, necessitating a

global optimization algorithm. The first rotated function is defined with:

f(x) = 10 cos
(
πA>x

)
+ 10A>x (2.7)

A =

[
0.5

0.5

]
(2.8)

−2 < xi < 2, i = {1, 2} (2.9)

The second function is a quintic polynomial with three roots, rotated by 135◦

in the x1 − x2 plane. The three roots make an equality constraint difficult to find

without global optimization. The second rotated function is defined with:

f(x) = 50(B>x + 0.3)5 − 39(B>x + 0.7)4 + 50 (2.10)
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B =

[
−0.5

0.5

]
(2.11)

−2 < xi < 2, i = {1, 2} (2.12)

These functions are visualized in Figure 2.2. Notice that there are clear directions

with and without variability.

2.2.2 Thin Supersonic Airfoil

There are relatively simple analytic formulae available within supersonic aerodynam-

ics, made available by linear supersonic potential theory. This can be used to find

analytic performance results for thin airfoils.

A major result of thin airfoil theory is that the pressure change, and thus the

pressure coefficient, on the surface of the airfoil is dependent on the surface gradient.

A thorough description and background of the following relationships is provided in

Appendix A.1.

The main relationships useful for this study are the analytic relationships for

drag coefficient, lift coefficient, and the equivalent area error, on a symmetric two

dimensional airfoil of unit chord, constructed of a biparabolic curve with a given

thickness ratio τ , angle of attack α.

Under this problem configuration, the lift coefficient is given as:

Cl =
4√

M2
∞ − 1

α, (2.13)

which states that lift for supersonic thin airfoils, at a constant Mach number, is only

dependent on angle of attack. This is in fact general to any linear supersonic potential

theory thin airfoil.

The drag coefficient is dependent on the detailed curvature of the airfoil. If the

biparabolic airfoil is parameterized by thickness and angle of attack, two common
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parameters for supersonic wing design, the drag coefficient is given as:

Cd =
4
(

4
3
τ 2 + α2

)√
M2
∞ − 1

(2.14)

which says that drag coefficient is dependent on the square of thickness and the square

of angle of attack.

In the context of this biparabolic thin airfoil, the equivalent area functional can

also be derived. Under supersonic linear potential theory the flow characteristics are

parallel to the Mach angle, so there is no dependence on distance from the airfoil.

A target equivalent area is chosen here by the pressure coefficient distribution that

corresponds to an airfoil with a given thickness ratio τt and angle of attack αt. The

equivalent area functional is subsequently given as,

∆Ae =

√
2βr

675
(44(τ − τt)2 + 108(τ − τt)(α− αt) + 75(α− αt)2), (2.15)

which has a second order polynomial relationship on τ and α. The weights of this

relationship show that the combination of angle of attack and thickness is the primary

effector under the given airfoil parameterization.

2.3 Freeform Deformation

For the simulation based design in this dissertation, deformation of the relevant geo-

metric surfaces is carried out by a separate geometry parametrization using a Free-

Form Deformation (FFD) strategy [58]. First, an initial box encapsulating the surface

to be redesigned is parameterized as a Bézier solid. Then, a set of control points are

defined on the surface of the box, the number of which depends on the order of the

chosen Bernstein polynomials. Locations inside the solid box are parameterized by

the following expression

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)Bm

j (v)Bn
k (w), (2.16)
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where u, v, w ∈ [0, 1], and Bi is the Bernstein polynomial of order i. The Cartesian

coordinates of the points on the surface of the object of interest are then transformed

into parametric coordinates within the Bézier box.

Control points of the box become design variables, as they control the shape

of the solid, and thus the shape of the surface grid inside. The box enclosing the

geometry is deformed by modifying its control points, with all the points inside the

box inheriting a smooth deformation. Arbitrary changes to the thickness, sweep,

twist, etc. are possible for the design of an aerospace system. Once the deformation

has been applied, the new Cartesian coordinates of the object of interest can be

recovered by simply evaluating the mapping inherent in Eq. 2.16.

2.4 Two Dimensional Flow Examples

In two dimensions there are interesting design problems available to exercise the

optimization frameworks. These examples walk one category closer to high fidelity

analysis. They introduce non-linear flow behaviors, as well as numerical errors that

occur in discretized simulations.

2.4.1 NACA 0012 Airfoil

The NACA 0012 is a transonic airfoil. It is included here as a baseline test case of the

surrogate modeling approaches in Section 3.3.2, and surrogate based optimization

methods in Section 5.3.2.3. The test case here uses a freestream Mach number of

0.80, an angle of attack of 1.25 degrees, and is evaluated inviscidly using the Euler

equations. Solutions are converged to residuals on density and energy of less than

1× 10−13. An example of the flow solution and adjoint solution for the drag coefficient

are shown in Figure 2.3.
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(a) Contours of density. (b) Contours of adjoint density for drag
coefficient.

Figure 2.3: Sample solution for direct and adjoint problems of the NACA 0012 airfoil.

The design problem of interest is to minimize drag while constraining lift:

minimize
x

CD(x)

subject to ∆CL(x) ≥ 1× 10−5

−0.03 < xi < 0.03, i ∈ {1, 2},
x ∈ R2

(2.17)

The airfoil was parameterized with Hicks Henne bump functions. These distribute

a series of linearly combined basis functions across the upper and lower surface of

the airfoil. An example of two located at the mid-chord of the airfoil are shown in

Figure 2.4.

Figure 2.4: Parameterization and example deformation for the NACA 0012.
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2.4.2 Biparabolic Airfoil

The biparabolic airfoil is a canonical two-dimensional geometry for supersonic aero-

dynamics. It is a symmetric airfoil composed of a parabolic arc on the upper and

lower surfaces. In this study the airfoil has a chord of unit length, and a thickness of

2% on the chord. The geometry is identified in Figure 2.6a.

This geometry will be driven by the optimization problem shown in Equation 2.18,

which attempts to minimize the drag coefficient while constraining equivalent area.

minimize
x

CD(x)

subject to ∆Ae(x) ≤ 1× 10−5

−0.03 < xi < 0.03, i ∈ {1, ..., 20},
x ∈ R20

(2.18)

As this is a two dimensional problem, an equivalent area distribution in fact defines

the lower surface of the airfoil in a one-to-one mapping, to the approximation of linear

supersonic potential theory. Because of this there is not enough freedom to separate

the requirements of lift and equivalent area, so lift is omitted from this optimization

problem.

There is an intuitively expected result for this problem, which makes validating

optimization results more concrete. In this result, the upper surface is flattened so as

to reduce wave drag by reducing thickness. The lower surface is unmoved however,

so as to respect the equivalent area constraint. As will be shown in the results in

Chapter 5, this behavior can be identified using surrogate based optimization.

Changes to the surface of the airfoil are parameterized using freeform deformation

control points for a box tightly fitted around the airfoil. Figure 2.5 shows this, as well

as an example deformation of one control point. There are twenty control points in

total for this problem, which are only permitted to displace up or down in the vertical

direction.

The flow domain is drawn to accommodate the objectives of lift and drag coeffi-

cient, as well as the equivalent area functional. As shown in Figure 2.6b, the nearfield

pressure signature is sampled at two chord-lengths below the airfoil. and the farfield
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Figure 2.5: Parameterization and example deformation

region extends three chord-lengths below the airfoil. To maintain an efficient mesh,

the region immediately around the airfoil is meshed with triangles, and the remainder

of the mesh is composed of quadrilaterals that are aligned with the Mach angle of

the problem. In total, the mesh presented here is well refined, having 160-thousand

elements, with 500 points on the airfoil, and 350 points on the nearfield sampling

marker.

The boundary conditions of the problem are a farfield Mach number of 1.7, with

an angle of attack of 0.0 degrees. The freestream properties are set for an altitude

of 15,240 meters (50,000 feet), and reference pressure, temperature and density are

chosen based on the international standard atmospheric model.

SU2 is used to solve the flow and adjoint problems. Within SU2, the problem is

simulated with the Euler equations, which model supersonic flows with reasonable

accuracy. The linear solver is FGMRES with LU-SGS preconditioning. The non-

linear solver for the flow solution is JST (second order). The non-linear solver for

the adjoint problems is Lax-Friedrich (first order). It will be shown in both gradient

verification and active subspace results that the first order adjoint solution is sufficient

for producing useful gradient results. Residuals are converged to 1× 10−11 on density

and energy.
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(a) Airfoil geometry. (b) Farfield geometry.

Figure 2.6: Relevant geometry for the biparabolic design problem.

(a) Mesh around the airfoil. The airfoil
surface is marked in blue.

(b) Mesh around the nearfield marker.

Figure 2.7: Mesh topology for the biparabolic design problem.

An example of the flow and adjoint solutions for the baseline geometry are shown

in Figure 2.9. Salient flow features include two strong shocks that emit from the

leading and trailing edges. Because this is a non-linear simulation, the incidence of

the airfoil surface causes the compression shock to be slightly ahead of the Mach line,

and the expansion shock to be slightly behind the Mach line.

The adjoint solution features for lift and drag emanate from the airfoil only, and

follow the adjoint characteristics, which are essentially reversed on the flow direction.

The equivalent area adjoint features are very much dependent on the shape of the
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airfoil, but are also tied to the flow at the nearfield sampling marker.

The pressure coefficient and equivalent area along the nearfield marker are shown

in Figures 2.9e and 2.9f. As suggested by thin airfoil theory (see Appendix A.1), the

constant surface derivative of the airfoil creates a linear pressure slope between two

shocks. The mesh resolution and numerical scheme are responsible for the over- and

under-shooting artifacts on either side of the discontinuity. Also note that the length

of the signature grows by half a chord length by the time it reaches the near field.

The equivalent area is shown for a similar region of the nearfield. Because there is no

lift generated by this airfoil, if the equivalent area was followed out into well down

stream, the trace would approach zero.

The gradients for the baseline geometry of this problem are shown in Figure 2.8.

Finite difference steps of 1× 10−4 chord are used for both the finite differencing

of the flow solution, and the finite differencing of the surface when projecting the

adjoint surface sensitivities into the design parameterization. The adjoint gradients

were simulated using both the Lax-Friedrich (first order) and JST (second order)

numerical schemes. These two schemes converged to very similar results, so the

faster and more stable Lax-Friedrich was chosen. In general the gradients of finite

differenced and adjoint methods are comparible, except near the sharp trailing and

leading edges, which are known to be numerically unfavorable because the continuous

adjoint formulation assumes a smooth continuous surface.
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(a) Drag gradients.
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(b) Lift gradients.
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(c) Equivalent area gradients.

Figure 2.8: Gradient verification for the biparabolic design problem. Finite difference
steps were 0.0001c.
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(a) Contours of density. (b) Contours of drag adjoint density.

(c) Contours of lift adjoint density. (d) Contours of equivalent area adjoint
density (with target Ae(x) = 0).

(e) Pressure coefficient at the nearfield. (f) Equivalent area at the nearfield.

Figure 2.9: Flow and adjoint results for the baseline biparabolic airfoil.
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2.5 Three Dimensional Flow Examples

Three dimensional problems bring in additional complexity that can model realistic

design problems. For the purpose of this dissertation, these examples are considered

high fidelity. This comes at the additional cost of longer simulation times on more

compute cores.

2.5.1 ONERA M6 Transonic Wing

As a test example, work was completed on the optimal shape design of the ONERA-

M6 fixed wing, a standard transonic test-geometry. The work is particularly con-

cerned with the problem of maintaining a minimum lift while minimizing the inviscid

drag, described in Equation 2.19.

minimize
x

CD(x)

subject to CL(x) ≥ 0.2864

−0.06 ≤ xi ≤ 0.06, i ∈ {0, ..., 50},
x ∈ R50

(2.19)

where each variable xi is constrained within a lower bound lbi = −0.06 and upper

bound ubi = 0.06. The bounds were chosen to permit enough variability in the

quantities of interest while maintaining enough problem stability to converge most

of the random samples, even when adjacent FFD control points move in opposite

directions thus introducing sharp changes on the surface.

The flight conditions are a freestream Mach number of 0.8395, at an angle of

attack of 3.06 degrees. There are 50 FFD control points in this problem, defined by a

single box fit around the whole wing. The trailing edge points are omitted from the

problem because the adjoint is not well defined around the sharp trailing edge, which

introduces large gradient errors. An example of a deformation of the ONERA-M6

wing is shown in Figure 2.11.

The surface contours in Figure 2.10 shows typical results for the ONERA-M6

wing from SU2. The direct problem (Figure 2.10a) solves for the design objective
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and constraints, in this case lift and drag. The pressure coefficient contours identify

a lambda-shock along the mid-chord of the wing. This a flow feature that strongly

contributes to drag, and should be removed by adjusting the wing’s shape. The

adjoint problem (Figure 2.10b) contributes to this by solving for the flow’s shape

sensitivity to a particular objective. The surface sensitivity contours identify locations

that can be deformed to minimize drag.

(a) Contours of pressure coefficient
from a typical direct solution.
CD = 0.0118, CL = 0.2864.

(b) Contours of surface sensitivity
from a typical drag adjoint solution.

Figure 2.10: Relevant geometry for the biparabolic design problem.

(a) Original surface with FFD box. (b) Deformed surface and FFD box.

Figure 2.11: An example deformation of the ONERA M6 using freeform deformation
boxes.
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2.5.2 Langley Supersonic Business Jet

As a major example of this dissertation, the behavior of a simplified supersonic busi-

ness jet will be studied. Designed by NASA Langley Research Center [60], the geom-

etry is simplified here to only include the fuselage and wing.

Figure 2.12: Langley Supersonic Business Jet (LSBJ) geometry

The flight conditions are a freestream Mach number of 2.0, at an angle of attack

of 2.0 degrees, resulting in a cruise lift coefficient of 0.1. The vehicle has a span of

15.2 meters (50 feet), a root chord of 24.7 meters (81 feet), and a fuselage length of

36.6 meters (120 feet). It is sized to carry seven passengers.

The problem is simulated on a half-body vehicle with a symmetry plane. The

results shown with a full body vehicle are mirrored.

For parameterization, there are 198 FFD control points that displace vertically,

defined by a single box fit around the whole vehicle. The FFD box is visualized in

Figure 2.13. While freestream velocity vector was held constant, this parameterization

permits angle of attack changes. This box configuration is rather unusual for a tube

and wing problem, since a large number of FFD points have little or no influence over

the shape of the vehicle. However, this parameterization will be shown manageable

by the active subspace method.
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Figure 2.13: Parameterization of the Langley supersonic business jet. The surface is
densely parameterized using one FFD box. The taper ratio of the box is restricted
by the ability of the FFD algorithm to map the interior points into the internal
polynomial basis.
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Three quantities of interest are needed here for a useful optimization problem.

Drag is an important consideration for fuel burn, lift is important for carrying pas-

sengers and cargo, and equivalent area is important for managing boom noise. The

optimization problem is listed in Equation 2.20.

minimize
x

CD(x)

subject to CL(x) ≥ 0.10

∆Ae(x) ≤ 1× 10−4

−1.0 ≤ xi ≤ 1.0, i ∈ {0, ..., 198},
x ∈ R198

(2.20)

The bounds of ±1.0 on design variables were chosen to permit enough variability

in the quantities of interest while maintaining enough problem stability to converge

most of the random samples, even when adjacent FFD control points move in opposite

directions thus introducing sharp changes on the surface. The equivalent area target

is taken to be that associated with the flow of the baseline design, and as noted

in Equation 2.2 it is evaluated over an azimuthal carpet of φ = ±60◦. The target

equivalent area constraint of 1× 10−4 is a volume in m3. The volume of the half-body

aircraft here is 43.0 m3. This constraint threshold is chosen to indirectly control the

streamwise equivalent area errors. The particular value was found iteratively to yield

small changes against the target distribution.

The model is meshed to medium refinement with 1.3 million cells, with unstruc-

tured tetrahedra and pyramids around the aircraft, and structured hexes in the region

in which the aircraft’s pressure signature propagates to the nearfield boundary. This

boundary is located at a cylinder two body lengths radially from the vehicle’s mo-

ment reference center and with an axis parallel to the freestream flow. The hexes are

aligned with the Mach cones of the flow. Sections of the mesh are shown for reference

in the Figure 2.14.

The surface contours in Figure 2.15 shows typical results for the LSBJ from SU2.

A similar solver configuration is used as the biparabolic airfoil, except results are

converged to 1× 10−8. The direct flow solution is presented in Figure 2.15a. The
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(a) Farfied mesh.

(b) Aircraft and symmetry plane mesh.

Figure 2.14: Selected views of the LSBJ mesh. The mesh contains 1.3 million cells.

pressure coefficient contours identify a shock system that emits from the knee of the

cranked-delta wing. The adjoint solution for drag is presented in Figure 2.15b. The

surface sensitivity contours identify locations that can be deformed to minimize drag.
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(a) Contours of pressure coefficient from the direct so-
lution.
CD = 0.0082, CL = 0.1028.

(b) Contours of surface sensitivity from the drag ad-
joint solution.

Figure 2.15: Example of mirrored surface solutions for the Langley SBJ.
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2.5.3 N+2 Supersonic Passenger Jet

This design problem represents a complex geometry representative of a large super-

sonic passenger jet capable of carrying 70 passengers. The N+2 aircraft is meant to

be the next generation of supersonic civil transport, and this particular design has

been through extensive design studies through work with NASA, Lockheed, General

Electric, and Stanford University.

Figure 2.16: N+2 Supersonic Passengjer Jet (SPJ) geometry

The flight conditions are a freestream Mach number of 1.7, at an angle of attack

of 2.1 degrees, resulting in a baseline cruise lift coefficient of 0.14. Flow simulations

were performed with SU2.

For this dissertation, various studies were performed on the Lockheed N+2 air-

craft. The primary optimization of interest here is similar to the Langley SBJ, to

minimize drag while constraining equivalent area and lift. The problem is given in
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Equation 2.21.

minimize
x

CD(x)

subject to CL(x) ≥ 0.14

∆Ae(x) ≤ 1× 10−4

−3.0 ≤ xi ≤ 3.0, i ∈ {0, ..., D},
x ∈ RD

(2.21)

Two different configurations of deformation parameters and engine geometry were

used in the course of this thesis. The first is simplified to be used only for drag

minimization without engine effects. The second is fully complex as it samples the

nearfield equivalent area and models engine effects. In both cases only components of

the vehicle like the wing, tail and fuselage are modified, contrasting the full param-

eterization of the Langley Business Jet shown in the previous section. As a result,

changes in vehicle angle of attack were not available in this design case.

2.5.3.1 Drag Mesh, Flow-Through Engines

The first set of studies used a geometry with flow-through engine nacelles, shown

in Figure 2.17. In this configuration the engines do not generate thrust, which would

otherwise affect the vehicle’s pressure signature.

Figure 2.17: Baseline N+2 Supersonic Passenger Jet Geometry

This geometry was used to run an unconstrained drag minimization. A fine mesh

of 4.3 million nodes without a nearfield region was used, shown in Figure 2.18a. There
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were only nine free-form deformation design variables spread across the top surface

of the wing, shown Figure 2.18. This small parameterization was chosen to permit a

traditional surrogate based optimization.

(a) Mesh along the symmetry plane.

(b) FFD control points, there are nine, marked with
filled circles.

Figure 2.18: Mesh and parameterization for an N+2 drag minimization
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2.5.3.2 Boom Mesh, Active Engines

The second configuration of this problem uses a geometry that includes the nearfield

region, active engines and is parametrized with 105 freeform design variables. An ex-

ample of the flow solution is presented in Figure 2.19, and the parameterization is

presented in Figure 2.20.

Figure 2.19: A visualization of the flow solution and mesh for the N+2 Supersonic
Passengjer Jet (SPJ) geometry, including engines. The problem is simulated as a
half-body.
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Figure 2.20: Control points for the N+2 supersonic passenger jet problem. Features
are mirrored.



Chapter 3

Surrogate Modeling

This chapter will describe and demonstrate an approach to Gaussian Process Regres-

sion (GPR) built for surrogate based optimization. In general, surrogate modeling is

concerned with predicting the response of an output quantity of interest at a partic-

ular location within the input parameterization, given a set of samples of the inputs

and outputs called training data.

GPR is as super-set of Kriging. It approaches regression from a Bayesian stand-

point by conditioning a probabilistic function to training data[61]. For example, it can

be shown that in the case where the probabilistic prior is assumed to be a Gaussian

process with a stationary zero mean, the resulting model matches that of Simple Krig-

ing (SK). Because GPR is posed as a conditioning problem and not an expected error

minimization problem, it may have more flexibility when handling poorly behaved

design spaces, such as discontinuities as found by Chung [29], or inaccurate gradients

as in the present work. This was one of the key motivations for this dissertation’s

exploration of Gaussian Process Regression.

3.1 Background

Surrogate modeling has a long and colored history. A classic approach to approxi-

mating experimental data is least-squares polynomial regression. In the context of

43
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optimization, using polynomial regression to generate a surrogate model for opti-

mization was often called “Response Surface Modeling”, or the “Response Surface

Method” [62, 63, 53]. Polynomial regression is part of a larger classification of “para-

metric” models, which have a fixed number of parameters that must be chosen, typ-

ically by minimizing the squared error of the model to the data. These techniques

have a beneficial property of smoothing noisy data, but at the sacrifice of making

strong assumptions about the shape of the data. This can prevent the model from

identifying salient features, such as multiple local minima that can appear in complex

design problems.

A landmark transition occurred from parametric to non-parametric probabilistic

modeling (like GPR) when Sacks identified the usefulness of uncertainty information

to refine response surfaces of expensive simulations [48]. Non-parametric methods

make very general assumptions about the behavior of the fit, but effectively use

the experimental data as parameters, yielding a valuable amount of generality when

modeling new problems. Probabilistic regression methods can furthermore provide

an estimated variance, or measure of uncertainty, as a function of the inputs. As will

be seen in the discussion of efficient global optimization, this information can be used

to identify areas of the model that are inaccurate and could be re-sampled.

An extraordinary number of useful non-parametric regression methods exist. Ma-

jor approaches include splines, neural networks, and Kriging.

Splines are piecewise polynomial functions that exhibit a high degree of smooth-

ness [64]. They are powerful interpolators in one or two dimensions, but are difficult

to regress when using more than three dimensions.

Neural networks model responses using a composition of interconnected nodes,

where input nodes are mapped through a set of “hidden layer nodes” that each

apply a weighted “activation function”, and yield values on a set of output nodes.

Neural networks are especially useful in classification problems, but are applicable to

regression especially when the nodes employ a Radial Basis Function (RBF). Neural

networks have seen use in optimization [65].

In the case that one extends neural networks to include an infinite number of

RBF hidden layer nodes, it can be found that a class of interpolator called “Gaussian
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Process Regression” (GPR) is available [61]. GPR is a probabilistic predictor derived

using Bayesian statistics to condition a spatially varying mean and variance based on

the training data. This posterior mean is used as an approximation of the data, and

the posterior variance as an approximation of the uncertainty of the fit at a particular

location. A nearly identical formulation can be arrived from a “frequentist” view

by minimizing the square error of a predictor given spatially correlated samples, in

a derivation proposed by Matheron which he called Kriging [66], named after his

mentor.

As an approximation of an expensive function, surrogate models can be interro-

gated with an optimizer in what is known as Surrogate-Based Optimization (SBO)

as a way to minimize expensive evaluations. Studies using surrogate modeling ap-

proaches grew substantially in the 1990’s, especially in the area of Multi-Disciplinary

Optimization of NASA’s High Speed Civil Transport [67, 68, 69]. This resulted in a

Surrogate Modeling Framework formalizing the approach [70]. Additional work was

done in the 2000’s in this area under the context of aircraft [71, 19, 72, 26, 29].

As an approach for increasing the accuracy of surrogates in higher dimensions, pre-

vious literature has explored using gradient information to enhance Gaussian Process

Regression surrogate models [53, 29, 41, 73]. Multiple fidelity information has also

been used to enhance the accuracy of the fit while displacing the need for expensive

simulations to numerous low-fidelity simulations [74, 71, 41, 75].

Several difficulties with GPR occur in practice and have been a topic of research

in the community. These include noisy data that can corrupt the response surface [76,

77, 78], the tendency for the surrogate model to become numerically unstable [79, 80],

and most notoriously is the curse of dimensionality, which expresses the difficulty

surrogate models have regressing data that becomes sparse in high dimension [81].
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3.2 Method Formulation

A derivation of Gaussian Process Regression will now be presented. Though presented

in numerous works, it is reproduced and extended here to (1) motivate the use of noise

models to manage gradient inaccuracies, (2) identify a new approach to condition the

hyperparameter tuning problem with a-priori constraints, and (3) unify notation to

accomplish the first two and integrate with the use of the active subspace method in

Chapter 4.

3.2.1 Bayesian Foundation

Following the derivation given by Rasmussen [61], Gaussian Process Regression is

approached by conditioning a multivariate normal distribution.

f ∼ N (µ, [Σ]) , (3.1)

where f is a normally distributed scalar function with mean function µ and standard

deviation [σ].

For this work, take a uniformly zero mean vector, and populate the standard

deviation with a covariance matrix composed of sub-matrices k(·, ·) that are a function

of training and estimated data:[
fp

f ∗i

]
∼ N

(
0,

[
k(xp,xq) k(xp,x

∗
j)

k(x∗i ,xq) k(x∗i ,x
∗
j)

])
,

{ ft(xt) | t = 1, ...,M } , { f ∗r (x∗r) | r = 1, ..., N }.

(3.2)

The notation (·)∗ is used to distinguish the estimated data from the training

data. Additionally, index notation is used to describe the sub-blocks of the covariance

matrix, where k(xp,xq) would be equivalent to the matrix K = kp,q. There are M

training point horizontal vectors x, with function values f(x), and N estimated data

point horizontal vectors x∗ with function values, f ∗(x∗).

Of the data, the estimated function values f ∗ are unknown. The training data

with locations x and function values f(x) are known, as are the desired estimated
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data locations x∗. Following Rasmussen’s derivation [61], GPR is developed by con-

ditioning the normal distribution with the known data:

f |x∗,x, f ∼ N (f ∗,V[f ∗]) , (3.3)

which allows the identification of useful relations for estimating a function fit,

f ∗i = k(x∗i ,xq) k(xp,xq)
−1 fp

s∗i,j = k(x∗i ,x
∗
j) − k(x∗i ,xq) k(xp,xq)

−1 k(xp,x
∗
j)

(3.4)

where the diagonal element s∗i,i is the estimated covariance of the estimated value f ∗i .

These are the relations needed for coding a GPR program. Rasmussen provides an

example algorithm that simplifies these relations by using Cholesky decomposition

[61].

The choice of a uniform mean vector in Equation 3.2 brings in an important as-

sumption of stationarity, which says that on average the fit is expected to be a flat

function, with deviations above and below. Often in this class of surrogate modeling

one chooses to only look at a windowed view of the regression. In this view it is possi-

ble to model functions that are are non-stationary, for example one that is constantly

increasing. But if this model were viewed in a much larger domain, zoomed out from

all of the data, the regression surface would be seen to equilibrate at zero far away

from the data. It is possible to regress the mean value of the data [61], however in the

practice of this dissertation it was not found necessary because the output range of

the data is normalized. There are additional methods for regressing non-stationary

mean models [61, 50], but this adds significant complexity when including gradient

information so is avoided in this dissertation.

3.2.2 Covariance Function

The covariance function (also known as a kernel function) models the spatial cor-

relation between data points. It is chosen based on the types of functions that are

going to be modeled. Highly-smooth or weakly-smooth functions would be examples
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of different types that would require different choices of covariance functions. A com-

mon covariance function is the Gaussian function of the Euclidean distance between

points:

Cov [F (xp), F (xq)] = k(xp,xq) = θ2
1 exp

(
− 1

2θ2
2

D∑
v=1

(xp,v − xq,v)2

)
, (3.5)

where F is the random variable of f , D is the number of dimensions, and xp and xq

are two position vectors chosen from the design space X . There are two degrees of

freedom in this covariance function. These are known as hyperparameters. In terms

of their effect on the function fit, the nominal variance θ1 is a measure of the amount

of variance allowable between points, and the length scale θ2 is a measure of the range

of influence of a point.

While traditionally this kernel includes a length scale parameter for each dimen-

sion, the above function includes only one length scale parameter for all dimensions.

This makes an assumption of isotropy : that on average the variation of the function

is the same in each input direction. Most of the design problems in this dissertation

exhibit such a condition because of the ubiquitous use of freeform deformation box pa-

rameterization. The assumption would breakdown for example if a subset of variables

exhibits much higher frequency behavior then another subset. Under a reasonably

dense sample of training data, the surrogate will still struggle to model the function

along lower-frequency directions. In this case the hyperparameters typically favor

tuning for the high-frequency behavior, and results in potentially large deviations in

what should be flat regions of the model. This is in fact encountered in the design

problem of the biparabolic airfoil presented in Chapter 5, and will be addressed by

introducing active subspace dimensionality reduction.

Choosing the covariance function is an important choice when applying a GPR

surrogate as it expresses a strong statement about the general behavior of the fit. In

general these functions must be shown to have the property of being positive semi-

definite. The Gaussian kernel is favored in many aerospace optimization problems

where the functions are in general smooth and change gradually. Other common
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kernels include the exponential kernel or the Matérn kernel, which can be chosen to

tune the surrogate for sharper changes [61, 53]. Polynomial radial basis covariance

functions have been applied in similar work as well [41].

Adding Gradient Information

Modeling the influence of gradients on the fit involves adding information to the

covariance matrix. This requires finding a covariance function to model the correlation

between points and derivatives. One approach to do this is shown for Co-Kriging by

Chung[82] and Koehler [53] by deriving the covariance functions from the definitions

of variance and derivative. Another approach suggested by Papoulis[83] and used for

gradient enhanced GPR by Solak[84] exploits the theorem that the linear operation

of an expected value is the expected value of the linear operation. In either case, the

main result is to simply take the derivatives of the covariance function in order to

include gradient information in the fit:

Cov
[
∂F (xp)

∂xv
, F (xq)

]
= k

(
∂xp

∂xv
,xq

)
= ∂k(xp,xq)

∂xp,v

Cov
[
F (xp),

∂F (xq)

∂xw

]
= k

(
xp,

∂xq

∂xw

)
= ∂k(xp,xq)

∂xq,w

Cov
[
∂F (xp)

∂xv
, ∂F (xq)

∂xw

]
= k

(
∂xp

∂xv
, ∂xq

∂xw

)
= ∂

∂xq,w

(
∂k(xp,xq)

∂xp,v

) (3.6)

This is where a strong assumption is made on the correlation model between func-

tion value and its gradient. It is a natural and powerful assumption. However, because

there will be D-times more gradient information than function values, inaccurate gra-

dients can overpower the behavior of the fit and in the process ignore the information

from the function values.

The notation above shows that the covariance between a derivative and a function

value is found by taking the derivative of the covariance matrix between two function

values. The notation k
(
∂xp

∂xv
,xq

)
is short hand for covariance Cov

[
∂F (xp)

∂xv
, F (xq)

]
.

The derivative of the kernel ∂k(xp,xq)

∂xp,v
requires a special attention, where the deriva-

tive is taken with respect to only one input vector of the kernel, and further with

respect to only one component of the input space X . This attention to the domain
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of the derivative is similarly required when interpreting the complementing function-

derivative kernel. In the case of the derivative-derivative kernel the chain rule applies

when working out the derivatives. In this dissertation these derivatives are non-zero

since Gaussian kernels are infinitely differentiable.

It turns out for radial basis kernels that the function-derivative kernel is related

to the negative of the derivative-function kernel,

k

(
∂xp
∂xv

,xq

)
= −k

(
xp,

∂xq
∂xw

)
, (3.7)

which can be helpful when programming these methods efficiently.

The detail behind the result of Equation 3.6 is presented here, following the ap-

proach shown by Koehler [53] and translating it into the present notation. First, take

the definition for covariance between a gradient and function,

Cov

[
∂F (xp)

∂xv
, F (xq)

]
= E

[
∂F (xp)

∂xv
F (xq)

]
− E

[
∂F (xp)

∂xv

]
E

[
F (xq)

]
. (3.8)

Under the assumption of stationarity introduced with the zero mean vector in

Equation 3.2, the expected value of the gradient is zero. Imagine zooming far out

from the function to see the assumption of a zero mean far from the data. Thus

Equation 3.8 simplifies,

Cov

[
∂F (xp)

∂xv
, F (xq)

]
= E

[
∂F (xp)

∂xv
F (xq)

]
. (3.9)
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Now apply the limit theorem to the gradient and rearrange,

Cov

[
∂F (xp)

∂xv
, F (xq)

]
= E

[
lim

∆xv→0

F (xp + ∆xv)− F (xp)

∆xv
F (xq)

]

= E

[
lim

∆xv→0

F (xp + ∆xv)F (xq)− F (xp)F (xq)

∆xv

]

= lim
∆xv→0

E [F (xp + ∆xv)F (xq)]− E [F (xp)F (xq)]

∆xv

= lim
∆xv→0

E [F (xp + ∆xv)F (xq)]− E [F (xp)F (xq)]
−E [F (xp + ∆xv)] E [F (xq)] + E [F (xp)] E [F (xq)]

∆xv

= lim
∆xv→0

Cov [F (xp + ∆xv), F (xq)]− Cov [F (xp), F (xq)]

∆xv

= ∂
∂xv

Cov [F (xp), F (xq)] .

(3.10)

In this manipulation various identities for covariance and expectation are used, as

well as the assumption of stationarity which is needed to expand the numerator in

the fourth step.

The gradient information must be packed into the covariance matrix. This can be

done by updating the definition for the input vector and covariance matrix as follows:

fp →

[
fp
∂fp
∂xv

]
(3.11)

k(xp,xq)→

 k(xp,xq) k
(
xp,

∂xq

∂xw

)
k
(
∂xp

∂xv
,xq

)
k
(
∂xp

∂xv
, ∂xq

∂xw

)  , (3.12)

where the gradient vector ∂fi
∂xv

has dimension M · D × 1, sub-matrix k(xp,xq) has

dimension M ×M , and sub-matrix k
(
∂xp

∂xv
, ∂xq

∂xw

)
has dimension M ·D×M ·D. Each

of the above updates must be patterned onto each element of Equation 3.2, and by

extension Equation 3.3. Specifically, Equation 3.11 will update both fp to include
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training gradient outputs, and f ∗i to predict training gradient outputs; and Equa-

tion 3.12 will update all four k(·, ·) kernel matrices, corresponding to the locations of

the training and predicted gradients respectively. Note that the gradient data and

function data need not be co-located, which offers interesting directions for future

work. However in the present work adjoint simulations require a direct simulation so

both pieces of information are collected in process.

A useful extension of this formulation is estimating the gradients of the response

surface given only objective information. This simply involves omitting the blocks

associated with the training data gradients (all the kernels and data with gradients

and without (·)∗) , but keeping those associated with the estimated data gradients

(all the kernels and data with (·)∗). Given a reasonable amount of objective data,

this can be used to build an analytic estimate of the gradients in the design space for

those data. While the curse of dimensionality unfortunately constrains this method

to low dimensional design spaces, it is still useful for generating an accurate reference

when evaluating the errors of the various sensitivity analysis methods.

Noise Models

When working with numerical experiments such as CFD simulations, simulations are

deterministic and repeatable. However, they are built as finite approximations using

fixed-precision operations. As a result, under small changes in inputs, there can

be small non-smooth changes in objectives. If this is not accounted for, especially

when a large amount of gradient information is present, then the accuracy of the fit

suffers. The strategy in this dissertation is to model these small scale high-frequency

variations as noise.

Several types of noise can be modeled within the GPR framework. Allowing noise

can relax the assumption of exact correlation model between objective and gradient

information. The effect on the response surface will have the form:

f ∗ε (x) = f ∗(x) + ε, (3.13)

where ε is a noise model. As explored by Moré, by inspecting the variation of an
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approximated function in a neighborhood of small perturbations, small local pertur-

bations can be interpreted and analyzed as noise, despite being a stretch of the formal

non-deterministic definition [85]. As will be shown in the numerical experiments sec-

tion of this chapter, this sort of variation is present in aerospace design problems

involving CFD simulations.

Adding noise to the model requires an update to the covariance matrix structure:

k(xp,xq)→ k(xp,xq) + kε, (3.14)

where kε is the noise component of the covariance matrix.

A simple but useful model is an independent identically-distributed Gaussian noise

with zero mean and given variance[61]. This will only affect the self-correlated co-

variance terms along the diagonal of [kε]. The noise covariance matrix will then take

the form:

kε =

[
θ2

3 Ia,a 0a,b

0b,a θ2
4 Ib,b

]
, (3.15)

where I and 0 are identity and zero matrices with sizes a = M and b = M(1 + D).

Adding this diagonal component to the covariance matrix relaxes the requirement

that the fit exactly honors the training data. Depending on the magnitude of the

noise hyperparameter, the fit will be allowed to stray a certain distance away from

the data. This will allow the model to account for numerical error in the gradients

due to inaccuracies from mesh refinement or the particular sensitivity method.

Note that there are two separate hyperparameters for the noise of the function

values θ3 and the noise of the gradients θ4. As will be shown, this enables an im-

portant amount of control in the learning process, for example to encourage the fit

to respect the function values before the gradients. Additionally, the presence of a

single θ4 hyperparameter for the gradients is a further extension of this derivation’s

assumption of isotropy. In this case a claim is made that on average the noise of each

gradient component (which could come from different types of design variables) is of

the same magnitude. This is a fair assumption when using the FFD design variables

in this dissertation. The alternative extreme is to retain one noise parameter for each
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variable. Unfortunately this would result in a computationaly expensive learning

process in design spaces with even ten design variables.

Covariance Matrix Construction

All this information must be neatly packed into the covariance matrix. This can be

approached many ways depending on how the design vectors are organized. In this

work, it is done by nesting layers of information. The first layer is the kernel layer,

which relates any two points, regardless of type of information. The second is the

derivative layer, which relates points, derivatives, and permutations of these. The

third layer is the training layer, which relates training data locations with estimated

data locations. Table 3.1 helps to further illustrate this dependence tree.

kernel k(xp,xq) =

 k(x1,x1) . . . k(x1,xM)
...

. . .
...

k(xM ,x1) . . . k(xM ,xM)


derivatives + noise k∂ε(xp,xq) =

 k (xp,xq) k
(
xp,

∂xq

∂xw

)
k
(
∂xp

∂xv
,xq

)
k
(
∂xp

∂xv
, ∂xq

∂xw

) + kε

training [σ] =

[
k∂ε(xp,xq) k∂ε(xp,x

∗
j)

k∂ε(x
∗
i ,xq) k∂ε(x

∗
i ,x

∗
j)

]
Table 3.1: Kernel function data layers.

In the above, the size of the final matrix [σ] is (M+N)(1+D). Note that the kernel

matrix becomes rectangular in the case of the training-prediction kernel k(xp,x
∗
j) with

size M × N . This results in a derivative and noise kernel matrix k∂ε(xp,x
∗
j) of size

M(1 + D) × N(1 + D). The matrix [σ] can grow rapidly with training points and

dimension, however the computational cost of manipulating it is much smaller than

running more CFD solutions.

To use the gradient-enhanced covariance matrix, the GPR relations shown in

Equation 3.4 need only be updated with the new kernel k∂ε(·, ·) for each sub-block of

[σ].
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Data Scaling

Steps are taken to improve the numerics and generality of the method by scaling the

data based on the initial LHC sample. Data must be scaled to enable the application

of the assumption of isotropy, in the case that the components of the input vector

represent different catagories of variables (for example span and twist). The sampled

objective function range, and design variable bounds are linearly scaled according to:

f ′ = (f − foff )/fref s.t. [min(f),max(f)] → [0, 1]

x′i = (xi − xi,off )/xi,ref s.t. [lbi, ubi] → [0, 1] , i = 1, ..., D
∂f ′

∂x′i
=
∂f

∂xi
· xi,ref
fref

.

(3.16)

Here, (·)ref is a reference length and (·)off is a reference offset. Together they scale

and shift the data to a unit hypercube on inputs and outputs. The domain of inputs

are estimated by the lower bounds lbi and upper bounds ubi of the original design

of experiments, and the range of outputs is estimated by the the maximum and

minimum sampled objective. The reference scales are also applied to the gradient to

bring it into the same scaled space.

Several benefits are realized from scaling the data past improving the condition

of the covariance matrix, if it is fair to assume the response surface is smooth with a

nominal amount of variation. It first becomes reasonable to approximately claim the

variation of data in all design variables is brought to be the same order of magnitude.

This allows an assumption of isotropy for variation in each dimension, which reduces

the number of length scale parameters to one, and significantly reduces the computa-

tional cost of hyperparameter learning. Second, this allows the claim that the scaled

magnitude of the noise parameters for f and ∂f
∂x

are of similar order of magnitude.

This is important since the value of the noise in the gradients is difficult to estimate

a-priori. In general a computational aerospace engineer will have a sense for the unit

of precision of the direct analysis. For example in the results for lift and drag run

via SU2 it can be said that fully converged results with a practically refined mesh

will be able to represent variation in the drag or lift coefficient to about one-count,

or 1 × 10−4. Finally, it makes the problem robust to more design problems, where
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different design parameters of different scales can be mixed without having to learn

separate length scales.

3.2.3 Fit Evaluation

To evaluate the quality of fit, measures of training and testing error are used. Training

error is a measure of the difference between the surrogate model and the training data.

When a noise model is included the surrogate is permitted to deviate above and below

training data, which allows the training error to grow. Testing error is a measure of

the difference between the surrogate model and a separate set of data, called the

test set, that was not used to create the surrogate. In principle, the samples should

populate in the regions between the training data samples, and thus test the global

accuracy of the fit.

The testing error is a stronger measure of accuracy of the surrogate because sur-

rogate models have a risk of “over-fitting”. Over-fitting happens when the learning

process exploits the upper or lower bounds of the hyper parameters to increase the

accuracy of the fit near the training data while sacrificing the accuracy of the fit

between the training data. One way this can happen is by decreasing the length scale

of the Gaussian kernel (θ2 in this thesis), which results in a surrogate with that is

almost exclusively flat at the mean value of the objective samples, with sharp peaky

excursions to meet the individual values of the samples.

In this thesis, both training and testing error are measured using the root mean

square difference between the sample set and the surrogate.

Erms =

√√√√ N∑
i=1

(f ∗(xi)− f(xi))
2 (3.17)

Relative errors are calculated in the scaled space where objectives are linearly

mapped to a range of [0,1], as described earlier in Section 3.2.2. This gives a measure

of relative error on the scale of total variation of the data’s objective.
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3.2.4 Hyperparameter Selection

To use the covariance function, the hyperparameters θ1−4 must be chosen. Different

values will yield different fits, each being a different view of the data. Presented

here is the method of tuning the required hyperparameters by maximizing marginal

likelihood[61].

Marginal likelihood measures how well a given set of hyperparameters describes

the training data. A common approach is to use the log of the marginal likelihood:

log p(fp|xp, θk) = −1

2
f>p [σ]−1 fp −

1

2
log |[σ]| − n

2
log 2π, (3.18)

where θk is a vector of hyperparameters. Rasmussen provides an example algorithm

that simplifies these relations by using Cholesky decomposition [61]

Finding the argument maximum is a common way to select hyperparameters for

GPR. Maximizing the marginal likelihood is itself an optimization problem. This

problem can be solved with a gradient based optimizer, however the space is not

guaranteed to be convex. This study used a two step method of Covariance Matrix

Adaptation followed by Sequential Least Squares Optimization for local refinement.

Marginal likelihood maximization is by far the most common method chosen for

regression applications of probabilistic models, though two other approaches of note

should be mentioned. First is the leave-one-out cross validation approach where

by parameters are tuned (usually in an marginal likelihood approach) while leaving

one or a subset of training samples out, and measuring the error of the surrogate

model with these points. The draw of tuned hyperparameters with the lowest error

or highest marginal likelihood is retained. A second approach is to retain a large

test set and configure an optimization program to minimize the testing error given

the hyperparameters. This can be a favorable approach if sufficient data is available

because the testing error measures the interpolation power of the model.

Robustness

Further steps are taken to improve the robustness of the hyperparameter selection

process by expressing additional a-priori knowledge of the problem in the form of
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constraints. These constraints are summarized in the Table 3.2.

Table 3.2: Non-linear hyperparameter constraints for MLE maximization.

Constraint Motivation
min(∆fi)

W
< θ1 < max(∆fi) ·W Avoid under and overfitting due to the

nominal variance
min(∆xi)

W
< θ2 < max(∆xi) ·W Avoid under and overfitting due to the

length scale
θ3

θ1

> 1× 10−8 Maintain well conditioned numerics

θ3

θ1

< 1× 10−1 Avoid interpreting data as noise

θ3 < θ4 Trust objective function data before
gradient data

These constraints add robustness to the learning process by encouraging not only

favorable nominal variance and length scale parameters θ1 and θ2, as well as favorable

noise hyperparameters, θ3 and θ4.

The first two input bounds are enforced on the hyperparameters to ensure that

they stay within values relevant to the sampled data. These bounds are chosen to

avoid modeling more, or less, variation than the training data could hope to predict.

This is why they are tied to the maximum and minimum observed differences in both

function value and data location. The buffer constant W is chosen to allow larger

or smaller values. A value of 100 was found to be useful by trial and error and was

applied consistently throughout this dissertation.

The third and fourth constraints couple the behavior of the nominal variance

and noise parameter to avoid numerical edge cases. The two parameters are related

because the noise parameter is added to the kernel’s diagonal, which without the noise

term will be equal to the nominal variance parameter. Thus the ratio of these two

terms drive the numerical damping of the problem. If the ratio becomes too low, as in

the case of the third constraint, then the problem is at risk of becoming numerically

unstable in the presence of a large sample of functions and gradients. This problem

was encountered in this dissertation, and has been expressed as a major issue in
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literature [79, 80]. The constraint of 1 × 10−8 was chosen by hand and in general is

not encountered for most numerical experiments involving CFD data. On the other

end of the ratio of noise and nominal variance parameters is the case where all the

data is interpreted as noise, resulting in a fit that is essentially flat at the data mean.

The fourth constraint addresses this by saying the noise ratio should not exceed 10%

of the nominal variation in the data.

The last constraint θ3 < θ4 is a safe guard against the gradient data from over-

powering the behavior of the fit such that it does not respect the function data. If

gradient data had not been scaled to the same order of magnitude as the objective

data, this constraint would not be appropriate, since it requires the two parameters

to be of the same order of magnitude.

In the case of high dimensional problems, there is an especially large amount of

gradient data. When numerically estimated gradients are not exactly correlated to

numerically estimated functions, then the important assumption of Equation 3.6 is

violated. In this case the gradient information, for which there is one component for

each dimension, is numerically correlated with each other and will generally be hon-

ored before the function information, for which there is only one component. In flow

simulations, this can happen when using gradients from continuous adjoints because

they are not the numerically exact derivative of the direct solution, but rather they

are numerically exact to the physical problem. Discrete adjoints on the other hand

are formulated such that they are indeed numerically exact to the direct solution, and

would potentially be better applied in the case of gradient enhanced regression. How-

ever these issues are effectively mitigated by the inclusion of the independent gradient

noise parameter and this constraint, which encourages the optimization problem to

land in a local minimum in which the function data is respected.

3.3 Numerical Experiments

This section will show numerical experiments that demonstrate the algorithms pre-

sented in the previous section. An important theme here in is investigating trends in

training and testing error as a measure of accuracy of the surrogate models. These
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errors can grow in unfavorable ways with the presence of gradient errors, since there

are many gradients compared to objectives.

3.3.1 Analytical Test Problem

3.3.1.1 A Fitting Example

This section presents quick motivation for the usefulness of gradients. As discussed

in the background, a large existing literature exists for gradient enhanced models, so

the example will be brief.

The Rosenbrock function is a special test function because of the large range in

objective values, and the relatively flat region in which the minimum is found. Using

gradients, it is possible to regress the Rosenbrock function with fifteen test points

and yield accurate results. The plots of Figure 3.1 show the banana-shaped valley is

modeled nicely. In the complementing Figure 3.2, gradients were omitted from the

same training data. The accuracy of the fit clearly suffers. Nearly 40 samples of

objective values would be needed here to make a comparable fit.

(a) GPR surface.
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(b) Contours of the surrogate model
and truth function.

Figure 3.1: Plots of a gradient-enhanced GPR model of the Rosenbrock function.
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(a) GPR surface.
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(b) Contours of the surrogate model
and truth function.

Figure 3.2: Plots of a GPR model of the Rosenbrock function, without gradients.

(a) GPR surface.
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(b) Contours of the surrogate model
and truth function.

Figure 3.3: Plots of a gradient-enhanced GPR of the modified Rastrigin function.

A gradient-enhanced fit of the modified Rastrigin function is also presented, again

with fifteen samples, and is shown in Figure 3.3. In this case the multi-modality of

the function is well modeled, with some deviations near the corners of the domain

that indicate the need for minor refinement.
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3.3.1.2 Characterization of Learning Robustness

An important component of the surrogate modeling formulation in this thesis is the

use of constraints on the hyperparameters during the optimization problem that max-

imizes marginal likelihood. A surprisingly simple but problematic regression case

exposes the tendency for the covariance matrix to become singular.
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Figure 3.4: Surrogate model of a parabola f = x2 with 10 samples.

Here a parabola in one dimension is fit using ten samples without gradients. In

this example the samples are linearly spaced, though a space filling random sample

can be used as well. This problem is setup to illustrate the tendency of the marginal

likelihood process to drive into larger hyperparameters to create a fit, resulting in

numerically unsolvable models.

A Gaussian process regression is applied to the data using various packages. In

the first case, a standard regression tool written with Matlab, called GPML, is ap-

plied using a squared exponential kernel function with a Gaussian noise model, and a

BFGS gradient based optimization algorithm to maximize marginal likelihood. Dur-

ing the hyperparameter learning process, important values are tracked, including the

hyperparameters, the value of the marginal likelihood, and the condition of the kernel

matrix (with respect to the norm ratio with an inverted matrix). As the condition

number of the matrix increases to large values, the matrix is becoming singular and
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the linear algebra required to compute marginal likelihood becomes intractable.

This is what happens when running the marginal likelihood optimization without

constraints for surrogates with reasonably dense amounts of data. The convergence

history presented in Figure 3.5 shows that the nominal variance θ1 and length scale θ2

become very large, order 1× 105 and 1× 1010 respectively. This is possible because

the behavior of the fit is strongly driven by the ratio of these two hyperparameters.

From the perspective of the marginal likelihood there is a very small improvement

that the gradient based optimizer exploits to drive to a maximum. Unfortunately as

these parameters become large the covariance matrix becomes singular, shown with

the condition number cond(K) becoming order 1× 1018. At this point error messages

print warning that the Cholesky decomposition step is failing and the optimization

stalls.
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Figure 3.5: Learning history for the parabolic problem, using GPML, without hyper-
parameter constraints.

A similar result is encountered with the learning process developed for this the-

sis, when hyperparameter constraints are not applied. The learning history for the

parabolic regression using VyPy [86], a toolbox developed as part of this dissertation,
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is shown in Figure 3.6. As with the previous case the hyperparameters drive into

large values, causing the covariance matrix to become more singular, as indicated by

the condition number to growing to 1× 1018.
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Figure 3.6: Learning history for the parabolic problem, using VyPy, without hyper-
parameter constraints.

It is conceivable that the singularity of the covariance matrix could be applied as

a constraint to the hyperparameter learning problem. One would maximize marginal

likelihood subject to a maximum condition number. However calculating the condi-

tion number is expensive because it requires calculating the full inverse of the matrix.

This is why the ratio of the noise parameter θ3 to nominal variance θ1 is used as

a surrogate, since the noise parameter adds numerical stability to the problem by

increasing the norm of the trace.

As Figure 3.7 shows, this is able to keep the condition number of the matrix in

numerically non-singular ranges. In this case the noise parameter was initialized at a

low value, 1× 10−6, which results in a larger covariance matrix condition number. As

the learning progressed the parameters are adjusted to not only increase the likelihood

to similar or larger values as the previous examples, but maintain a condition number



3.3. NUMERICAL EXPERIMENTS 65

of less then 1× 1010, and not encounter any singular matrix errors.
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Figure 3.7: Learning history for the parabolic problem, using VyPy, including hyper-
parameter constraints.
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3.3.1.3 Characterization of Learning Efficiency

When working with real world data, that comes from CFD simulations for example, a

large premium is placed on the data. It is expensive to run realistic problems. In this

dissertation some problems take three hours on 80 cores to collect one sample with

objective and gradients, and there are problems that are much more expensive than

this. So the fewer data needed to build an accurate fit, the better. This is why the

constraints presented in Sections 3.2.4 were explored. By preconditioning the MLE

optimization problem, fewer data are needed to make a good fit.

The benefit of the approach is examined with the Rosenbrock function. In this

experiment, the number of samples vary between 2 and 1000 for the Rosenbrock

described in different dimensions. The upper bound of 1000 samples is chosen as

an example of being data-constrained during a design problem and is enforced re-

gardless of the number of dimensions. Training and testing error are each compared

between the methods described in this dissertation (implemented in a package called

VyPy [86]), with the standard GPML methods described Rasmussen (implemented

in a python package called pyGPs [87]).

Because this experiment is highly dependent on a random sample of training and

testing data, each category of number of samples and problem dimension is repeated

ten times. The result for each sub-experiment is reported with crosses and the average

of the experiments is reported with a filled circle.

The y-axis shows the root mean square relative training error, where 1 (or 100%)

would represent a difference magnitude that is comparable to the range of the training

set objective. The range of the Rosenbrock function in for this problem (described in

the design problem chapter), is on the order of 1× 104. So a relative error of 1× 10−5

is adequate but not ideal for a sparsely sampled surrogate.

In the first set of graphs presented in Figure 3.8, the training error is compared be-

tween this dissertation and GPML. One expected trend to observe for both approaches

is the diminishing returns that come with more samples in higher dimension. With

more samples to consider, the numerics of the problem prevent it from respecting

every point accurately. This is because matrix k(p,q) becomes larger, and has to be

inverted in an Ax = b problem. As numerical limits creep in, the marginal likelihood
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surface to becomes noisy, and this affects the learning problem.

Another trend that that is apparent in the plots is that at lower number of samples

the surrogate is able to achieve significantly smaller training errors. This accuracy

gain reduces as the number of samples increases. This is one of the major results of

having the hyperparameter constraints.
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(d) Seven dimensions.

Figure 3.8: Variation of training error with increasing number of samples, while
fitting a GPR surrogate model to the Rosenbrock function in different numbers of
dimensions. A comparison is shown between the implementation presented in this
thesis (VyPy) and that based on a standard GPR package (pyGPs, based on GPML).
The blue crosses indicate individual fit attempts, and the circles indicate the average
of the ten attempts.
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In this second set of graphs presented in Figure 3.9, the testing error is plotted with

increasing number of training samples, for various dimensionalities of the Rosenbrock

function. The test set size was scaled with increase dimension according to 100 · 2n

In general, a machine learning problem can expect the testing error to decrease

with increasing number of training samples. Gains are available in how fast the error

can decrease with more training samples. The figures suggest that by conditioning

the hyperparameter learning problem with physically insightful constraints, a gain of

about one order of magnitude in test set accuracy is available in larger sizes of training

sets, even in high dimension, without sacrificing the testing accuracy with smaller

sizes of training sets, which in the earlier set of figures demonstrated a significantly

reduced training error.
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Figure 3.9: Variation of testing error with increasing number of samples, while fitting a
GPR surrogate model to the Rosenbrock function in different numbers of dimensions.
A comparison is shown between the implementation presented in this thesis (VyPy)
and that based on a standard GPR package (pyGPs, based on GPML). The blue
crosses indicate individual fit attempts, and the circles indicate the average of the ten
attempts.
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3.3.1.4 Effects of Simulated Gradient Errors

Given the presence of gradient bias error, it is useful to see its effect in a simple and

controlled surrogate modeling test case. This example examines a response surface

fitted to a two-dimensional paraboloid.

The effect of gradient bias error on the response surface was first simulated by

scaling the gradient values of a set of sampled training data. The errors were applied

according to the equation,
∂y′

∂x′
= (1 + ∆)

∂y

∂x
, (3.19)

where ∆ is the amount of relative error being added to the gradients.

Figure 3.10 shows that a simulated bias error of 4% corrupted the response surface

in a way that actually formed a new minimum at the boundary of the design space.

Table 3.3 quantifies this by showing where the surrogate’s minimum is located. In

this table one can see that this error grows with increasing gradient bias error.

(a) Parabolid surrogate with accurate gra-
dients.

(b) Parabolid surrogate using gradients with
simulated bias error.

Figure 3.10: Response surfaces for an example regression with inaccurate gradients.
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Case 1: Constant Training Data 
Gradient 

Bias Error  
Xopt 

 Error 
Fopt 

 Error 
0.0 1.799E-05 4.336E-05 
0.1 8.185E-05 -1.997E-04 
0.5 4.865E-04 -1.172E-03 
1.0 1.003E-03 -2.389E-03 
2.0 2.076E-03 -4.825E-03 
3.0 3.207E-03 -7.266E-03 
4.0 5.125E+00 -7.063E+00 
5.0 5.126E+00 -1.534E+01 
10.0 5.129E+00 -5.677E+01 

 
Table 3.3: Error data for example surrogate model with increasing bias error. The
errors show the distance from the surrogate’s prediction of the global minimum. In
the case of the last three rows the error in the gradient data creates a new minimum.

3.3.2 Surrogates on Flow Simulations

With the introduction of computational flow simulations, noise considerations become

important. This section will characterize the noise found in a test CFD problem based

on the NACA 0012 airfoil, which was overviewed in Section 2.4.1.

3.3.2.1 Gradient Error Characterization

This experiment compares the trends and values of the gradients for continuous ad-

joint and finite difference based sensitivity analyses, at 41 different magnitudes of

a single Hicks-Henne bump function, on the lower airfoil surface at the mid-chord.

The reference for error estimation was the response surface based approach to es-

timating gradients in a low-dimensional design space. If one can accept the direct

solutions as physically representative, then an accurate response surface based on

only the training data should produce a gradient that is similarly accurate, because

the GPR gradients are available analytically. This makes surrogate modeling useful

for evaluating numerically accurate gradients in low dimension for expensive function

evaluations.
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Figure 3.11 compares various sensitivity analysis methods for the baseline 20-

thousand cell mesh. These methods include the continuous adjoint approach, and

finite differencing with various step sizes.

The mean error of the various gradient methods relative to the surrogate model

reference is shown in Table 3.4. These errors are calculated by normalizing the abso-

lute difference of the test gradient and reference gradient by the min-to-max spread

of the reference gradient. Because these measure the accuracy of the gradients in a

cross section of the design space, they can be seen as a measure of the design-wide

accuracy of the method.

It can be seen that the continuous adjoint gradients are smooth but posses a bias

offset on the order of 2% for drag and 10% for lift, which indicates a de-correlation

error. This would be a major difficulty if the data were used for response surface

methods that assume no correlation error.

In contrast, low bias error but short-scale noise can be seen occurring in the

finite difference gradients. There are especially large magnitude errors present in step

lengths 1× 10−4 and 1× 10−5. A closer look at the the noise is shown in Figure 3.12.

The source of the noise is presumably from various shock lines moving between cells

during perturbation. The accuracy of the shock is limited by the numerical resolution

of the grid, as well as the need for three nodes to define the location. With small

perturbations, this limitation begins to show itself as “noise” in the design space.

Gradient Mean Relative Errors 
Variable Adjoint   FinDiff 1e-3 FinDiff 1e-4 FinDiff 1e-5 FinDiff 1e-6 

Lift 9.9% 1.8% 1.4% 2.6% 1.3% 
Drag 2.0% 1.3% 0.26% 0.43% 0.20% 

 

Table 3.4: Baseline mesh gradient errors for the NACA0012 example.

The performance of the 1× 10−3 step is likely due to the favorable amount of

smoothing with its larger step length. This of course may trade accuracy in some

design spaces that are not as smooth as the current. Caution is required when con-

sidering the 1× 10−6 step despite its apparent accuracy, because in a second order

scheme perturbations less than 1/∆x2 (in a smooth 1D problem) are sensitive to nu-

merical dissipation. Thus for this geometry, design variable and flow conditions, a
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Figure 3.11: Baseline mesh objective and gradient sweeps

fair judgment can be made that the finite difference step of 1× 10−3 results in the

most physically representative estimation of the gradient.

Also of note is that the continuous adjoint estimation of the lift gradient is less

accurate than the estimate of the drag gradient. This is because SU2 surface based

adjoint approach relies on a central differencing scheme with artificial dissipation con-

stants that were calibrated for the drag gradient. While it is conceivable to tune these

parameters for the lift gradient, there is merit trying to avoid internal modifications

to the adjoint method in favor of treating it as a black box.

3.3.2.2 Response Surfaces with Noise Tolerance

This experiment will apply the gradient enhanced GPR technique to training data

from the NACA0012 test case with two Hicks-Henne bump functions on the top and

bottom of the airfoil at mid-chord.

In the following examples shown in Figures 3.13 - 3.15, a response surface is

generated using 20 Latin hypercube sampled training data with continuous adjoint

based gradients. Then the noise parameter of the surrogate model is modified to
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(a) Objectives of dense samples for drag and
lift coefficient.

(b) Gradients by finite difference approxi-
mations using the samples in Figure 3.12a.

Figure 3.12: Detail of finite differencing noise. Note the scale of the input variable is
1× 10−3. The finite differenced gradients represented in (a) are found using forward
differencing on the objectives of the corresponding marker in (b). This means that
the blue circles have a finite difference step of 1× 10−4 and the black points have a
step of 1× 10−5. The surrogate gradient is found analytically from the surrogate fit
on only the objective data in (a).

study the fitting performance. For reference, a comparison is made between the fits

to a response surface generated from a 10x10 grid of direct solution data only.

The data shows in Figure 3.14 that if a noise of 1× 10−3 (in dimensions of the

design variable) is allowed in the response surface, a reasonable quality fit is achieved

with 3.3% mean estimation error in the lift objective, and 1.2% mean estimation

error in the drag objective. Finite difference gradients result in a higher quality fit,

as shown in Figure 3.15. If noise is not allowed, or restricted to be very low as in the

case of Figure 3.13, then the accuracy of the response surface degrades significantly.

Again as in the analytical case, additional local minima are generated. This reflects a

major observation of this study that response surface with noise-tolerant covariance

models are more robust to gradient inaccuracies.
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Figure 3.13: Example RSM with adjoint gradients, noise tolerance=1× 10−10
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Figure 3.14: Example RSM with adjoint gradients, noise tolerance=1× 10−3
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Figure 3.15: Example RSM with finite differencing, noise tolerance=1× 10−3
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3.4 Summary

A core goal of this chapter was to integrate several developments in surrogate modeling

to enable a robust regression procedure in the face of sparse data and inaccurate

gradients. To address the issue of multiple local minima in marginal likelihood surface

used to learn hyperparameters, a series of constraints were developed to encourage

the problem to land in a local minimum that was physically representative of the

data.

The issue of gradient inaccuracies was presented with an analysis of where it

impacts the surrogate modeling process. To characterize the gradient inaccuracies

from adjoint methods used in this dissertation, a surrogate-based gradient estimation

technique was applied by analytically solving for the gradient of a response surface

fitted to a dense sampling of performance objectives. This was useful for providing

a physically relevant reference gradient for error estimation, and allowed the esti-

mation of a root-mean-squared error of the gradients across the entire design space.

These results were used as motivation to apply a common noise model for GPR,

modified to enable the independent treatment of objective and gradient noise terms,

and constrained during the hyperparameter learning process to ensure that objective

information was honored before gradient information. This was a core contribution

enabling the robust regression of gradient information.



Chapter 4

Active Subspaces

This chapter describes the theory behind the active subspace method, and will then

investigate the existence and properties of active subspaces for various design prob-

lems.

4.1 Background

Active subspaces are a recent development in the area of reduced order modeling.

Reduced order modeling seeks to identify a lower dimensional representation of data

that sufficiently describes the important behaviors of the data. Several strategies

for reducing dimensionality have been explored in the past, including variable subset

selection, linear decomposition, and non-linear decomposition methods.

Subset selection methods rely on measures of sensitivity of an output to the various

inputs, potentially allowing some parameters to be omitted from the analysis with

small sensitivity. Examples include ANalysis OF VAriation (ANOVA) decomposi-

tion [88, 89], Main Effects Screening (MES) [88], and Elementary Effects Screening

(EES) [90]. These measures of sensititvity are typically formulated as integrals over

the parameter space, so are difficult to evaluate in high dimension [91].

Linear decompositions look for subsets of linear combinations of the inputs that

sufficiently describe the data. This generalizes subset-based dimension reduction

which otherwise would set the weights of the linear combination all to zero except for

77
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the one associated with the parameter of interest. A well known linear dimensionality

reduction method is Prcinipal Component Analysis (PCA) [92]. PCA is typically

used to reduce the dimensionality of an output space that contains a high degree of

correlation. However in the context of optimization in this dissertation, the goal is

to reduce the dimensionality of the input space. Proper Orthogonal Decomposition

(POD) is closely related but often is applied with basis functions chosen to be suitable

for reducing the size of large scale systems such as CFD solvers [93, 94, 95, 96]. These

methods are intrusive to the analysis method, and is avoided in this dissertation in

favor of leveraging existing analysis tools as black boxes.

Non-linear decomposition is an area of active research, which seeks to represent

data using non-linear basis functions. This enables for example the discovery of helical

curves in three input dimensions. In the context of this dissertation such behavior is

not expected for the problems under consideration. A review of current non-linear

reduction methods is available [97].

Active subspaces applies PCA to operate on gradient information of scalar-valued

outputs, allowing the reduction of the input space. The approach was first proposed

and coined by Russi [98], and demonstrated in the analysis and optimization context

by Constantine [55, 99]. It has been demonstrated in aircraft surrogate based op-

timization with prior work of this dissertation [100]. Independent work in the area

of applying PCA to gradients has been accomplished in the context of accelerating

gradient based optimization [101, 102] in aircraft.

4.2 Method Formulation

4.2.1 Subspace Construction

Consider a scalar function f of a column vector x, and its gradient ∇xf oriented as

a column vector:

f = f(x), ∇xf =
∂f

∂xv
, x ∈ X = [−1, 1]m. (4.1)

where m is the dimension of the design vector x, and v = 1, ...,m.
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Here assumed is that the design space X is bounded by a hypercube with bounds

±1. Thus the design problem should be scaled and translated into this space during an

active subspace analysis. The task at hand is to determine the orthogonal directions

that most effectively describe the variability of the objective f .

The first step is to encode the global correlation of the gradients in a way that

will lend itself to an singular value decomposition (SVD) analysis. The matrix C is

defined as the outer product of the gradient with itself:

C =

∫
(∇xf) (∇xf)> ρ dx, (4.2)

where in this dissertation ρ = ρ(x) is chosen to be a uniform probability density on X .

Each element of C is the average of the product of partial derivatives. The matrix

is positive symmetric and positive semi-definite of size m × m. If we consider the

gradients to be randomly sampled, then the C is the uncentered covariance matrix

of the gradient. As a result, this matrix is sensitive to choice of scale, and the data

should be centered and normalized before performing active subspace analysis.

In practice, the elements of C are approximated with a Monte Carlo method, by

randomly sampling gradient values in the design space. The approximated covariance

matrix is:

C ≈ 1

M

M∑
i=1

∇xfi∇xf
T
i , (4.3)

where ∇xfi = ∇xf(xi), and xi is drawn at random according to density function

ρ from [−1, 1]m. This approach compliments well with surrogate modeling, which

also requires a well spread set of functions and gradients. This enables an important

amount of data reusability.

The sampling requires M evaluations of the objective f and its gradient ∂f
∂x

. When

interrogating aircraft designs with CFD simulations, adjoint methods reduce the com-

putational expense because they evaluate the entire gradient vector for the equivalent

cost of the flow solution. This replaces what would be an expensive finite differencing

operation in high dimension.

To identify the important directions of the input space, find the eigenvectors of the
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covariance matrix. This matrix is symmetric and positive semidefinite, so it admits

a real eigenvalue decomposition,

C = WΛW T , (4.4)

where W is a m×m column matrix of eigenvectors wi, and Λ is a diagonal matrix

of eigenvalues λi.

Note that for many aerospace design problems of interest, m is in the tens to

hundreds, so the complete eigenvalue decomposition is easily computed on a personal

workstation with standard linear algebra toolboxes.

To form a reduced-order basis, sort the eigenvectors according to descending eigen-

values, then select the first n eigenvectors. The heuristic for selecting the size of the

subspace dimension will be discussed shortly. After choosing n directions to keep, the

eigenvectors and eigenvalues can be partitioned accordingly:

W =
[
U V

]
, Λ =

[
Λy

Λz

]
, (4.5)

where U contains the first n columns of W , and defines the active subspace of the

input’s full space.

With the basis identified, the sample locations can now be mapped forward to the

active subspace,

y = U>x, y ∈ Rn, (4.6)

and the function f can be approximated in this active subspace,

f(x) ≈ g(U>x) = g(y). (4.7)

The intuition for this stems from the following relationship of eigenvectors, and

eigenvalues [99], ∫ (
(∇xf)>wi

)2
ρ dx = λi, i = 1, ...,m, (4.8)

which says that the derivative in the direction of the eigenvector, mean-squared over
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the input domain, is equal to the eigenvalue. Thus if λi is zero, then the mean-square

of the gradients are zero, and the function is completely flat in the direction of the

eigenvector. Thus it is possible to describe the behavior of the objective function by

projecting the full-space design variables into this active subspace [98]. This enables

the dimensionality of the design problem to be reduced. Low eigenvalues suggest that

the corresponding vector is in the null-space of the covariance matrix, and that these

vectors can be discarded to form an approximation. An important judgment call

must be applied however to choose the dimension of the active-subspace basis. A

heurisitic to inform this judgement will be presented in Section 4.2.2.

The domain of g, the function approximated in the active subspace, is

Y =
{

y = UTx, x ∈ X
}
⊂ Rn, (4.9)

which indicates that the bounds of the full space X must be respected when exploring

the active space Y . The bounds of the full space are defined as an m-dimensional

hypercube. This hypercube projects into the active subspace to form a “zonotope”.

The hull of the zonotope is convex, but identifying the corners is a difficult problem

when projecting from high dimension. In practice this can be addressed by retaining

information of the forward map, as will be shown in Section 5.2.2.

In addition to the active subspace, the inactive subspace is defined with the com-

plimenting map,

z = V >x, z ∈ Rm−n. (4.10)

It is permissible to apply a surrogate model in the active subspace,

g(y) ≈ g∗(y) ≡ R(y; g1, . . . , gN), (4.11)

where g∗(y) is the surrogate model defined in the active subspace, andR is the chosen

response surface method trained on the points g1, . . . , gN , where each training point

is evaluated gi = g(xi).
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Gradients can be projected

∂g

∂y
= U>

∂g

∂x
,

∂g

∂z
= V >

∂g

∂x
. (4.12)

Caution is needed when using gradients projected into the active subspace. Gradients

near corners of the full space for example will project into the active subspace at

similar locations with different directions. Thus a large noise parameter may be

needed for the gradient component of the surrogate. It would not be surprising if the

noise parameter must be so large that the gradient information does not contribute

to the surrogate model in the active subspace.

To estimate the covariance matrix and accomplish the analysis above, a total of

M gradient samples are required. It is important to have an idea of how large this

sample should be, in order to enable a reasonably accurate eigenvalue analysis. Work

by Constantine [99] has shown that number of samples needed scales with

M = a k log (m), (4.13)

Where the constant a is a chosen oversampling factor between 2 and 10, k is the

number of eigenvalues that are to be approximated, and m is the dimension of the

input space. To tie this to the problems exercised in this dissertation, in the case

of 100 design variables and trying to estimate 10 eigenvectors, anywhere between 92

and 460 gradient samples could be needed to predict the eigenvectors with reasonable

accuracy.

The accuracy of the eigenvectors can be assessed using the bootstrap method.

In this method, gradients are randomly re-sampled from the original training set.

Duplicated gradients are allowed. These re-sampled gradients are used to calculate

the eigenvectors and values. The process is repeated several times, typically between

100 and 10000. The results of these repeated analyses can be processed to yield

statistics such as the variance, as well as upper and lower bounds of the eigenvalues

and eigenvector components.
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4.2.2 Subspace Selection

Two heuristics are available for selecting the dimension n of the active subspace. In

the first approach, one extends Equation 4.8 to find that the sum of the eigenvalues

of the active and inactive spaces represent the mean-square of the gradients in that

space: ∫
(∇yf)>(∇yf)ρ dx = λ1 + · · ·+ λn,∫

(∇zf)>(∇zf)ρ dx = λn+1 + · · ·+ λm.
(4.14)

One can then look at the ratio of the sum of the inactive eigenvalues to the sum

of all the eigenvalues as a relative measure of how much variability of the gradients

is left unmodeled in a mean-squared sense,

ε∇n =

∑m
j=n+1 λj∑m
i=1 λi

. (4.15)

One can thus plot ε∇ for varying n and choose a threshold value, for example 0.01 or

1%, to partition the active and inactive spaces.

The second approach works on the result from Constantine [99] that shows under

certain assumptions the distance between eigenvalues is related to the error of the

subspace described by the retained eigenvectors.

ε∆n ≤ ∆W n

√√√√ n∑
i=1

λi +

√√√√ m∑
j=n+1

λj. (4.16)

Here the subspace error ∆W n is estimated using the bootstrap method, also

known as resampling with replacement. Constantine [99] provides a thorough back-

ground and algorithm on applying this to active subspaces. This relation is a heuristic

that shows that a tradeoff exists between the accuracy of the prediction of the active

subspace basis, and the remaining variability in the inactive space. Intuitively this

is saying that if the eigenvectors point in the wrong direction, then the data will not

collapse as well into a manifold.

In practice the result of this analysis shows “gaps” in eigenvalues when viewed on
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a logarithmic scale are strongly correlated with the error first major opportunity for

reducing the dimensionality of the problem. The gap becomes a sensor that indicates

enough eigenvectors have been retained to sufficiently approximate the function. This

behavior is also observable by looking for troughs in the spectrum of ε∆n. If eigen-

vectors before the gap are omitted, the ability of the basis to collapse the data into

a manifold is reduced. Adding subsequent eigenvectors indicates that one is looking

to capture the next order of behavior, and at least as many eigenvectors as those

needed to reach the next gap should be retained for this purpose. In another sense,

one should avoid choosing an active space that has a dimension falls between major

eigenvalue gaps.

4.2.3 Deformation Modes

For problems involving geometry, the active subspace information can be used to

visualize shape changes that result in the greatest changes in an objective on average.

In setting up aircraft geometry-based design problems, there is an important map,

that takes the full space design vector and returns a three dimensional surface. This

is the “parameterization” of the problem.

X s(x)−−→ S (4.17)

The eigenvectors chosen by the active subspace analysis are embedded in the

full space and points along the direction that results in the largest change in the

objective on average. For visualization one can pick individual eigenvectors, ui from

the eigenbasis U . Choosing y, the coordinate plotted along this basis vector, the

eigenvector is scaled to modify the surface under the given parameterization,

X s(yui)−−−→ S. (4.18)

Now as the active subspace coordinate y is varied, one can compare the objective’s

behavior in the active subspace to the shape change that accompanies it in the surface

parameterization.
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An important initial condition here for visualization is that the eigenvector is cen-

tered on the baseline design. For all of the problems in this dissertation, the baseline

design is at x = 0. Another important assumption is that only one eigenvector is

being used to visualize deformations.

The deformation approach here can accordingly be generalized to remove these

assumptions by specifying a centering coordinate x0, and using a multiple dimension

subspace coordinate y,

X s(x0+UTy)−−−−−−→ S. (4.19)

Combinations of the active subspace basis can be combined to bring the result

back under a single deformation parameter,

X s(x0+y′a>U>)−−−−−−−−→ S. (4.20)

Where a is a vector specifying a linear combination of an active subspace vector, and

y′ is the scalar along which the deformation is actuated this collapsed space.

4.2.4 Methods Summary

The active subspace method allows the construction of surrogate models in a sub-

space with reduced dimension. If f varies primarily along the coordinates y, expect

that modeling over y using the response surface will yield a good approximation of

the optimum of f over its domain X . To approximate f using the active subspace

accordingly, this dissertation employs the following procedure.

1. Choose M points of xi according to a well-spread sampling strategy on the

normalized input domain X = [−1, 1]m. Scale these to the model’s natural

inputs, then compute fi = f(xi) and ∇xf(xi).

2. Compute the eigendecomposition as in Equation 4.4, using the gradient data

expressed in the normalized domain. Inspect the eigenvalue spectrum, use one

of the heuristic described in Equation 4.16 to choose a subspace dimension n,

and retain that many eigenvectors. These eigenvectors form the active subspace

basis U .
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3. Project the sampled data into Y using the forward maps y = U>x; g(y) = f(x);

and ∇yg(y) = U>(∇xf(x)).

4. Construct a response surface g∗(y∗) = R(y∗; yi, g(yi)) with the projected train-

ing data.

5. Use the response surface g∗ to interrogate the design space, i.e. for minimizing

the estimated function.

Many of the above steps are implemented in the open-source “Python Active-

subspaces Utility Library” (PAUL), available on GitHub [103].

4.3 Numerical Experiments

The construction of active subspaces for various design problems will now be demon-

strated.

4.3.1 Biparabolic Airfoil

In this experiment, the biparabolic design problem described in Chapter 2 is used.

There are 20 design variables, where shape parameterizations are made using one

freeform deformation box over the airfoil.

The parameterization is interesting because the upper and lower control points

have influence over both the top and bottom of the airfoil. A major theme will be

discovering if active subspaces can still find modes that would require the decoupling

of the upper an lower surface. For example, in this two-dimensional problem the

lower part of the airfoil is the only surface that effects the equivalent area.

As a two-dimensional physics problem, a rather large set of strongly converged

samples was obtainable. There are two sets - a 962 sample training set, and a 3859

sample test set. These samples are those retained from a 1000, and 4000 sample set

respectively, where samples with residuals greater than 1× 10−10 were discarded.
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4.3.1.1 Active Subspace Properties

What follows is the active subspace analysis on the full set of data of 4821 samples.

The eigenvalue plots featured in Figure 4.1 preview a few phenomenon that will appear

in later examples. In general it is important to identify gaps in the eigenvalues, as

they partition the collections of important eigenvectors that describe the problem.

The bootstrap ranges of the eigenvalues are shown by the polygonal patches around

the eigenvalues.

One of the more favorable results that can be discovered in active subspace analysis

is shown for the lift objective Figure 4.1c. A large gap, approximately two-orders of

magnitude, is found after the first eigenvalue . This means that it might be possible

to expect a significant amount of the problem to be described in one dimension. This

correlates with a small heuristic measure of error that decays very slowly, shown in

Figure 4.1d.

A similar result can be found for equivalent area in Figure 4.1e, where a large

gap of about one order of magnitude appears after the first variable. Since the gap

is smaller, this suggests that the next set of modes, up to perhaps the sixth, will be

important to a second order effect. This is represented in the heuristic measure of error

in Figure 4.1f with the order of magnitude decay available by increasing dimension.

It suggests that a subspace dimension of nine will likely result in favorably accurate

response surfaces.

Drag’s eigenvalue analysis in Figure 4.1a shows much more behavior in the earlier

modes. The first weak gap appears after the fifth dimension. As a result it could be

expected that a large contribution to drag behavior exists among these variables. The

next chunk of variables, 6-11, should also be examined for a second order influence.

The heuristic for this objective also shows the large amount of behavior in the func-

tion by starting with a larger magnitude 3× 10−1 that decays slowly with increasing

dimension. In this case a decision on dimensionality has to be made by also consid-

ering the largest dimension that the surrogate modeling approach can comfortably

handle. For this study ten dimensions will be treated as a safe upper bound. Though

this is a highly problem-dependent decision. With more variability in the function,

denser data is needed, and so only lower dimensions will be tractable.
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The “sufficient summary plot” of each objective are shown in Figure 4.2. These

plots are created by projecting the full-space coordinates of the samples into a chosen

active subspace basis vector using the forward map in Equation 4.6. In the case of the

following plots, the chosen basis is the first eigenvector. In these sufficient summary

plots, one is looking for data to collapse into manifolds that could, for example, be

used to build reasonably accurate surrogate models.

This is certainly the case for the lift sufficient summary plot in Figure 4.2b. It

shows that all 4821 samples not only fall into a strongly collapsed manifold, but

also shows that the trend is linear. The eigenvalue analysis for this problem, in

having a strong gap between the first and second dimension, thus predicts the strongly

collapsed manifold. The eigenvalue analysis however cannot predict the linear trend.

This is just a fortunate result, and one that can be viewed in context to first principle

aerodynamics. This will be discussed in more detail in Section 4.3.1.2.

Equivalent area shows a collapsed manifold in one dimension in Figure 4.2c. It

has a larger spread however, which was indicated by the eigenvalue analysis. The

global shape of the manifold is interpretable as quadratic. This is also a physically

insightful result, recalling that the analytic result was quadratic in Equation 2.15.

The drag sufficient summary is much more spread by comparison in Figure 4.2a.

This is because it is visualizing in one dimension what might be a function of five vari-

ables. The problem must be further explored to understand how the data is behaving.

A first impression based on the lower manifold of the data is a quadratic function of

parameters. This should not be surprising for drag, from a physical standpoint, given

the quadratic result from first principle aerodynamics in Equation 4.22.

The next available analysis is to plot insightful deformations in Figure 4.3, that

accompany the sufficient summary plots. In the sufficient summary plots, the vertical

line is located at the active subspace coordinate that is used to generate the deformed

design, as described in Section 4.2.3, and corresponds with the deformation plotted

in blue. The baseline design is plotted in green. The airfoil thicknesses have been

amplified for visualization.

For drag in Figure 4.3a, the fifth mode is plotted, which is the last mode of the

first group of modes that is shown by the eigenvalue analysis. By looking at the shape



4.3. NUMERICAL EXPERIMENTS 89

that accompanies deformation along the fifth active subspace vector, it is observable

that the analysis has identified what an engineer would describe as a thickness mode.

This is a very interesting result because it matches with many physical intuitions.
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(c) Eigenvalues of lift coefficient.
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(d) Heuristic measure of uncertainty for
the lift coefficient.
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(e) Eigenvalues of the equivalent area
functional.
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(f) Heuristic measure of uncertainty for
the equivalent area functional.

Figure 4.1: Eigenvalue spectra of active subspaces for the biparabolic airfoil.
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(a) Drag coefficient sufficient summary.

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

Active Variable 1

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

L
if

t
C

oe
ffi

ci
en

t

(b) Lift coefficient sufficient summary.
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(c) Equivalent area functional sufficient
summary.

Figure 4.2: Sufficient summary plots for the first active subspace of the biparabolic
airfoil.
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(a) Drag coefficient’s sufficient summary and deformation mode in its fourth active subspace.
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(b) Lift coefficient’s sufficient summary and deformation mode in its first active subspace.
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(c) Equivalent area functional’s sufficient summary and deformation mode in its first active
subspace.

Figure 4.3: Physically relevant deformation modes for the biparabolic airfoil.
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For lift in Figure 4.3b, the first mode is plotted, as this was alone was the strongest

mode. The deformation in this mode can be interpreted as an angle of attack mode

when acknowledging the definition of the angle of attack is based on the line drawn

between the leading and trailing edge of the airfoil. An engineer would expect a

rigid rotation however for an angle of attack mode. The behavior here may be ex-

plained here because the simulations involve nonlinear physics and a large range in

deformations, which violates the linear supersonic potential theory.

For equivalent area in Figure 4.3c, the first mode is plotted. This shows some in-

sightful behavior too. The upper part of the surface is largely left unmoved, reflecting

that the upper part of the airfoil does not affect the physics of the problem in two

dimensions. It was able to find this independent of the coupled parametrization of

the problem, which requires both upper and lower control points to move in order to

make a shape like this. The lower surface is expanded out, which reflects the physical

intuition that volume makes a strong contribution to equivalent area changes. Addi-

tionally, the tips of the airfoil are deflected in an angle of attack mode, which reflects

that other half of the physical intuition, that equivalent area is strongly affected by

changes in lift.

Surrogate models can also be applied in these active subspaces. Figure 4.4 presents

an example of surrogate model cross sections in the first active subspace for drag and

equivalent area.

In the following experiments, the surrogate models will be evaluated by building

an active subspace analysis of of the training set along (962 points), and then fitting a

GPR surrogate model to the data for varying numbers of active subspace dimensions.

These fits are performed without gradients. For each chosen dimension, the training

error, the testing error, and the heuristic measure of uncertainty (Equation 4.16) were

evaluated.

This is an interesting experiment on its own because it is a useful opportunity to

examine the fitting power of a GPR model with varying dimension on a physically

realistic problem. In order to do this sort of experiment otherwise, one would have

to parameterized the problem for each draw of dimension, and run a new set of

training and test samples. The active subspaces method is able short circuit a lot
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(a) Surrogate model cross section in the
first active subspace for drag.
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(b) Surrogate model cross section in the
first active subspace for equivalent area.

Figure 4.4: Cross sections of surrogate models plotted in the active subspace. The
surrogates are plotted by displacing along the line directed by the subspace’s eigen-
vector, starting at the fullspace’s origin.

of this work. It should be noted however that there is now an additional effect

contributing to modeling errors here, namely the error resulting from the lack of

manifold collapsedness from mapping data into lower dimension bases.

The results of the experiment are presented in Figure 4.5. In general, as the

dimension of the active subspace basis increases, it can be observed that the training

and testing errors fall. This happens because the model has more dimensions over

which to collapse the data into a surrogate model. As the dimension of the basis

increases, the fitting power of the training data becomes thinned out, and eventually,

the errors begin rising again.

This is the trade between the collapsing power of the active subspace method and

the fitting power of the surrogate modeling method. In general this starts in the

range of 10-15 dimensions.

The predictive nature of the heuristic measure of uncertainty can also be gauged

from these results. Notable, the equivalent area heuristic tracks the testing error

very well. This is a convenient but not expected result, as the heuristic is an upper

bound of the error. In the case of drag the heuristic predicts the trend that the drag

decreases across the the total dimensionality of the problem. The lift heuristic is less
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(a) Drag coefficient error trends.
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(b) Lift coefficient error trends.

0 5 10 15 20

Number of Dimensions

0

2

4

6

8

10

E
rr

or
(%

)

Training Error
Testing Error
Heuristic

(c) Equivalent area error trends.

Figure 4.5: Training and testing error trends for surrogates built in active subspaces
of the biparabolic airfoil. The surrogates are generated using the first n active di-
mensions, indicated by the x-axis in the plots above.

predictive, but is at least bounding the testing and training errors in this case.

There are some characteristics in these error traces specific to the objective func-

tions. The lift training and testing errors in Figure 4.5b start off low at 3.3% (90

coefficient counts) , and fall quickly with the addition of a few dimensions. The min-

imum testing error achieved by this problem is 0.3% (9 coefficient counts) with 14

variables. The testing error starts rising marginally after this point.

The equivalent area errors in Figure 4.5c fall in a similar fashion, starting at 8%

(0.32 chord2), and reaching a minimum of 1.7% (0.07 chord2) with eight variables. The



96 CHAPTER 4. ACTIVE SUBSPACES

testing error rises quickly starting at 13 variables. This is reflective of how difficult

it can be to fit the equivalent area function, which will be further encountered in

Section 5.3.2.4. Since part of the airfoil does not effect the equivalent area function,

parts of the design space are very flat. In order for a stationary surrogate model (like

the one used in this thesis) to fit this type of behavior, a large amount of samples are

needed in the flat region. Active subspaces make a significant contribution here by

collapsing the behavior in those flat regions into fewer dimensions.

The drag errors in Figure 4.5a provide a little more detail on top of the eigenvalue

analysis. It shows that the second variable does not contribute much to regressing

the problem past the first variable. A large contribution to regressing the problem

is made by using the first four variables. The fifth variable is the last variable that

contributes to reducing the testing error before reaching a second plateau. From

there, plateaus of two and three variables are needed to reduce the testing error. The

minimum testing error is found at 1.1% (4.5 coefficient counts) with 14 variables.
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4.3.1.2 Connection to Fundamental Aerodynamics

Thin airfoil theory suggests that the lift coefficient of a thin supersonic airfoil is a

linear function on the angle of attack, for a given mach number.

Cl =
4√

M∞ − 1
α (4.21)

As seen previously, there is a strong linear function present in the first active

subspace for lift. To discover a connection it is important to work on the dimension-

alized active subspace, by unscaling the normalization on the training data performed

during the eigenvector analysis, but maintaining the same data centering. Since the

experiment was defined as centered on the baseline design, no special treatment is

needed here.

Next, an important hypothesis is needed, which supposes that this coordinate is

in fact angle of attack. Thus, plotting Equation 4.21 over the sufficient summary

plot, it is possible to discover the following relationship, shown in Figure 4.6.

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

Active Variable 1

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

L
if

t
C

oe
ffi

ci
en

t

CFD Simulation
Thin Airfoil Theory

Figure 4.6: Comparison of thin airfoil theory for lift with the first direction’s sufficient
summary plot.
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This plot shows that the active subspace analysis for the biparabolic airfoil was

able to discover a fundamental aerodynamic behavior, and also identify it as the

dominant factor for this design problem. This is a well known behavior among the

aerospace community. The significance of this connection is that it was discovered by

a machine learning based heuristic.

Now recall the thin biparabolic airfoil result for drag when parameterized by

thickness and angle of attack.

Cd =
4
(

4
3
τ 2 + α2

)√
M2
∞ − 1

(4.22)

To evaluate the relation between thin airfoil theory and the active subspace anal-

ysis for drag, additional work is needed. In the case of this analysis, the angle of

attack mode is buried within the first four modes. It can be recovered in the present

case by combining the four basis vectors with this sub-map:

y∗ = [−1,−1,+1,+1] y (4.23)

The resulting deformation mode is found in Figure 4.7, and the sufficient summary

plot is compared to the thin airfoil theory result in Figure 4.8a, assuming that the

active subspace coordinate is actually the angle of attack variable.
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Figure 4.7: The first four drag active subspaces combined to yield an angle of attack
mode.
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(a) Thin airfoil theory for drag depen-
dence on angle of attack compared to the
combined first through fourth active sub-
spaces.
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(b) Thin airfoil theory for drag depen-
dence on thickness compared to the fifth
active subspace basis.

Figure 4.8: Comparison of thin airfoil theory with biparabolic airfoil active subspaces.

For thickness, the active subspace coordinate system needs to be scaled and shifted

to match the thickness that results along this direction. In this case, at y0 = 0.0 there

is a thickness of 2%, and at y0 = 0.06 there is a thickness of 5.4%. Scaling and shifting

the input to thin airfoil theory accordingly, the resulting comparison to thin airfoil

theory is presented in Figure 4.8b.

While not parameterized by the particular thin airfoil theory presented in this the-

sis, camber is also an important mode for drag. The camber mode can be constructed

in a similar way as the angle of attack mode, by using the following sub-map:

y∗ = [−1,−1,−1,−1] y. (4.24)

The resulting deformation mode is shown in Figure 4.9.
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Figure 4.9: The first four drag active subspaces combined to yield a camber mode.

4.3.2 Langley Supersonic Business Jet

In this next problem, the active subspaces of the simplified Langley supersonic busi-

ness jet are examined. Like the biparabolic problem, the quantities of interest here

are lift coefficient, drag coefficient, and the equivalent area functional.

This problem is more expensive as it is a three-dimensional problem. Samples

take 110 minutes on 54 cores to collect objectives and three gradients. There are 192

design variables for this problem, but only 172 samples were collected after filtering

for results that converged more than 1× 10−7. It will be shown that this was still

enough data to perform an active subspace analysis that results in strongly collapsed

data in one dimension.

4.3.2.1 Active Subspace Properties

Looking at the eigenvalue analysis, interesting results appear. All three objectives

show large gaps after the first eigenvalue, which suggests that the first dimension has

a strong influence on the objectives.

The drag eigenvalues, shown in Figure 4.10a, have a single order of magnitude

primary gap. The second and third active variables probably are important since

they have sizable gaps as well.

The lift eigenvalues, shown Figure 4.10c, have a three order of magnitude gap, so
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one might expect an especially well collapsed manifold in the first dimension. Then

there is a cluster of four variables that could have a higher order effect.

Equivalent area’s eigenvalues shown Figure 4.10e, like drag, have a large gap that

levels off into a cluster with variables two through four.

All of this analysis is heuristic, and meant to be a preview of what may appear in

sufficient summary plots and deformation mode visualizations.

Many of the trends suggested by the eigenvalues appear in the sufficient summary

plots. Figure 4.11 shows the sufficient summaries for drag, lift and equivalent area

within the first active subspace dimension, compared with the deformation that is

associated with subspace. As before, the vertical line is plotted at the scalar factor

by which the basis vector is scaled to generate the deformation mode plotted.

What is found is that indeed all three quantities of interest can be approximately

described in one dimension. In the case of drag and lift, the behavior is nearly linear.

In the case of equivalent area, the behavior is quadratic, with a few handfuls of

outliers.



102 CHAPTER 4. ACTIVE SUBSPACES

0 5 10 15 20

Dimension Index

10−5

10−4

10−3

10−2

10−1

E
ig

en
va

lu
e

(a) Eigenvalues of the drag coefficient.
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(b) Heuristic measure of uncertainty for
the drag coefficient.
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(c) Eigenvalues of lift coefficient.
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(d) Heuristic measure of uncertainty for
the lift coefficient.
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(e) Eigenvalues of the equivalent area
functional.
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(f) Heuristic measure of uncertainty for
the equivalent area functional.

Figure 4.10: Eigenvalue spectra for the langley supersonic business jet. Only the first
20 of 192 eigenvalues are displayed.
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(a) Drag coefficient sufficient summary.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Active Variable 1

0.08

0.10

0.12

0.14

L
if

t
C

oe
ffi

ci
en

t

(b) Lift coefficient sufficient summary.
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(c) Equivalent area functional sufficient sum-
mary.

Figure 4.11: Sufficient summary plots for the first active subspace of the langley
supersonic business jet.
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4.3.2.2 Physical Insights

The modes associated with these active subspace bases are plotted in Figure 4.12.

With only minor variation, the modes are primarily angle of attack modes along the

main wing. The fuselage and tail bend to permit the rotation of the main wing

and body approximately around the moment reference center. Physically, this is

consistent with first order aerodynamics. These samples were taken at a cruise angle

of attack, so the drag behavior is strongly driven by the larger quadratic term here,

compared to the thickness term. Lift as described earlier is dependent on angle of

attack. And equivalent area is very much tied to lift, so the angle of attack mode is

a natural result.

The coherence of these results means that the first order behavior of all three

quantities of interest can be described by nearly the same variable, and the corre-

sponding deformation mode that accompanies it. This would at first seem like an

exciting result in the context of surrogate modeling, but under the context of con-

strained optimization it creates an over-constrained problem. For example, in setting

a minimum lift, a minimum drag is prescribed. Or in setting a target equivalent

area of nearly zero, it constricts a narrow range of shapes to explore, hardly enough

room to make a significant improvement on drag. So the next level of active subspace

modes are needed to approach an optimization problem here.

Several physically interesting higher order modes are presented in Figure 4.13.

First, the lift coefficient mode on the fourth active subspace dimension is shown

in Figure 4.13a. This is a dihedral mode, with a combination of wing tip downwash.

In another example in Figure 4.13b, the equivalent area mode shows that a com-

bination of fuselage expansion and wing wash-in increases equivalent area in the third

active subspace dimension.

These types of deformations display characteristics of several engineering-like pa-

rameterizations commonly phenomenon constructed in supersonic aircraft design.

This provides an important component of verification for the usefulness of active

subspaces in design.
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(a) Drag coefficient’s sufficient summary and deformation mode in its first active subspace.
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(b) Lift coefficient’s sufficient summary and deformation mode in its first active subspace.
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(c) Equivalent area functional’s sufficient summary and deformation mode in its first active
subspace.

Figure 4.12: First deformation modes for the Langley supersonic business jet discov-
ered by an active subspace analysis.
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(a) Drag coefficient’s sufficient summary and deformation mode in its fourth active subspace.
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(b) Lift coefficient’s sufficient summary and deformation mode in its third active subspace.

Figure 4.13: Physically relevant deformation modes for the Langley supersonic busi-
ness jet discovered by an active subspace analysis. The vertical line in the sufficient
summary plots indicate the location in the active space that corresponds with the
deformation.
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4.3.3 N+2 Supersonic Passenger Jet

This model is the most complex problem encountered in this dissertation. In terms

of physics it is busy. Wings, tails, engine nacelles, and engine ingestion and exhaust

are present. Samples of this design require 120 minutes on 96 cores. There were 315

sampled designs, 305 of which were retained after filtering for results that converged

more than 1× 10−6. As described in Section 2.5.3, there are 105 variables here spread

across the wing, tail, fuselage, and aft deck. Unlike the Langley business jet, parts of

the design are frozen, such as the engine location and shape. So one large box over

the whole design is not possible. As will be shown, despite this complexity, there are

still well collapsed sufficient summary plots and interesting deformation modes to be

discovered.

4.3.3.1 Active Subspace Properties

Following the active subspace analysis method, the gradients of the 305 samples are

processed to investigate their eigenvalue spectra. The results are shown in Figure 4.14

below. Again there are large gaps after the first eigenvalue for lift and equivalent area.

Lift sees a secondary gap after the fifth eigenvalue, so this could be worth looking at

for second order behavior. The decay for drag is not as aggressive, though relative to

the rest of the spectrum, the first mode can be considered very important, followed

closely by the second and third modes. It would also be reasonable to group in the

fourth mode with a second-order analysis.

Plotted are the sufficient summary plots for the first active subspaces of the N+2’s

quantities of interest in Figure 4.15. As seen in many of the other aerodynamic

problems, there are strongly collapsed manifolds for lift and equivalent area. Again,

the lift coefficient emits a linear trend, and the equivalent area emits a quadratic

trend. The drag sufficient summary does not collapse in one dimension, as expected

from the eigenvalue plot. Looking at the surrogate model’s cross section in this space

will reveal that there is a moderately quadratic trend present.
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(b) Heuristic measure of uncertainty for
the drag coefficient.
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(c) Eigenvalues of lift coefficient.
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(d) Heuristic measure of uncertainty for
the lift coefficient.
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(e) Eigenvalues of the equivalent area
functional.
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(f) Heuristic measure of uncertainty for
the equivalent area functional..

Figure 4.14: Eigenvalue spectra for the N+2 supersonic passenger jet.
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(a) Drag coefficient sufficient summary.
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(b) Lift coefficient sufficient summary.
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(c) Equivalent area functional sufficient
summary.

Figure 4.15: Sufficient summary plots for the first active subspace of the N+2 super-
sonic passenger jet.
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4.3.3.2 Physical Insights

The deformation modes for this geometry in the first active subspace of drag, lift and

equivalent area are shown in Figure 4.16. Since the vehicle is parameterized with boxes

that control only selected components - the main wing, tail, aft deck, and fuselage

- the deformations found by the active subspace analysis only are permitted around

these surfaces. This is an important consideration because it shows the parameter

dependence of the active subspace analysis.

In the deformation modes, the plots are colored by displacement in the z-direction.

The orange and red colors indicate that part of the wing is rising, and the blue colors

indicate that part of the wing is lowering. The baseline geometry is plotted as well

in transparent gray.

One of the first behaviors that can be recognized is on the main wing. In the case

of lift, shown in Figure 4.16b, as the active subspace shows a large scale increase in lift

coefficient, the leading edge of the wing is rising, and the trailing edge of the wing is

falling. This indicates that the wing is twisting to increase incidence with on-coming

flow. Wing twist is an important engineering-like shape change that is recognized in

aerospace design. Here, the active subspace method is able to detect it automatically.

Twist is also present in the tail. It can be observed by seeing the leading edge of

the tail brought inboard compared to the baseline surface. The other surfaces (aft

deck and fuselage) do not have as much deformation in this mode.

This result is contrasted with the results of the Langley business jet. In the case of

the Langley example, a parameterization was built around the entire vehicle, enabling

the discovery of fuselage twisting and cambering modes, in addition to wing twisting.

While the N+2 passenger jet in this example does not include such an encompassing

parameterization, it is still possible to discover similar elements of the lift mode from

the Langley example, within the context of the wing component alone.

Similar results for wing twist are found for the equivalent area functional, shown

in Figure 4.16c. Since equivalent area takes important contributions from volume and

lift, it is reasonable to see a wing twisting mode similar to the lift deformation mode.

In the case of the drag deformation mode shown in Figure 4.16a, the deformation

mode is comprised of two engineering-like shape changes. The first is a twisting
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mode, actuated by lowering the trailing edge. The second is a cambering mode,

where the front quarter chord of the wing is raised slightly, while the leading edge is

left unmoved. The combination of these behaviors reinforces the applicability of the

active subspace analysis. The eigenvalue spectrum of drag shows a much more rich

set of important modes for this objective. Furthermore, as discussed in the analysis of

the biparabolic example, there are many shape parameterizations that are expected

to be important for a lifting surface in supersonic flow.

A major result of this experiment says that despite the different components of the

geometry being segregated into various sub-parameterizations with individual FFD

boxes, the active subspace method was still able to identify intuitive design-oriented

results. This demonstrates the usefulness of the method in complex geometry with

complex parameterizations.
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(a) Drag coefficient’s sufficient summary and deformation mode in its first active subspace.
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(b) Lift coefficient’s sufficient summary and deformation mode in its first active subspace.
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(c) Equivalent area functional’s sufficient summary and deformation mode in its first active
subspace.

Figure 4.16: First deformation modes for the N+2 supersonic passenger jet.
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4.4 Summary

This chapter presented a method for reducing the dimensionality of high-dimensional

aerospace problems built upon the active subspace method. This involved identify-

ing and retaining a subset eigenvectors from an eigenvalue analysis of the estimated

covariance matrix based on samples of the problem’s gradients. Several heuristics

were suggested to enable the selection of a reasonable number of active subspace di-

mensions. The training error of surrogate models built in active subspaces of varying

dimension were investigated.

A core result of this chapter is the identification of the existence of active subspaces

in aerospace design problems. In addition, several coherent features were present.

Across the two- and three-dimensional supersonic design problems presented in this

chapter, all three were shown to have collapsed linear behaviors for lift in one di-

mension, described with an angle of incidence mode on the lifting surfaces. Across

all three problems, equivalent area was well described in one dimension and had a

predominantly quadratic behavior. Across all three problems, the behavior of drag co-

efficient required several active subspace dimensions, anywhere between five and ten.

In the case of the three dimensional problems, both showed a relationship between

drag and angle of incidence on the lifting surfaces.

The coherence of these results supports the viability of the active subspace method

in aerospace design problems. Despite building very high parameterizations of the

problem, there exist reduced spaces in which a surrogate model could be applied

for optimization. Applying these models for optimization is the subject of the next

chapter.
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Chapter 5

Optimization

This chapter will combine the two themes of surrogate modeling and active subspaces

to enable efficient global optimization of high-dimensional high-fidelity flow simula-

tions.

5.1 Background

A short review of optimization approaches and an closer look of existing work around

efficient global optimization will be presented.

Local optimization is a category of optimizers that start with an initial candidate

solution an the iteratively tries nearby solutions under chosen heuristics until a fa-

vorable result is reached. Local optimization typically asks for gradients from the

analysis to accelerate the search heuristic, and can be very efficient in large dimen-

sion. This comes at the expense of not being able to search the global design space,

making them liable to get stuck in a sub-optimal basin.

An important category of local optimizers use line searches to propagate this

search. One of the most well known line search methods are Sequential Quadratic

Programming (SQP) methods [104, 105]. The concept of sequential approximation

appears in other methods such as Sequential Linear Programming [106], and the

CONvex LINearization method [107, 108]. Another category of known as trust re-

gion methods, where reduced order surrogate models are applied in a region that is

115
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expanded or contracated according to the accuracy of the fit [109, 110]. Gradient-free

approaches for local optimization are available when gradients are not appropriate or

the response is non-smooth [111].

Global optimization differs from local optimization in that it seeks a result that is

optimum in the entire input space of the problem, typically within some pre-defined

global bounds on the input parameters. Thus they address the parasitic case that

local optimization encounters when initialized in the wrong location. In order for

an algorithm of this category to converge, a theorem by Torn and Zikinskas [112]

suggests that the search must be “dense”, or that it must essentially search every

point in the domain. In practical implementation, the result of this theorem says

that global optimizers must have a feature that encourage it to explore unattended

parts of the design space.

Major categories of global optimization include genetic algorithms [113], direct

search methods [114], and particle swarm algorithms [115]. They are robust to all

manner of behavior in the design space, but require dense samples of analyses, making

them inefficient or intractable when applied to high fidelity design problems.

Because surrogate models are inexpensive to evaluate, they can be used to identify

estimates of the optimum, for example by using the above global optimization meth-

ods. The coupling of surrogate models and optimization is called Surrogate Based

Optimization (SBO).

One of the powerful approaches in SBO is to use probabilistic models to con-

struct Infill Sampling Criterion (ISC) that enable efficient search heuristics. Jones

provides an excellent review of the various surrogate modeling techniques in the con-

text of SBO, providing numerical examples to identify their different strengths and

weaknesses [51]. Several criterion have been explored in literature to efficiently refine

surrogates around potential optima. One such approach is to choose input locations

that maximize the probability of improvement [116, 117]. Another is to choose loca-

tions that maximize the expected improvement [118]. The later was especially well

exposed by Jones in the context of optimization [119]. These infill sampling criterion

have been shown globally convergent because they have a feature that forces them to

exercise parts of the domain that have been unexplored [112, 51, 120]. Constraints
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are easily expressed as a chain of statistically independent probabilities, described in

literature [121, 122] and later in this dissertation.

The above methods are part of a category of efficient global optimization known

as two-stage methods. First the response is sampled and fitted with a surrogate,

and second the response is interrogated with the infill sampling criterion. Two stage

methods suffer in the case that the initial sample is sparse or provides a highly

misleading view of the function. In this case, the progression of samples converges

extremely slowly or not at all. There is on going work on a category of ’one-stage’

methods that avoid these pitfalls [51].

5.2 Method Formulation

5.2.1 Surrogate Based Optimization

As part of this dissertation, a surrogate based optimization approach was developed

that follows the basic process flow shown in Figure 5.1. A summary of this process

is described here, and detail on modifications to the traditional process are given in

the following sections.

The process starts by choosing an initial set of design configurations with Latin

Hypercube Sampling, which are evaluated using the SU2 simulation suite. This in-

volves deforming the baseline mesh to the desired configuration, performing the direct

solution to solve for the objective and constraint function values, and then perform-

ing multiple adjoint solutions to solve for the objective and constraint gradients. The

data is given to the response surface modeler, which must tune a set of hyperparam-

eters for both the objective and constraint surfaces. This is the first of two internal

optimization problems required by the SBO. Two sets of convergence monitors are

then checked. The first is based on the expected improvement, which monitors the ef-

ficient global optimization of the response surface surface. The second is based on the

estimated optimum, which attempts to refine the response surface’s final estimate of

the optimum. Depending on which criteria is converged, adaptive refinement is then
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performed by choosing a sampling criteria function and solving for its minimum us-

ing a combined genetic algorithm and gradient based optimizer. This is the second

internal optimization problem. Once both convergence monitors reach a specified

tolerance, the process ends as converged.

Sample by Expected 

Improvement

Sample by Estimated 

Optimum

Estimated Optimum 

Converged?

NOYES

Expected Improvement 

Converged?

NOYES

Hyperparameter Tuning

Objective Function

Constraint Function

High Fidelity Simulation

Mesh Deformation

Direct Solution

Adjoint Solutions

Initial Sample Locations

Convergence

Adaptive Refinement

Genetic Algorithm

Gradient Based Optimizer

New Sample Location

Figure 5.1: Surrogate based optimization process.

This approach to surrogate based optimization involves three sampling stages -

first an initial sample, second an efficient global refinement, and last a refinement of

the estimated minimum. These stages are designed to efficiently dissect the design

space and attempts to yield the best estimate of the optimum only in the last sample.

The main motivation of this construction is to build in a sense of convergence that is
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similar to that of gradient-based optimization.

First, the design space is sampled with a set of well-spread initial design points

chosen with Latin Hypercube (LHC) sampling restricted to the hypercube,

lbi < xi < ubi , i = 1, ..., D. (5.1)

The initial x = 0 design is included with this sample as the first point. Given enough

computational resources, this first phase is nicely parallelizable as each design point

can be run independently. The number of samples to take should depend on the

expected complexity of the design space. For the problems explored in this study,

two samples per dimension has worked well.

Second, the surrogate model is refined using an Infill Sampling Criteria (ISC)

based upon Expected Improvement (EI). This sampling criteria is well known for

its ability to leverage both estimated function value and uncertainty to balance de-

sign space exploration (targeting global accuracy) and exploitation (targeting local

optimality)[52, 119]. Expected improvement is commonly expressed as:

E [I(x)] = E [ max(fmin − F, 0) ]

= (fmin − g(x)∗)Φ

(
fmin − g∗(x)

s∗(x)

)
+ s∗(x)φ

(
fmin − g∗(x)

s∗(x)

)
.

(5.2)

In the above, Φ(·) and φ(·) are the standard normal distribution and density func-

tions, s∗ is the estimated variance of the response surface, and fmin is the minimum

of the current training point sample.

If additional information in the form of constraints is available in the problem,

it can be added to the infill sampling criterion by searching in locations of high

probability of feasibility. Following the method described by Shimoyama[123], this is

done by building a second surrogate model and evaluating the expected improvement,

conditioned by the probability of feasibility,

P[fc(x) < 0] = φ

(
g∗c (x)

s∗c(x)

)
, (5.3)
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where the constraint is formulated as fc(x) < 0, and c∗ is the estimated constraint

value with estimated variance, s∗c , each at location in the design space x.

In working experience, the expected improvement infill sampling criteria often

added training data near the box boundaries and corners of the design space. This

is inefficient because at least half of a training point’s region of influence is wasted

modeling the response surface outside the boundaries. To encourage sampling inside

the design space, a penalty function is applied,

B(x) = 1− exp

(
−1

2
min

(
xi − lbi
a2
i

,
ubi − xi
a2
i

, i = 1, ..., d

))
, (5.4)

which is a Gaussian function of the distance from the nearest hypercube boundary. In

this study, the length-scale ai is set to 0.1 · (ubi− lbi), or 1% of hypercube dimension

i’s length. The above penalty function is greatly simplified in the non-dimensional

space constructed in Section 3.2.

Combining the expected improvement, constraint penalty, and boundary penalty

results in the first infill sampling criterion:

ISC1(x) = E [I(x)] · P[fc(x) < 0] · B(x)

xnew = argmax (ISC1(x)) ,
(5.5)

The response surface is refined by sampling f(xnew) and fc(xnew) in this way until

the criterion converges to a small value,

R1(i) = ISC1(xi) < T1, (5.6)

where T1 is a specified tolerance.

While indeed efficient, working experience with GPR-based SBO has suggested

that after expected improvement has converged to some preset value, it becomes

difficult to discover the sharp and narrow wells that develop in its surface. For this

reason, it can be more efficient to switch to an infill sampling criteria based on pure

exploitation.

Thus the final phase of this method’s design space sampling is based on refining
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around the estimated deterministic optimum of the surrogate model:

ISC2(x) = g∗(x),

xnew = argmin (ISC2(x)) , s.t. g∗c (x) < 0.
(5.7)

This procedure continues until the measured improvement of the design sample con-

verges to a small value

R2(i) = max ( fbest − fi , R2(i− 1) ) < T2, (5.8)

or until the sampling stalls after not finding an improvement for a predetermined

number of iterations. In the above equation, T2 is another specified tolerance, and

fbest is the minimum of the training data that came before fi. The approach uses

similar monitors on the change in location of the best point, and the norm of the

gradient of the best point, but often the function value of best point converges the

fastest.

Both the second and third sampling stages use a two-part optimization of the

surrogate model. First a genetic algorithm is used to find a reasonable estimate of

the global minimum. This estimate is fed as the initial guess to a gradient based

optimizer, which returns a better estimate of the global minimum. This process

requires several thousand function evaluations of the response surface, but is far less

expensive than evaluating an additional high-fidelity design point.

5.2.2 Optimization in Active Subspaces

Optimizing in active subspaces requires special considerations for translating data

between the full dimensional parameterization and the reduced active parameteriza-

tion. As will be shown, this can be managed with a toolset of subspace regularization

techniques.

The definition of y = UTx is a surjective map y(x), since U is a tall rectangular

matrix by construction. This map defines a set of full-space coordinates x which

map to a smaller dimension of active-subspace coordinates y. To make use of this for
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optimization, an inverse map is needed, and thus requires the definition of a process

for regularization.

If coordinates in both the active an inactive space are known, then an inverse map

can be used to find the corresponding point in the full space.

x = Uy + V z. (5.9)

Which can be shown according to,

x = Ix

= WW>x

= UU>x + V V >x

= Uy + V z.

(5.10)

However, without any considerations the inverse map actually defines an infinite

set of points in the full space. Assumptions must be expressed about the full space in

order to regularize on a single point, which will be sent back to the flow solver. The

next section will describe several formulations for regularization that are appropriate

for an optimization context.

Inverse map
???

Many x for each y

Full space
high dimension

Active subspace 
low dimension

Forward map 

One y for each x

Figure 5.2: The inverse mapping problem.



5.2. METHOD FORMULATION 123

A Simple Inverse Map

A simple approach to implement the inverse map is to take advantage of the orthog-

onal basis U and inverting the linear equation for the forward map:

given y = yselect

y = UTx

yield x = Uy + x0

(5.11)

where an active subspace coordinate of interest yselect has been selected, and the goal

is to find a full space coordinate x which maps to the subspace coordinate.

This can be made more robust by centering the sample data’s features x on the

origin. It should provide a nearly valid inverse map, if the active subspace describes

nearly all functional behavior, since any other location in the projection space defined

by y = UTx should have approximately the same function value. However, this ap-

proach may yield full-space design vectors that are outside of the problem’s bounding

hypercube. It also does not allow enough flexibility when combining multiple objec-

tives, for example in a constrained optimization problem, where it may be desired to

allow movement in the null-space to meet a constraint.

Bounded Full-Space

A more appropriate approach for implementing the inverse map x(y) in the context

of optimization is to enforce that the selected point x is located in bounding box

of the full space, while being within the span of the active subspace, and projecting

down to a selected location in the active subspace yselect.

given y = yselect

find x

subject to x ∈ X
y = UTx

(5.12)
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This is solvable with a linear program, which can be constructed with:

given y = yselect

minimize
x

0>x (a dummy function)

subject to lbi < xi < ubi, i ∈ {0, ...,m}
y = UTx

yield x

(5.13)

To use typical linear programming toolboxes, a linear objective must be defined. In

the absence of this, a constant zero dummy objective is sufficient. The optimizer will

respond to this by only finding a point that is feasible according to the constraints.

This is an example of a “minimum viable method” for mapping an active subspace

point into the full space. Its main drawback is the indeterminacy of the resulting full

space point x. Depending on the initial conditions of the linear program and the

trajectory the program takes, it may find very different points in the full space for

small changes in the active space. To an approximation however, this indeterminacy

is acceptable in optimization if the active subspace contains the major trends in

the objective. In this case, changes in x outside of the parameterization of y have

negligible effect on the objective function of interest.

Optimization with Non-Linear Constraints

This is needed for constrained optimization, where two or more functionals, and thus

two or more active subspaces, are needed. It is advantageous to allow the multiple

subspaces to span different regions of the full space, because (i) it enables more

accurate decomposition of the subspace for a particular objective, and (ii) the two

subspaces combined may span a larger region of the full space for no additional cost

of dimensionality in each surrogate model.
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It is possible to link two or more functionals through the full space X by con-

structing the following optimization:

given fa(x) ≈ g∗a(U
T
ax), U a ∈ Rm×na

fb(x) ≈ g∗b (U
T
b x), U b ∈ Rm×nb

minimize
x

g∗a(U
T
ax)

subject to lbi < xi < ubi, i ∈ {0, ...,m}
g∗b (U bx) ≤ c

(5.14)

In the above formulation, the bases U a and U b represent the subspaces for two

separate functionals, fa(x), and fb(x), which are approximated with surrogate models

in the active subspaces g∗a(ya) and g∗(yb). There exists a common link between fa

and fb via their embedding in the full space X . However, the surrogate models are

interrogated in their respective subspaces. The optimization links these two spaces

while running a constrained optimization problem. In this case it is not possible to

apply a linear program because of the potentially non-linear constraint g∗b .

Here two quantities of interest were considered, but the formulation easily gener-

alizes to more constraints.

Constraining the Inactive Space

When working with active subspaces in the way presented thus far, there remains a

basis of undetermined parameters that the optimizer can exploit to move the objective

while maintaining feasible constraints. As a heuristic, the dissertation contributes a

constraint on this inactive space in order to minimize the chance that the problem

will walk to the corners of the design space. In general, the optimizations constructed

in this work have large enough design bounds where a constrained optimum is not

expected in the bounds or corners of the design space. In fact it is likely that if a

design is found in a corner, parameters have been skewed so much that physically

impossible geometry results (such as inverted airfoils). It is desirable to avoid that.

One possibility here is to add a constraint on the z-space for each quantity of
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interest.
given fa(x) ≈ g∗a(U

T
ax), U a ∈ Rm×na

fb(x) ≈ g∗b (U
T
b x), U b ∈ Rm×nb

minimize
x

g∗a(U
T
ax)

subject to lbi < xi < ubi, i ∈ {0, ...,m}
g∗b (U bx) ≤ c

||V T
ax||2 ≤ za

||V T
b x||2 ≤ zb

(5.15)

where Va and Vb are the eigenvector bases for the inactive spaces of the quantities

of interest fa and fb respectively. The magnitude of the displacement of the design

parameterization into the inactive space is constrained for each quantity of interest

with the values of za and zb. These parameters must be explored for each problem

to find a useful configuration that results in optimal results. The formulation is also

easily extended to account for additional constraints, (fc, fd, ...) for example.

Optimization with High Dimensions

When the full space is of large dimension, it is advantageous to construct the opti-

mization in the active subspace to reduce dimensionality of the problem. In this case

the variables of the optimizer become the active subspace vectors. This optimization

is shown in Equation 5.16 below.

given fa(x) ≈ g∗a(ya), ya ∈ Rna

fb(x) ≈ g∗b (yb), yb ∈ Rnb

minimize
ya,yb

g∗a(ya)

subject to g∗b (yb) ≤ cb

c(ya,yb) ≤ 0

(5.16)

In the case of an objective and constraints, with separate active subspaces, a

consistency constraint c(ya,yb) is needed to ensure that a point can be found in the

full space that projects into both active subspaces in their respective locations ya and

yb, as well as respect the global design bounds. To satisfy these conditions an inner
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optimization is required to perform a regularization, shown in Equation 5.17.

given ya ∈ Rna

yb ∈ Rnb

minimize
x

x>x

subject to lbi < xi < ubi, i ∈ {0, ...,m}
U>a x = ya

U>b x = yb

yield x∗

(5.17)

In this case the point in the fullspace is further regularized by trying to minimize the

norm of the full space vector x. Note that given the active space equality constraints,

this has the effect of reducing the distance that the selected point x walks out in to

the inactive spaces. The above optimization problem can be easily solved using a

quadratic program.

To use this algorithm for a constrained optimization in the active subspaces as

in Equation 5.16. The constraint violations are packed up into a norm in order to

provide a single scalar value to constrain. The alternative is to include each constraint

of Equation 5.17 in the optimization of Equation 5.16, based on the regularized result

x∗. However this would penalize an otherwise low-dimensional problem with a larger

number of constraints. Thus consistency constraint c(ya,yb) is presented as such.

c(ya,yb) = min{x∗i − ubi, 0i}
min{lbi − x∗i , 0i}
W>

a,1x
∗ − ya

W>
b,1x

∗ − yb 2,

(5.18)

where the L2 norm is used. There are four sub-blocks. The first and second sub-blocks

are composed of column vectors of the global box bound constraint violations, or zero

for each axis that is inside its bounds. The second two sub-blocks are the errors of

the selected point x∗ projected and compared to the given active spaces variables.
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5.3 Numerical Experiments

The methods presented through this thesis are now exercised together in numerical

optimization experiments. The first set of experiments will provide a baseline ap-

proach to global optimization using gradient based optimizations with random start

locations. Then attempts will be made to apply gradient-enhanced Gaussian process

regression with adaptive refinement as an alternative for global optimization. As this

approach will struggle with high-dimensional problems, the last examples pivot to

use active subspaces with surrogate based optimization in order to discover regions

of the design space which may be appropriate for local refinement.

5.3.1 Random Start Gradient Based Optimization

As described in the introduction, gradient based optimization is a standard approach

for CFD based design problems. It is efficient in high dimension with gradients.

As a local optimizer though it can miss global optima. Furthermore, when gradient

information is inaccurate, this can introduce noise that can create ghost local minima.

Gradient based optimization can be extended into global optimization by ran-

domly starting from samples in the design space. This gives the optimizer an op-

portunity to explore different minima. This is what has been done for the present

experiment.

Eleven start positions were drawn using Latin hypercube sampling. The first

sample was the baseline design. A sequential least squares quadratic programming

(scipy’s SLSQP) algorithm was used to drive the gradient based optimization. No

more than 150 evaluations were permitted. The convergence tolerance was set to

1× 10−6 on the objective and constraints as scaled for the optimizer.

This optimizer needs the inputs and objectives to be scaled to condition the prob-

lem to balance the requirements of the constraints with the goal of minimizing an

objective. Two scaling configurations were used, resulting in two different sets of

results.

The results are plotted in Figure 5.3. In the first set shown in Figure 5.3a, the
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problem was configured to emphasize minimizing the objective. This allowed signif-

icant reductions in drag to be discovered, but at the cost of allowing changes to the

equivalent are on the order of 1× 10−4. An example of the final geometry based on

sample 5 is provided in Figure 5.4.

In the second set of random GBO samples shown in Figure 5.3b, the scaling was

configured to emphasize the constraint. In this case many samples were able to meet

a target equivalent area violation of 1× 10−5, but were unable to reduce the drag

past the baseline. An example of the final geometry based on sample 7 is provided in

Figure 5.4.

This is an issue, because the problem as setup, with physics in the loop and with

adjoint gradients, is not immediately movable by a standard optimization package.

Another surprising result is that all the different samples of GBO terminated in

different locations in the design space, with different realizations of an “optimized”

geometry. This suggests that multiple local minima are present, at least as the result

of numerical noise in the problem. Such is an issue that will be addressed with

surrogate based optimization with active subspaces.
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(a) Scaling configured to favor drag minimization.
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(b) Scaling configured to favor enforcing the equivalent area constraint.

Figure 5.3: Summary of random-start gradient based optimizations.
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(a) Drag coefficient history.
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(b) Equivalent area functional history.
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(c) Converged airfoil design.

Figure 5.4: Gradient based optimization
corresponding to sample 5 in Figure 5.3a.
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(b) Equivalent area functional history.
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(c) Converged airfoil design.

Figure 5.5: Gradient based optimization
corresponding to sample 7 in Figure 5.3b.
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5.3.2 Surrogate Based Optimization

The results presented in this section will use the SBO method described in Sec-

tion 5.2.1.

5.3.2.1 Rosenbrock Function - Minimization

This example will minimize the Rosenbrock function without a constraint constraint.

The general problem is summarized here:

minimize
x

fo(x)

subject to −2.0 < xi < 2.0, i ∈ {1, 2}.
(5.19)

In the above, the objective fo is the Rosenbrock function in two dimensions introduced

in Chapter 2.

Using the adaptive refinement approach to surrogate based optimization, using

two infill sampling criterion, the first example is optimized without a constraint. A

plot of the convergence monitors is shown in Figure 5.6. This figure shows the traces

for four convergence parameters. The first in blue circles is the maximum modified

expected improvement (R1 as described earlier). The second in green diamonds is the

norm of the change in location of the best training point. The third in red triangles

is the magnitude of change in value of the best training point. The fourth in black

squares is the norm of the gradient of the best training point. The tolerances for

convergence are plotted as the horizontal dashed line with corresponding color.

The convergence of these sensors explains the strategy of the SBO method pro-

posed in this dissertation. The ∆xbest and ∆fbest values track how much the best

sampled point is changing. The expected improvement infill sampling criterion is

active for the first twelve samples, until it is predicting a relative improvement of

1× 10−4. In the iteration in which the SBO method predicts a low expected im-

provement, the infill sampling criterion changes to choose the best predicted point.

Two additional iterations converge the surrogate model’s estimated value of the best

sampled objective. When this value becomes small it means that the surrogate model

is not changing with additional samples around its predicted minimum. A stronger
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xmin = [1.001556, 1.002614] , fmin = 0.000027

Figure 5.6: Convergence of Unconstrained 2D Rosenbrock Problem

measure of convergence would be to wait until the change in sampled location ∆xbest

becomes nearly zero, and a stronger measure still in this unconstrained case would be

to wait until the gradient of the best sample converges to zero. However, because of

the noise model needed in this example to maintain numerical stability of the GPR

problem, once the objective value is converged, this optimization method would run

more samples by choosing nearly random perturbations around the optimum. A more

efficient use of samples from this point would be to apply a gradient based algorithm,

or to restart the surrogate based algorithm on a smaller design bound.

The surrogate-based optimization was compared to a gradient based optimiza-

tion with the traditional starting point at x = [−1 , 1]. A modified newton method

(Matlab’s fmincon, trust-region-reflective method) was used and a comparison of the

solution history is shown in Figure 5.7. Three important comparisons can be drawn

from this study. First, for this problem it took 68 fewer function evaluations of the

test function to converge. The gradient based solution took so long because the ini-

tial point was placed such that the optimizer had to travel through the Rosenbrock

function’s long and flat banana-shaped valley, admittedly a contrived but typical

case. However, this highlights the reduction in expensive function evaluations that

can come by performing a thorough optimization on an accurate surrogate model.
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Figure 5.7: Comparison of Unconstrained GBO and SBO

Second, the SBO was only able converge the error of the function minimum to

1× 10−5, while the GBO was able to converge to 1× 10−10. This is because the

surrogate model’s accuracy is approximately limited by the value of the noise hyper-

parameters, which are still needed for this problem to maintain numerical stability.

Finally, it is important to note that the GBO is fast in physical time, taking a fraction

of a second to complete. Because the SBO is performing two secondary optimization

problems (hyperparameter tuning and surrogate minimization) at each external itera-

tion, it took approximately 400 seconds to converge this problem on a Intel quad-core

PC with 8GB of ram. This is the trade-off made to build and scour the response

surface model.

5.3.2.2 Rosenbrock Function - Minimization with Constraint on the Ras-

trigin Function

The combination of the Rosenbrock and Rastrigin functions (and their analytical

gradients) exercise SBO’s ability to handle complex and multimodal functions with
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constraints.

minimize
x

fo(x)

subject to −2.0 < xi < 2.0, i ∈ {1, 2}
fc(x) ≤ 0.

(5.20)

In the above, the objective fo is the Rosenbrock function in two dimensions, and fc

is the modified Rastrigin function in two dimensions, both of which were introduced

in Chapter 2.

The surfaces plotted in Figure 5.9 show the information used by the surrogate

based optimizer midway through the solution of the constrained problem. Despite

being only partially constructed, the constraint surface in Figure 5.9b is able to

provide enough information to identify probable regions of feasibility in Figure 5.9d.

Figure 5.9c shows the expected improvement surface. Notice the that the boundary

penalty of Equation 5.4 conditions this surface to avoid sampling data in corners of

the design space. Solving for the maximum of the conditioned expected improvement

identifies a suitable location to run an additional sample.

Figure 5.8: Comparison of Constrained GBO and SBO
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This solution is again compared to the gradient-based solution in Figure 5.8, which

this time starts in a feasible region that does not contain the global optimum. Because

the SBO is exploring the entire design space, it is able to find the global optimum.

(a) Objective surface. (b) Constraint surface.

(c) Expected improvement. (d) Probability of feasibility.

Figure 5.9: Example learning surfaces made with 6 samples for the optimization
problem using Rosenbrock and Rastrigin test functions.
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5.3.2.3 NACA 0012 Airfoil - Drag Minimization with Lift Constraint

In this test case, the drag, lift and their gradients were estimated on a two-dimensional

NACA0012 airfoil, and an optimization problem was constructed using SBO according

to the setup described in Chapter 2.

(a) Objective surface. (b) Constraint surface.

(c) Probablility of feasibility. (d) Problem parameterization.

Figure 5.10: Example learning surfaces for the NACA0012 constrained problem at
the conclusion of the optimization.

Two Hicks-Henne bump functions were used for design variables, one each on the

upper and lower surfaces. In this design problem, the optimum is located on the

constraint boundary, so the surrogate model for the constraint will be very important



138 CHAPTER 5. OPTIMIZATION

to refine with reasonable accuracy near the constrained minimum.

The learning surfaces at the after converging the design are presented in Fig-

ure 5.10. The expected improvement surface is not shown as it has converged to

nearly zero. The probability of constraint feasibility is shown in Figure 5.10c. In

the process of optimizing under constraints, the SBO method here has been able to

explore several designs on the constraint boundary. The drag coefficient surface in

Figure 5.10a shows that these designs are indeed minimizing drag according to the

surrogate model. Because this was a two dimensional design problem however, the

optimization was only able to find two counts of drag reduction.

The collection of these surfaces shows a few important accomplishments. First

that the SBO procedure suggested in this dissertation can interface with CFD in the

loop with gradients to optimize a constrained design problem using GPR surrogate

models. Second, it shows that the probability of constraint feasibility was useful for

this design problem when applying SBO. And finally, the optimization was able to

identify an improvement, as meager as it was, with thirteen samples of the design

problem.

5.3.2.4 Supersonic Biparabolic Airfoil - Drag Minimization with Equiva-

lent Area Constraint

This is a test case that demonstrates the need for active subspaces for surrogate based

optimization. As will be shown, a subspace of the design variables has minimal effect

on the equivalent area functional, which will be difficult for the surrogate modeling

approach of this dissertation to manage.

In this test case, drag was reduced on the biparabolic airfoil with and without a

constraint on the equivalent area, using the design setup shown in Chapter 2. In this

particular experiment, 20 Hicks-Henne bump functions were used across the upper an

lower surface of the airfoil. In this parameterization, there is no freedom to change

the angle of attack of the airfoil.

The expected result for the unconstrained problem is to reduce the airfoil to a thin

plate, which removes the thickness and lift contribution to wave drag, but changes

the equivalent area significantly. In the constrained problem, the equivalent area is
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sensitive only to the lower surface, which must remain unchanged. However drag

reduction is available by flattening the upper surface. A comparison of the resulting

flow solutions obtained in this problem are presented in Figure 5.11.

(a) Baseline design. (b) Unconstrained SBO. (c) Equivalent area con-
strained SBO.

Figure 5.11: Biparabolic airfoil pressure contours.

Figure 5.12 compares the equivalent area signatures at the nearfield for the three

cases. The constrained problem was able to partially enforce the equivalent area

constraint to maintain a similar pressure distribution underneath the the airfoil, while

flattening the upper airfoil surface, as shown in Figure 5.11c. The unconstrained

optimization successfully identified that a minimum is available by collapsing the

thickness of the airfoil.

For the unconstrained case, a total of 25 design iterations were performed. For

the constrained case, a total of 34 design iterations were performed. As Figure 5.14

shows for the unconstrained case, a majority of these samples can be evaluated in

parallel. In this case there are 20 initial design samples.

The convergence plot for this problem in Figure 5.13 shows that the two infill

sampling criteria are performing as designed. First, the plot of the convergence mon-

itors below show that the value of the expected improvement converged quickly by

iteration 24. If this criterion alone was used to refine the response surface, the opti-

mization would have stalled very early with a large constraint violation. However, the

second sampling criterion was able to start refining the estimate of the constrained
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Figure 5.12: Equivalent area distributions for constrained and unconstrained drag
SBO.

optimum, and was able to reduce the constraint violation to a pre-set threshold of

five percent.

Figure 5.13: Convergence history: biparabolic airfoil.

The surrogate-based optimization approach struggles with this case because it

violates the assumption of isotropic variation in the scaled design space. The equiv-

alent area is not sensitive to the design variables above the airfoil, and as a result
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Figure 5.14: Objective and constraint history: biparabolic airfoil.

the true constraint surface will be exactly flat in the corresponding dimensions. The

surrogate model, however, produces small variations in the constraint along these

dimensions which requires the optimizer to explore many more designs to identify the

true constraint boundary. This could of course be accounted for by tuning one length

scale hyperparameter per dimension, at increased computational cost. A more clever

approach might be to acknowledge a-priori the lack of sensitivity in these design

variables and pre-scale their length scales by a large number. This would encourage

the surrogate to more accurately model the low variation in these dimensions.

Such is the purpose of active subspaces.
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5.3.2.5 N+2 Supersonic Passenger Jet - Unconstrained Drag Minimiza-

tion

Surrogate based optimization was performed on the N+2 supersonic passenger jet

using the nine free-form deformation control points placed on upper wing surface, as

described in Chapter 2. The drag-only configuration of the N+2 is used here. This

problem introduces the ability of the SBO approach to address complicated design

problems.

A comparison with a gradient-based optimization of the problem is shown in

Figure 5.15. The surrogate based optimizer was able to discover a 4.6% reduction in

drag in 20 fewer iterations than a gradient based optimizer. Again, because the first

21 design points are independent of each other, they can be simulated simultaneously

given enough computing resources, which further reduces the wall-clock time.

Figure 5.15: Comparison of unconstrained drag GBO and SBO

A plot of the pressure coefficient on the upper part of the vehicle is presented in

Figure 5.17. A comparison of the geometry change between the baseline and final

design in Figure 5.16 shows that the drag reduction was accomplished by reducing

the thickness of the wing. This is an intuitively expected result, especially in the

context of the results from the biparabolic test problem in the previous experiment.



5.3. NUMERICAL EXPERIMENTS 143

It is enabled by the omission of the lift constraint.

Figure 5.16: Original and deformed N+2 surfaces, unconstrained drag minimization.

Figure 5.17: Contours of pressure coefficient for the baseline and optimized design
after surrogate based optimization with GPR.
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5.3.3 Active Subspaces for Surrogate Based Optimization

Here surrogate models are built in an active subspace to estimate optimal aerody-

namic shapes. They will first be used to demonstrate an unconstrained drag mini-

mization problem. Then they will be used on a lift-constrained drag minimization

problem, which will be compared with the random-start gradient based optimization

results of Section 5.3.1.

5.3.3.1 Analytical Test Case

This section uses the rotated polynomial test functions described in Section 2.2.

Thirty training sample locations were chosen in X . The objective and constraint

functions and gradients were evaluated at these locations. These data were evaluated

for their active subspace bases. One active domain was clearly identified by the

eigenvalue decay plot - in both cases the second dimension’s power was machine

zero. The data were mapped forward into their respective domains, and two separate

Gaussian Process regression surrogate models were trained on these mapped data.

The resulting functions are an objective surrogate model in the objective active

subspace g∗o(yo), and a constraint surrogate model in the constraint active subspace

g∗c (yc). These active subspace surrogate models can be used to solve the original

domain’s optimization problem with this surrogate optimization problem presented

in Equation 5.14.

The toy problem is multimodal, but because surrogate problem evaluations are

fast, it is possible to use a sample-based optimization approach. In this case, Covari-

ance Matrix Adaptation [39] is applied. Had the original objective and constraint

functions been expensive to evaluate, as in CFD simulations for example, this opti-

mization strategy would be intractable.

Plots of the surrogate models and the result of the optimization are presented

in Figures 5.18 and 5.19. It can be seen that the optimizer found the region of the

constrained global minimum for this problem, which is defined by the intersection of

the two lines of the objective’s minimum and constraint’s second root. This is not the

exact optimum, as the surrogate models are not refined around this location, which
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can be addressed with adaptive refinement, or by using the predicted optimum as a

starting point for a local optimizer like gradient based methods.

(a) Objective surrogate model in the orig-
inal domain.

(b) Constraint surrogate model in the
original domain.

Figure 5.18: Surrogate models in the original domain.

(a) Objective surrogate model in the ac-
tive domain.

(b) Constraint surrogate model in the ac-
tive domain.

Figure 5.19: Surrogate models in the active domain.
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5.3.3.2 ONERA M6 - Unconstrained Drag Minimization

In this example, the optimization problem of the ONERA M6 parameterized with

50 FFD control points is explored with active subspaces and surrogate based op-

timization to minimize drag without a lift constraint. Because there is no need to

communicate with a separate subspace for lift, it is possible to directly optimize on the

surrogate model in the drag subspace. In the process of applying the active subspace

analysis, five active subspace dimensions were identified as needed by inspecting the

eigenvalues to properly capture the drag behavior. However, in order to visualize the

problem the surrogate and optimization will be built in only two dimensions. In this

case, the inverse maps of Section 5.2.2 is modified to solve the following optimization

problem:

minimize
y

g∗(y), y ∈ R2

subject to y ∈ Y (recall Equation 5.13).
(5.21)

Here, g∗(y) is a surrogate model constructed from the initial 300 training samples

projected into the active subspace. The constraint y ∈ Y is a placeholder for a

secondary optimization required to check that there is a full space design x in X , as

illustrated in Equation 4.9. This requires a secondary optimization problem at each

evaluation of y. This problem solves the linear program described in Equation 5.13.

A plot of the surrogate model visualized in two dimensions using the first two

active subspace eigenvectors is shown in Figure 5.20a. The bounding hull of this plot is

constrained by the full-space bounds of X . The shape approximates what is essentially

the silhouette of a 50-dimensional hypercube projected into two dimensions. The

verticies of the hull are found by coarsening the convex hull of the points represented

by all the hypercube corners projected into this space. The surrogate indicated by

the color contours is generated by fitting the data in two dimensions. The candidate

optimum indicated by the diamond marker is found by performing an optimization

on the two-dimensional surrogate model. Then the point is mapped back to the full

space using the regularization strategy, in order to identify a full-space design to

evaluate.
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(a) Surrogate model in the 2-D active subspace
for drag without lift constraint.

(b) Surface contours of pressure coef-
ficient for the sampled drag optimum.
CD = 0.0045, (61.8% reduction)

Figure 5.20: Results for an unconstrained drag minimization in with active subspaces.

Because of the minimal computational expense, it is possible use a genetic algo-

rithm on the surrogate model. Applied here again is a python implementation of

Covariance Matrix Adaptation (CMA)[39]. This demonstrates the ability to conduct

high-dimensional global optimization using surrogate models with active subspaces.

The full-space problem has a total of 50 dimensions, which would have been in-

tractable to regress even with gradient information.

The optimization problem identified a candidate design, which is evaluated with

CFD to verify the design’s drag. The resulting plot of pressure coefficient in Figure

5.20b show that the shock line on the upper surface of the wing was reduced near

the leading edge. This can be compared with the baseline contour plot provided in

Figure 2.10a. The optimum is plotted in the 2-D active subspace for visualization,

showing that even in the dimension-constrained subspace this method can identify

global trends and locate regions to interrogate for the global minimum.
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5.3.3.3 ONERA M6 - Drag Minimization with Lift Constraint

In this example, the full optimization problem is evaluated, minimizing drag while

enforcing a lift constraint. There is now a requirement to communicate between

subspaces for drag and lift. As identified during the eigenvalue analysis, five active

subspace dimensions are sufficient to properly capture the drag behavior. However,

in this case the predictive model is constructed in two dimensions. As a result, an

inverse map is needed that connects three different active subspaces.

The first step is to select an estimated optimum of the surrogate in the two-

dimensional active subspace for drag under lift constraint. This solves the first opti-

mization problem,

given ya1 ∈ R2

minimize
ya1

CD ∼ ga1(ya1)

subject to ya1 ∈ Ya1

yield yselect,

(5.22)

where (∼) identifies that the surrogate model g∗a1 is of lower dimension than suggested

by an eigenvalue analysis. The surrogate model g∗a1, here a GPR model, is optimized

using a global optimizer, CMA, followed by a local optimizer, SLSQP. The location

of this optimum is plotted on in the 2-D drag map in Figure 5.21a.
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(a) Surrogate model in the 2-D active sub-
space for drag including lift constraint.

(b) Surrogate model in the 2-D active sub-
space for lift. The dashed line indicates the
constraint value.

(c) Surface contours of pressure coefficient for
the sampled drag optimum.
CD = 0.0101, (14.4% reduction)
CL = 0.2786, (2.7% reduction)

Figure 5.21: Results for a lift-constrained drag minimization in active subspaces.
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With the location of this optimum identified in the 2-D drag active subspace,

an inverse map is used to find a point in the full space to evaluate with CFD. This

map now requires combining the knowledge from three active subspaces and surrogate

models – (a1) the 2-D drag space shown in Figure 5.21a with a GPR surrogate model,

(a2) a 5-D drag space with a quadratic surrogate model, and (b) the 1-D lift space

with a linear surrogate model. The optimization problem which solves this map is

shown in the equation below.

given ya1 = yselect

CD(x) ≈ g∗a2(ya2)

CL(x) ≈ g∗b (ya)

ya1 = U>a1x, U a1 ∈ Rm×na

ya2 = U>a2x, U a2 ∈ Rm×na+`

yb = U>b x, U b ∈ Rm×nb

minimize
x

g∗a2(U>a2x)

subject to lbi < xi < ubi, i ∈ {0, ...,m}
ya1 = U>a1x

g∗b (U
>
b x) ≤ c

yield x

(5.23)

There are two active subspace bases U a1 and U a2 for drag, and one basis U b for

lift. It finds a location in the full space which maps to the chosen optimum point ya1

while minimizing the estimated drag g∗a2, and constraining the estimated lift g∗b .

With a potential design identified in the full space, the next step is to run an

additional CFD solution. The resulting surface-plot of pressure coefficient is found

in Figure 5.20b. It shows that the shock line on the upper surface of the wing was

reduced. A drag reduction of 14.4% was realized, at the penalty of a 2.7% violation

of the lift constraint.

The lift constraint violation is the result of the approximations made while dis-

carding dimensions of variability during the active subspace analysis. The subspace-

bounding hull identified by the resampling step extended past the lift constraint. In
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practice, this algorithmic error would be an acceptable cost for the opportunity to

perform surrogate based optimization in low dimension. The estimated minimum

identified by this approach could be followed up by local optimization with gradient-

based methods to enforce the lift constraint and potentially find more reduction in

drag.

Comparison to Gradient Based Optimization

To compare the quality of the estimated minimum found by the active subspace

method, four gradient based analyses were performed in the full design space, each

with random start locations. The trajectories of those optimizations were projected

into the 2-D drag space. These are plotted in Figure 5.22a

(a) Surrogate model in the 2-D active subspace
for drag without lift constraint.

(b) Surface contours of pressure coeffi-
cient for the sampled drag optimum.
CD = 0.0089, (24.6% reduction)
CL = 0.2868, (0.1% increase)

Figure 5.22: Gradient based optimization trajectories compared to active subspaces.

As with the motivating example in Section 5.3.1, each randomly started optimiza-

tion converged to a slightly different minimum. This is identified by the different

terminating locations plotted in the drag reduced space. It is possible that in these

simulations, multiple local minima were found by the gradient based optimization

because of numerical inaccuracies in the gradient information. The best minimum is
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Step Flow + Adjoint 
Evaluations 

Initial Sample 300 x 3 

Active Subspace 
Resample 

22 

Optimum Samples 5 

Total 925 

Step Flow + Adjoint 
Evaluations 

GBO Start 1 56 

GBO Start 2 28 

GBO Start 3 41 

GBO Start 4 34 

Total 159 

Active Subspace Gradient Based 

Table 5.1: Comparision of computational cost for Active Subspace- and
Gradient-Based Optimization for the ONERA M6 problem.

plotted in Figure 5.22b. It was able to achieve a 24.6% reduction in drag, with little

violation of the lift constraint.

In the active subspace, this design was located closest to the minimum estimated

by the surrogate model, which suggests that local refinement of the optimum esti-

mated by active subspace could have found a nearly similar result.

A comparison of cost for the two approaches are shown in Table 5.1. To be able

to compare a global optimization approach, more GBO random starts are needed to

execute a global survey comparable to that of the active subspace approach. Addi-

tionally, the active subspace surrogate model is useful beyond this initial optimization,

and could be provided to a multi-disciplinary analysis and optimization study, thus

amortizing the computational costs across many studies.
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5.3.3.4 Biparabolic Airfoil - Drag Minimization with Equivalent Area

Constraint

This is a major exmple of the thesis and demonstrates the usefulness of active sub-

spaces in surrogate based optimization. It uses the biparabolic test case to minimize

drag with an equivalent area constraint.

The setup for this optimization is to first pick an active subspace dimensionality

for each quantity of interest. After inspecting the eigenvalues and the testing errors

of surrogates in various active subspace dimensions, a basis of 10 for both drag and

equivalent area was chosen. Then applied is the optimization strategy introduced

by Equation 5.15 to manage the mapping between different objective spaces. Below,

Equation 5.24 applies this to the current design problem. The inactive space is weakly

regularized using a constraint on the z-space distance for each quantity of interest.

The optimization problem is run through a global optimizer, again CMA, and then

confirmed the results with local refinement using SLSQP. The resulting design vector

is sent to simulation to start a full space optimization problem with GBO.

given CD(x) ≈ g∗CD
(UT

CD
x), UCD

∈ R20×10

∆Ae(x) ≈ g∗∆Ae
(UT

∆Ae
x), U∆Ae ∈ R20×10

minimize
x

g∗CD
(UT

CD
x)

subject to 0.03 < xi < 0.03, i ∈ {1, ..., 20}
g∗∆Ae

(U∆Aex) ≤ c

||V T
CD

x||2 ≤ zCD

||V T
∆Ae

x||2 ≤ z∆Ae

(5.24)

There were 10 different configurations of the inactive space constraint to choose

this full space GBO start point. The configuration of these inactive constraints are

shown in Table 5.2. The result of the GBO trajectories is then shown in Figure 5.23.

These results are promising because some of the samples, which correlated to a in-

termediately relaxed z-space constraint around 0.1, were able to find a drag reduction

while strongly enforcing the equivalent area constraint. As shown by the random start

GBO experiment in Section 5.3.1, this would have seemed to be an unapproachable
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Table 5.2: Configuration of z-space constraints.

Sample Index zCD
z∆Ae

1 0.001 0.001
2 0.010 0.001
3 0.100 0.001
4 1.000 0.001
5 0.001 0.010
6 0.001 0.100
7 0.001 1.000
8 0.010 0.010
9 0.100 0.100
10 1.000 1.000

result with GBO.

In the case of Sample 6 that constrained equivalent area and reduced drag the

most, a summary of the flow and nearfield results is available in Figure 5.24. Note

that because of the coarse geometric parameterization, the optimizer was not able

to completely remove shocks on the upper part of the airfoil. More FFD control

points are needed to provide enough fidelity to maintain the lower airfoil shape while

modifying the upper shape, since control points affect both the upper and lower

surfaces.

This is a major result because it demonstrates the usefulness of Surrogate Based

Optimization with Active Subspaces. Even though the surrogate model is built in

a reduced parameterization, it is enough information to discover a region that may

contain a global minimum.
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Figure 5.23: Summary of GBO optimizations started from locations predicted by
surrogate based optimization in active subspaces, for various configurations of the
inactive space constraint.
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(a) Contours of density.

(b) Pressure coefficient at the nearfield
marker.

(c) Equivalent area at the nearfield
marker.

Figure 5.24: Results for a surrogate based optimization in active subspaces, used to
start a gradient based optimization. This result corresponds to sample 6 of Figure
5.23.
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5.3.3.5 Langley Supersonic Business Jet - Drag Minimization with Lift

and Equivalent Area Constraints

In this capstone optimization example of the thesis, a surrogate based optimization

problem is constructed in the active subspace to minimize drag with two constraints,

while avoiding a non-linear optimization in the 198 dimensional full space. The

problem is written below.

given CD(x) ≈ g∗CD
(UT

CD
x) = g∗CD

(xCD
), UCD

∈ R198×7

CL(x) ≈ g∗CL
(UT

CL
x) = g∗CL

(yCL
), UCL

∈ R198×5

∆Ae(x) ≈ g∗∆Ae
(UT

∆Ae
x) = g∗∆Ae

(y∆Ae), U∆Ae ∈ R198×5

minimize
yCD

,yCL
,y∆Ae

g∗CD
(yCD

)

subject to −0.4 < yCD,i < 0.4, i ∈ {1, ..., 7}
−0.4 < yCL,i < 0.4, i ∈ {1, ..., 5}
−0.4 < y∆Ae,i < 0.4, i ∈ {1, ..., 5}
g∗∆Ae

(y∆Ae) ≤ 1× 10−2

g∗CL
(yCL

) ≥ 0.10

c(yCD
,yCL

,y∆Ae) ≤ 1× 10−3

(5.25)

In this problem there are now three active subspaces. The dimension of these are

chosen according to the heuristics presented in Chapter 4. The behavior of the op-

timization is very sensitive to the dimension of these subspaces, as the spread of the

samples has an large effect on the behavior of the surrogate. In practice several config-

urations of the active subspace dimensions were chosen. The configuration presented

here represents the final result.

Another important parameter to adjust is the bounds of the active subspace vari-

ables. The bounds for this problem were chosen by inspecting a 2-D scatter plot of the

samples projected into the active subspace of the first two eigenvectors. A threshold

of 0.4 created a boundary that left a comfortable amount of data aroud the boundary.

The main goal here is to avoid leaving a large distance between the bounding hull of

the data projected in the active space, and the optimization boundary.
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The consistency constraint was formulated in Equation 5.18. The result of this

function is essentially a norm in the scaled activespace, and should be less than zero.

However a small threshold of 1× 10−3 is used in order to allow optimization programs

to explore designs. Similarly a small threshold is used for the Equivalent Areas.

The resulting deformations of this optimization is visualized, before sending the

design to CFD for a flow solution. This enables the user to test a few configurations on

the optimization problem, like active subspace dimension, and omit clearly infeasible

or unlikely optimized designs. Several designs can be generated and checked by eye.

Then the designs are sent to a server that evaluates the various performance metrics.

The deformation for the best design of this study is presented in Figure 5.25.

It is colored by displacement in Z-direction. Because the FFD paramterization is

setup such that the control points only move up and down, the only component

of displacement that is expected is the z-displacement, which is plotted via color

contours. The baseline shape is also shown in transparent gray.

The result shows a few physically expected motions that encouraged the design

to be retained for flow valuation. The major change is the fuselage, which is deflated

to minimize the wave-component of drag. This is especially apparent in the right

view in Figure 5.25c. A subtle trade is being made between twist and camber of

the wing. In trying to maintain equivalent area, the bottom surface of the wing was

largely unmoved, as shown in Figure 5.25b. Furthermore in Figure 5.25a, the light

blue regions of the leading edge indicate that it has drooped the leading edge, while

green regions at the mid-chord indicate only small movements. A large amount of the

design problem is likely being actuated here, as the deformation modes showed that

all three quantities of interest have modes including twist and camber with varying

degrees of importance.

The flow solutions for this design are presented in Figure 5.26a. The optimized

design reduced a strong pressure gradient on the upper surface of the wing. Addi-

tionally a plot of equivalent area distribution in the nearfield is given in Figure 5.26b.

Two azimuthal locations are plotted, zero (on the symmetry plane), and sixty de-

grees. The nearfield equivalent area is not tightly respected, however it could be seen

as an approximate results and one that could be further refined by employing gradient
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based optimization in the full space.

Table 5.3: Vehicle performance results for the optimization problem.

Metric Baseline Optimized
CD 0.0082 0.0070
CL 0.10 0.98

∆Ae 0.0 3.9

The summary of performance data is presented in Table 5.3. Using surrogate

models built in three and five dimensional active subspaces, the optimization algo-

rithm was able to identify the potential to reduce drag by fourteen percent, while

maintaining lift, and allowing a noticeable violation of the equivalent area functional.

In doing so it has created a cabin that would not be amenable to carrying passengers.

This is a constraint that could be added in future work.
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(a) Isometric top view. (b) Isometric bottom view.

(c) Right view.

Figure 5.25: Deformation of SBO estimated optimum.
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(a) Comparison of pressure coefficient contours for baseline and optimized
design.

(b) Comparison of equivalent area distributions for
baseline and optimized design.

Figure 5.26: Comparison of baseline and optimized designs.
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5.4 Summary

This chapter presented two approaches to surrogate based optimization for aerospace

design problems. The first approach used a surrogate model based on a gradient

enhanced Gaussian process regression, using two infill sampling criteria for adaptive

refinement of constrained optimization problems. This was applied to various analytic

and CFD based problems to demonstrate the ability to accelerate the convergence of

an optimization problem when design evaluations are the rate determining step. A

contribution here is in the integration of several ideas related to efficient global opti-

mization with Gaussian process regression to increase the robustness of the adaptive

refinement procedure.

The first approach was found only suitable for low dimensional design problems,

and only if the quantities of interest had similar amounts of variation along each input

dimension. In the case of high dimension, or if a subspace of inputs had very little

effect on the objective, the surrogate modeling procedure was shown to suffer.

The second approach addressed these issues by applying the active subspace

method to surrogate based optimization. It had been shown in the previous chap-

ter that active subspace surrogate models sufficiently approximate high dimensional

design problems in a reduced linear subspace. When applied to aerospace design

problems, it was found that surrogate models built in active subspaces could predict

the locations near local minimum, and when coupled with a gradient based optimiza-

tion, enabled the optimization of problems otherwise intractable via gradient based

optimization alone.



Chapter 6

Conclusion

The primary aim of this dissertation was to develop approaches that can bring high-

fidelity design optimization in to the preliminary design phase through the use of

surrogate based optimization and dimensionality reduction. Its contributions take a

step towards improving the ability of surrogate modeling to handle large numbers of

input variables. In doing so it has also discovered several useful tools for understand-

ing design behaviors. This chapter will conclude the dissertation by summarizing the

approach, highlighting the contributions, and outlining areas for future work.

6.1 Summary

This dissertation visited several classes of design problems. They were described in

terms of their setup, baseline solutions, and optimization formulations. There were

three classes of examples – analytic functions, two dimensional flow problems, and

three dimensional flow problems. The analytic examples contained standard test func-

tions like the Rosenbrock and Rastrigin functions, as well as two functions constructed

to demonstrate active subspaces. The two dimensional flow problems included the

NACA 0012 and Biparabolic airfoils. The three dimensional flow problems included

the ONERA M6 wing, the Langley supersonic business jet, and the N+2 supersonic

passenger jet.
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Several approaches were developed for surrogate modeling to enable a robust re-

gression procedure in the face of sparse data and inaccurate gradients. To improve the

hyperparameter learning process, a series of constraints were developed to encourage

the problem to land in a region of the marginal likelihood surface that was physically

representative of the data. The issue of gradient inaccuracies was then presented,

including an analysis of where it impacts the surrogate modeling process. To char-

acterize the gradient inaccuracies from adjoint methods used in this dissertation, a

surrogate-based gradient estimation technique was applied by analytically solving for

the gradient of a response surface fitted to a dense sampling of performance objec-

tives. This was useful for providing a physically relevant reference gradient for error

estimation, and allowed the estimation of a root-mean-squared error of the gradients

across the entire design space. These results were used as motivation to build upon

common noise model for GPR, modified to enable the independent treatment of ob-

jective and gradient noise terms, and constrained during the hyperparameter learning

process to ensure that objective information was honored before gradient information.

Next, a method was presented for reducing the dimensionality of high-dimensional

aerospace problems based upon the active subspace method. This involved identify-

ing and retaining a subset of eigenvectors from an eigenvalue analysis of the estimate

of the average outer product of the problem’s gradients. Several heuristics were sug-

gested to enable the selection of a reasonable number of active subspace dimensions.

The training errors of surrogate models built in active subspaces of varying dimension

were investigated. Across the two- and three-dimensional supersonic design problems

presented in this dissertation, all three were shown to have collapsed linear behaviors

for lift in one dimension, described with an angle of incidence mode on the lifting sur-

faces. Across all three problems, equivalent area was well described in one dimension

and had a predominantly quadratic behavior. Across all three problems, the behavior

of drag coefficient required several active subspace dimensions, anywhere between five

and ten.

Finally, two approaches to surrogate based optimization were presented for aerospace

design problems. The first approach used a surrogate model based on a gradient en-

hanced Gaussian process regression, using two infill sampling criteria for adaptive
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refinement of constrained optimization problems. This was applied to analytic and

CFD-based problems to demonstrate the ability to accelerate the convergence of an

optimization problem when design evaluations are the rate-determining step. The

second approach extended surrogate based optimization in to high dimension, on

the order of 200 variables, by using the active subspace method. When applied to

aerospace design problems, it was found that surrogate models built in active sub-

spaces could predict locations near local minimum, and when coupled with a gradient

based optimization, enabled the optimization of problems otherwise intractable via

gradient based optimization alone.

6.2 Contributions

This section will provide a concluding summary of the contributions made through

this dissertation.

First, it has advanced the perspective that inaccurate gradients can and

should be taken into account within gradient enhanced surrogate model-

ing. As explored by Forester [76], noise models are able to account for inaccuracies

encountered in objective functions obtained from numerical simulations. Shown in

Section 3.3.2.1, gradient bias errors naturally present in continuous adjoint formu-

lations warrant the separate treatment of objective and gradient training data. To

that end a traditional noise model based for GPR was modified to enable the inde-

pendent treatment of objective and gradient noise terms, and constrained during the

hyperparameter learning process to ensure that objective information was honored

before gradient information. Complimenting this contribution is the integration of a

series of hyperparameter constraints that encourage the learning problem to enable a

robust regression procedure in the face of sparse data and inaccurate gradients. De-

velopment of these approaches was largely presented in Section 3.2.4, and verification

of the approach was especially demonstrated in Section 3.3.2.2.

Second, this dissertation builds upon the a traditional refinement strat-

egy based on the expected improvement function, to improve the sample

efficiency of surrogate based optimization. One component of this contribution
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was modifying the original expected improvement formulation of Jones [119] with

the introduction of an a-priori conditioning that avoids selecting new samples in the

bounds and corners of the design space. The second component of this contribution

was the development of a two-phase strategy that starts with a global refinement

based on the modified expected improvement, and then a local refinement based on

pure exploitation by finding the predicted minimum. A heuristic was developed for

transitioning from the first phase to the second phase, and declaring convergence in

the second phase. The approaches were developed in Section 5.2.1, and were exercised

on both analytic and simulation based optimization problems in Section 5.3.2.

Third, in applying the active subspace method [99] this dissertation

discovers the presence of active subspaces for supersonic design problems.

These subspaces built from linear combinations of inputs reasonably modeled objec-

tive behavior of the lift coefficient, drag coefficient and equivalent area functional

in supersonic design problems. An important result was connecting the behavior

of active subspaces to classical supersonic theory in Section 4.3.1.2. Several coher-

ent physical features were found across several design problems in both two and

three dimensions, especially in Sections 4.3.1.1, 4.3.2.2, and 4.3.3.2. The coherence of

these results suggests the viability of the active subspace method in aerospace design

problems. Despite building very high parameterizations of the problem, there exist

reduced spaces in which a surrogate model could be applied for optimization.

Fourth, an algorithm is proposed for optimization in high-dimension

with surrogate models built in reduced dimension using active subspaces.

Several inverse maps were developed heuristically in Section 5.2.2 that enable the

linking of separate active subspaces for objectives and constraints, enabling surro-

gate based optimization in high dimension. Several design problems were explored,

for example in Sections 5.3.3.4 and 5.3.3.5, and it was shown that surrogate based

optimization in active subspaces could enable the optimization of problems otherwise

intractable via gradient based optimization alone.

Finally, many of the algorithms of this dissertation have been deposited

in open source. Interfaces for automatic evaluation of flow simulations were devel-

oped as part of the SU2 simulation suite [124]. A new package for Gaussian process
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regression called VyPy was created as part of this dissertation [86]. Lastly, develop-

ment input was provided to a package called PAUL developed by Constantine for the

active subspace method [103].

6.3 Future work

There are several areas available for future work and extension of this dissertation.

A formal mathematical investigation of the inverse mappings for optimization

in active subspaces is an important area for future work. In this dissertation, the

inverse maps were developed heuristically. A formal treatment of the problem could

identify mappings that include more appropriate consideration of the effects of this

approach to dimensionality reduction. For example, Constantine has suggested a

resampling method based on a Markov chain Monte Carlo in the active subspace [99].

Developments in this area can identify new mappings and advance an understanding

of the conditions under which they are viable.

Using active subspaces to pre-condition Gaussian process regression could be an

exciting direction in which to extend this work. The full eigenvector and eigenvalue

decomposition from the active subspace method can be used to rotate and scale the

inputs of the GPR covariance matrix, which would allow regression to be applied

on the full space including gradients, but with the reduced number of hyperparam-

eters suggested in this dissertation. It would be a more elegant combination of the

active subspace method and GPR and would further allow the use of adaptive re-

finement procedures. The possibility for this has been identified at by Constantine,

who was able to estimate anisotropic hyperparameters based on the active subspace

methods [55]. A potential difficulty that could be encountered in this endeavor is

managing the size of the covariance matrix with large numbers of samples in high di-

mension with gradient information. In the case of the Langley business jet problem,

which had 198 dimensions and 172 samples with gradients, the covariance matrix for

would be of size 34228 × 34228. As suggested by Yamazaki, parallelization of the

GPR equations can be beneficial [41]. Similarly here, consideration for the runtime

of the regression techniques will be needed, and the application of large scale linear
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solvers could be explored.

This dissertation could be extended to model surrogates involving varying Mach

number as an input, with a domain that extends from subsonic to supersonic regimes.

This would introduce an important transition in the transonic region that will be

difficult to model under stationary surrogate models. Methods for decomposing the

design space via Treed Kriging as explored by Nelson [71], or for warping the design

space via non-stationary covariance functions as explored by Paciorek [125], could

extend active subspaces with surrogate based optimization into these more complex

design problems.

Finally, surrogate models built in active subspaces could be applied to mission level

aircraft design analyses, such as SUAVE [126], to enable mission-level optimization

with high-fidelity analyses of next generation aircraft.
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Appendix

This appendix documents fundamentals for supersonic thin airfoil theory, and the

freeform deformation methodology.

A.1 Supersonic Thin Airfoil Theory

Assuming small deflections, which would result from a thin airfoil at small angles of

attack.

α ≈ 0

τ << c
(A.1)

Linear supersonic potential theory can be used to find analytic performance results

for thin airfoils. A major result of thin airfoil theory is that the pressure change, and

thus the pressure coefficient, on the surface of the airfoil is dependent on the surface

gradient. As shown by Anderson [127], the following relationships are attainable

under these assumptions.

Given an airfoil with upper and lower surfaces, normalized on a unit chord,

yu(x)

yl(x)

x ∈ [0, 1],

(A.2)
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then thin airfoil theory predicts that the upper and lower pressure coefficients Cpu

and Cpl are modeled according to

Cpu = +
2√

M∞ − 1

∂yu
,
∂x (A.3)

and

Cpl = − 2√
M∞ − 1

∂yl
∂x

. (A.4)

Here, M∞ is the freestream Mach number, and ∂yu
,
∂x and ∂yl

∂x
are the surface gradients

of the upper and lower airfoil respectively. Several performance metrics can be found

by integrating the pressure coefficients over the airfoil surface.

A.1.0.6 Lift Coefficient

The sectional lift coefficient cl is found by integrating the pressure coefficient,

cl =

∫ 1

0

Cpl(x)− Cpu(x)dx, (A.5)

where the above takes the airfoil as normalized on a unit chord length. The integral

simplifies to,

cl =
−2√

M∞ − 1
[yl(1)− yl(0) + yu(1)− yu(0)] . (A.6)

Knowing that the airfoil upper and lower surfaces meet at the tips of the airfoil, and

restricting to small angles of attack, there is the canonical result,

cl =
4√

M∞ − 1
α (A.7)

which is a statement that lift for supersonic thin airfoils at a constant Mach number

is only dependent on angle of attack.



A.1. SUPERSONIC THIN AIRFOIL THEORY 171

A.1.0.7 Drag Coefficient

The sectional drag coefficient can be found similarly, starting with

cd =

∫ 1

0

Cpu(x)
∂yu
∂x
− Cpl(x)

∂yl
∂x

dx

=
2√

M∞ − 1

∫ 1

0

(
∂yu
∂x

)2

−
(
∂yl
∂x

)2

dx

(A.8)

The remaining surface derivatives mean that the drag coefficient is dependent on

the shape of the airfoil. This dissertation explores a biparabolic airfoil. Here the

baseline shape for this analytic example will be parameterized only by maximum

thickness τ , and angle of attack α.

yu = −τ(x2 − x)− α(x− 1
2
)

yl = +τ(x2 − x)− α(x− 1
2
)

(A.9)

∂yu
∂x

= −2τ(x− 1)− α
∂yl
∂x

= +2τ(x− 1)− α
(A.10)

Incorporating this into the equation for drag coefficient, the integral becomes,

cd =
2√

M∞ − 1

∫ 1

0

(−2τ(x− 1)− α)2 + (+2τ(x− 1)− α)2dx (A.11)

and after integrating yields,

cd =
4
(

4
3
τ 2 + α2

)
√
M∞ − 1

(A.12)

which says that drag coefficient is dependent on the square of thickness and square

of angle of attack.

A.1.0.8 Equivalent Area

Supersonic potential theory also provides a relationship for equivalent area, which is

strongly tied to the change in boom loudness at the ground.
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The equivalent area relationship for a two-dimensional problem is given as,

Ae(x) =
4
√

2βr

γp∞M2
∞

∫ x

0

(p(t)− p∞)(x− t)
1
2dt, (A.13)

where β =
√
M2
∞ − 1 is the Prandtl-Glaurert factor. The integral is evaluated along

a line of interest parallel to the freestream, at a distance r below the body [35].

In linear supersonic potential theory, pressure disturbances propagate along char-

acteristics aligned with the Mach number, so the pressure distribution of the air-

foil will be equivalent to the pressure distribution sampled on the lower surface of

the airfoil, displaced downstream along a line with an angle of arcsin
(

1
M∞

)
against

freestream.

Bringing in this information to the equivalent area relationship, the following

integral is built,

Ae(x) =
√

2βr

∫ x

0

Cpl(t)(x− t)
1
2dt

=
√

2βr

∫ x

0

(2τ(2t− 1)− α)(x− t)
1
2dt,

(A.14)

which for an airfoil of unit chord length integrates to:

Ae(x) =
√

2βr
2

15
x

3
2 (2τ(4x− 5)− 5α) , x ∈ [0, 1]. (A.15)

A cost function is formulated based on the squared error of the equivalent area [31]

with:

∆Ae =
1

c

∫ c

0

(Ae(x)− At(x))2 dx (A.16)

where the goal is to minimize the difference between the current equivalent area Ae(x)

and the target equivalent area At(x).

Using the parameterization of the biparabolic airfoil given above, and setting an

equivalent area based on an airfoil with a given thickness τt and angle of attack αt,
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integrate for a unit chord length,

∆Ae =
√

2βr

∫ 1

0

2

15
x

3
2 (2τ(4x− 5)− 5α)− 2

15
x

3
2 (2τt(4x− 5)− 5αt) dx (A.17)

to find a cost function that behaves as:

∆Ae =

√
2βr

675
(44(τ − τt)2 + 108(τ − τt)(α− αt) + 75(α− αt)2), (A.18)

which has a paraboloid relationship on τ and α.

A.1.1 Freeform Deformation

The actual deformation of the surface is carried out by a separate geometry parametriza-

tion. In this paper, a Free-Form Deformation (FFD) strategy [58] is used. First, an

initial box encapsulating the wing to be redesigned is parameterized as a Bézier solid.

Then, a set of control points are defined on the surface of the box, the number of

which depends on the order of the chosen Bernstein polynomials. Locations inside

the solid box are parameterized by the following expression

X(u, v, w) =

l,m,n∑
i,j,k=0

Pi,j,kB
l
j(u)Bm

j (v)Bn
k (w), (A.19)

where u, v, w ∈ [0, 1], and Bi is the Bernstein polynomial of order i. The Cartesian

coordinates of the points on the surface of the object of interest (the wing) are then

transformed into parametric coordinates within the Bézier box.

Control points of the box become design variables, as they control the shape

of the solid, and thus the shape of the surface grid inside. The box enclosing the

geometry is deformed by modifying its control points, with all the points inside the

box inheriting a smooth deformation. Arbitrary changes to the thickness, sweep,

twist, etc. are possible for the design of an aerospace system. Once the deformation

has been applied, the new Cartesian coordinates of the object of interest can be

recovered by simply evaluating the mapping inherent in Eq. A.19.
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