

Surrogate Modeling Applications

Introduction to Multidisciplinary Design Optimization May 2014

Trent Lukaczyk

Goal: Improve aircraft performance by iteratively changing an aerodynamic shape

Common Approaches:

- Local Optimizers:
 - Gradient Based Algorithms
- Global Optimizers:
 - Genetic Algorithms
 - Particle Swarm Algorithms
- Surrogate Based Optimizers:
 - Gaussian Process Regression

Gaussian Process Regression

For Response Surface Modeling

Strengths

- + Non-parametric
- + Uncertainty of Fit
- + Gradient Information

Challenges

- Hyperparameter Tuning
- Numerical Stability
- Computational Cost
- High Dimensionality

A multivariate normal distribution with zero mean ...

$$\begin{bmatrix} f_p \\ f_k^* \end{bmatrix} \sim \mathcal{N}\left(0, \begin{bmatrix} k(x_p, x_q) & k(x_p, x_j^*) \\ k(x_k^*, x_q) & k(x_k^*, x_j^*) \end{bmatrix}\right)$$
$$\{ f_i(x_i) \mid i = 1, ..., n \}, \{ f_t^*(x_t^*) \mid t = 1, ..., m \}$$

... Conditioned with the known data ... $f|x^*, x, f \sim \mathcal{N}(f^*, \mathbb{V}[f^*])$

... Yields a system of linear equations that estimates an unknown function value

$$f_k^* = k(x_k^*, x_q) \, k(x_p, x_q)^{-1} \, f_p$$
$$\mathbb{V}[f_k^*] = \left(k(x_k^*, x_j^*) - k(x_k^*, x_q) \, k(x_p, x_q)^{-1} \, k(x_p, x_j^*)\right)_k$$

4

Gaussian Process Regression

Outline

Response Surface Methodologies for Low-Boom Supersonic Aircraft Design using Equivalent Area Distributions

AIAA MDAO 2012

Trent Lukaczyk Francisco Palacios Juan Alonso

Motivation

N+2 Supersonic Passenger Jet Concept

Reduce Boom Noise, Reduce Drag, Maintain Lift

Sonic Boom Shaping

Computational Tools

Gradient Based Design Procedure

Gaussian Process Regression

Kernel Function

$$k(x_p, x_q) = k(p, q) = \theta_1^2 \exp\left(-\frac{1}{2\theta_2^2} \sum_{z=1}^d (p_z - q_z)^2\right)$$
$$\{p_i, q_i, \frac{\partial}{\partial x_i} \mid i = 1, ..., d\}$$

$$\log p(f_p | x_p, \theta_h) = -\frac{1}{2} f_p^\top [\sigma]^{-1} f_p - \frac{1}{2} \log |[\sigma]| - \frac{n}{2} \log 2\pi$$

Gradients

$$k\left(\frac{\partial p}{\partial x_{v}},q\right) = \left.\frac{\partial k(p,q)}{\partial x_{v}}\right|_{q}$$
$$k\left(p,\frac{\partial q}{\partial x_{w}}\right) = \left.\frac{\partial k(p,q)}{\partial x_{w}}\right|_{p}$$
$$k\left(\frac{\partial p}{\partial x_{v}},\frac{\partial q}{\partial x_{w}}\right) = \left.\frac{\partial}{\partial x_{w}}\left(\frac{\partial k(p,q)}{\partial x_{v}}\right|_{q}\right)\right|_{p}$$

$$k(p,q) \to \begin{bmatrix} k(p,q) & k\left(p,\frac{\partial q}{\partial x_w}\right) \\ k\left(\frac{\partial p}{\partial x_v},q\right) & k\left(\frac{\partial p}{\partial x_v},\frac{\partial q}{\partial x_w}\right) \end{bmatrix} \qquad f_p \to \begin{bmatrix} f_p \\ \frac{\partial f_p}{\partial x_d} \end{bmatrix}$$

Noise Models

$$f_N^*(x) = f^*(x) + \epsilon$$
$$[k] \to [k] + [k_N]$$
$$[k_N] = \begin{bmatrix} \theta_3^2 I_{n',n'} & 0_{n',m'} \\ 0_{m',n'} & \theta_4^2 I_{m',m'} \end{bmatrix}$$

$$n' = n(1+d)$$
$$m' = m(1+d)$$

Our Approach to SBO

Our Approach to SBO

- Optimize one objective with constraints
- Two Adaptive Refinement Criteria
 - 1. Modified expected improvement
 - 2. Estimated optimum
- Computational Cost
 - Scale data and assume isotropic variation
 - Condense hyperparameter space to four variables
- Numerical Stability
 - Constrain noise hyperparameters to maintain a minimum amount of noise

Hyp. Description

- Θ_1 Nominal Variance
- Θ_2 Length Scale
- Θ_3 Noise in Objective Function
- Θ_4 Noise in Gradients
- Maximize marginal likelihood

 $\log p(f_p | x_p, \theta_h) = -\frac{1}{2} f_p^\top [\sigma(\theta_i)]^{-1} f_p - \frac{1}{2} \log |[\sigma(\theta_i)]| - \frac{n}{2} \log 2\pi$

- Becomes expensive in higher dimensions
 - requires inversion of (1+d)n x (1+d)n matrix at every evaluation

Hyp. Description

- Θ_1 Nominal Variance
- Θ_2 Length Scale
- Θ_3 Noise in Objective Function
- Θ_4 Noise in Gradients
- There could potentially be one length scale and one gradient noise parameter per dimension
- Scale data and assume isotropy to reduce computational expense

Hyperparameter Selection

Hyp. Description

- Θ_1 Nominal Variance
- Θ_2 Length Scale
- Θ_3 Noise in Objective Function
- Θ_4 Noise in Gradients

To improve numerical stability and robustness:

Motivation
Avoid interpreting data as noise
Maintain well conditioned numerics
Maintain well conditioned numerics
Honor function value before gradient

Our Approach to SBO

- Optimize one objective with constraints
- Two Adaptive Refinement Criteria
 - 1. Modified expected improvement
 - 2. Estimated optimum
- Computational Cost
 - Scale data and assume isotropic variation
 - Condense hyperparameter space to four variables
- Numerical Stability
 - Constrain noise hyperparameters to maintain a minimum amount of noise

Modified Expected Improvement

Traditional expected improvement ...

$$E[I(x)] = E[\max(f_{\min} - F, 0)]$$

= $(f_{\min} - f^*)\Phi\left(\frac{f_{\min} - f^*}{s^*}\right) + s^*\phi\left(\frac{f_{\min} - f^*}{s^*}\right)$

Condition by probability of constraint feasibility ...

$$\mathbf{P}[c(x) < 0] = \phi\left(\frac{c^*}{s_c^*}\right)$$

Avoid boundaries of the design space ...

$$B(x) = 1 - \exp\left(-\frac{1}{2}\min\left(\frac{x_k - x_k^l}{b_k^2}, \frac{x_k^u - x_k}{b_k^2}, k = 1, ..., d\right)\right)$$

Combine to yield an infill sampling criteria ...

$$ISC_1(x) = \mathbf{E} \left[I(x) \right] \cdot \mathbf{P}[c(x) < 0] \cdot \mathbf{B}(x)$$
$$x_{new} = x \left| \max \left(ISC_1(x) \right) \right|$$

Modified Expected Improvement

 $ISC_1(x) = \mathbf{E}\left[I(x)\right] \cdot \mathbf{P}[c(x) < 0] \cdot \mathbf{B}(x)$

Expected Improvement

Probability of Feasibility

Boundary Buffer

Example Refinement

Example Refinement

31

35

NACA 0012 Example

- 5% Thick parabolic airfoil
- 10 Hicks-Hinne bump functions ,
- Minimize drag
- Maintain equivalent area
 - Allowed 5% constraint violation
 - Sampled 2 chord-lengths below
- Ma 1.7, 0° AoA

N+2 Geometry

- 1.3 million node drag mesh
- 9 FFD contol points on upper wing
- Ma 1.7, 2.1° AoA

Our Approach to SBO

- Optimize one objective with constraints
- Two Adaptive Refinement Criteria
 - 1. Modified expected improvement
 - 2. Estimated optimum
- Computational Cost
 - Scale data and assume isotropic variation
 - Condense hyperparameter space to four variables
- Numerical Stability
 - Constrain noise hyperparameters to maintain a minimum amount of noise

Questions?

Managing Gradient Inaccuracies

while Enhancing Optimal Shape Design Methods

Trent Lukaczyk, Francisco Palacios, Juan J. Alonso Department of Aeronautics & Astronautics Stanford University

> 51st AIAA Aerospace Sciences Meeting Grapevine, TX January 10, 2013

Motivation

N+2 Supersonic Passenger Jet Concept

Gradient Accuracy Evaluation

Noise-Tolerant Response Surfaces

BACKGROUND

Optimization Approaches

Gradient-Based Optimization (GBO)

Surrogate-Based Optimization (SBO)

5

NACA 0012 Test Problem

- NACA 0012, Ma=0.8, AoA=1.25°
- Euler second order
- Surface based continuous adjoint formulation
- Converged 10 orders of magnitude
- Hicks-Henne bump function design variables

Contours of Density

Contours of Drag Adjoint Density

Minimize drag while maintaining a minimum lift and pitching moment

Contours of Density

GBO Convergence Issues

- Baseline grid
- Adjoint and finite difference gradients
- 10 Hicks-Henne Bumps
- Plotting all CFD evaluations, including sub-iterations
- Performance set back loosely indicative of inaccurate update to Hessian

Mesh Adaptation

Mesh Adaptation

GBO Convergence Issues

- Adaptation with different gradient approaches
- Adjoint suffers from poor sub-iterations near optimum
- Clear dependence of problem on finite difference step
- Larger step appears more robust to changes in discretization

Optimization Approaches

Gradient-Based Optimization (GBO)

Surrogate-Based Optimization (SBO)

RSM Generation Issues

X2

- RSM enhanced with Adjoint Gradients
- Two Hicks-Henne Bump Functions

RSM Generation Issues

Gradient Accuracy Evaluation

Noise-Tolerant Response Surfaces

Reference Gradient

- NACA 0012 Test Case
- One Hicks-Henne Bump Function
- 41 Evaluations in
 X ∈ [-0.02, 0.02]

Reference Gradient

• RSM with only direct data used to estimate reference gradient

Baseline Mesh Gradients

• Adjoint gradients show bias errors, Finite difference gradients show noise

Adapted Mesh Gradients

• Finite difference gradients are more robust to changes in discretization

Gradient Accuracy Evaluation

Noise-Tolerant Response Surfaces

RSM Generation Issues

Adjoint Gradients

Mean Errors: Lift Objective: 5.5%; Lift Gradient: 50.8%; Drag Objective: 4.8%; Drag Gradient: 12.8%

X2

X1

(Two Hicks-Henne Bump Functions)

71

The GPR derivation yields a system of linear equations that estimates an unknown function value ...

$$f_k^* = k(x_k^*, x_q) \, k(x_p, x_q)^{-1} \, f_p$$

To include gradient information, we use the derivatives of the correlation model...

$$k\left(\frac{\partial p}{\partial x_{v}},q\right) = \left.\frac{\partial k(p,q)}{\partial x_{v}}\right|_{q}$$
$$k\left(p,\frac{\partial q}{\partial x_{w}}\right) = \left.\frac{\partial k(p,q)}{\partial x_{w}}\right|_{p}$$
$$k\left(\frac{\partial p}{\partial x_{v}},\frac{\partial q}{\partial x_{w}}\right) = \left.\frac{\partial}{\partial x_{w}}\left(\frac{\partial k(p,q)}{\partial x_{v}}\right|_{q}\right)\right|_{p}$$

This assumes an exact correlation between function and gradient!

Rasmussen, 2006

geGPR with Noise Models

Including a model of independent Gaussian noise ...

$$f_N^*(x) = f^*(x) + \epsilon$$

... requires us to update our correlation model ...

$$[k] \to [k] + [k_N]$$
$$[k_N] = \begin{bmatrix} \theta_3^2 I_{n',n'} & 0_{n',m'} \\ 0_{m',n'} & \theta_4^2 I_{m',m'} \end{bmatrix} \begin{array}{c} n' = n(1+d) \\ n' = m(1+d) \\ m' = m(1+d) \end{array}$$

... which adds two parameters that control the amount of deviation from functions and gradients.

RSM Generation Issues

Adjoint Gradients, No Noise

Finite Addig for the formed for a different set of the part of the

Gradient Accuracy Evaluation

Noise-Tolerant Response Surfaces

Motivation

Active Subspaces for Shape Optimization

Trent Lukaczyk, Francisco Palacios, Juan J. Alonso Department of Aeronautics & Astronautics Stanford University

Paul G. Constantine

Department of Applied Mathematics and Statistics Colorado School of Mines

> 52st AIAA Aerospace Sciences Meeting National Harbor, MD January 16, 2014

Goal: Improve aircraft performance by iteratively changing an aerodynamic shape

Common Approaches:

- Local Optimizers:
 - Gradient Based Algorithms
- Global Optimizers:
 - Genetic Algorithms
 - Particle Swarm Algorithms
- Surrogate Based Optimizers:
 - Gaussian Process Regression

Problem: Realistic shape design problems require order-100+ design variables

Common Challenges:

- Local Optimizers:
 - Locked in local minima
- Global Optimizers:
 - Tens of thousands of design evaluations
- Surrogate Based Optimizers:
 - Not predictive above ~10 design variables

Solution: Exploit redundant variables and global trends to estimate objectives in a smaller subspace

Fundamental Assumption

"A low-dimensional subspace of the inputs that captures global trends of the objective"

- Works by finding eigenvectors of objective gradients
- Comparable to Principal Components Analysis

- PCA: reduce output space dimension
- Active Subspace: reduce input space dimension

Constantine, P. G., Dow, E., and Wang, Q., "Active subspace methods in theory and practice: applications to kriging surfaces," 2013.

Active Subspace Based Design

Active Subspace Construction

With a set of design samples, estimate the covariance matrix of the objective's gradients: $C \approx \frac{1}{M} \sum_{i=1}^{M} \nabla_{\mathbf{x}} f_i \nabla_{\mathbf{x}} f_i^T$

Decompose the matrix into eigenvalues and eigenvectors:

 $\boldsymbol{C} = \boldsymbol{W} \boldsymbol{\Lambda} \boldsymbol{W}^T$

Sort these by decreasing eigenvalue, and partition them into an active space U and inactive space V:

$$oldsymbol{W} \ = \ egin{bmatrix} oldsymbol{U} & oldsymbol{V} \end{bmatrix} \ egin{array}{cc} \Lambda \ = \ egin{bmatrix} \Lambda_1 \ & \Lambda_2 \end{bmatrix}$$

The columns of U define the active subspace, and designs can be projected using the forward map:

$$= oldsymbol{U}^{ op} \mathbf{x}^{ op}$$

Mapping

aerospace**design**lab

Pseudo inverse (orthogonal basis)

Bounded injection

given $\mathbf{y} = \mathbf{y}_{select}$ minimize $\mathbf{0}^{\top}\mathbf{x}$ (a dummy function)subject to $lb_i < \mathbf{x}_i < ub_i$ $\mathbf{y} = \boldsymbol{U}^T \mathbf{x}$ yield \mathbf{x}

Solvable by linear program

 Advanced Mappings Example: given $\mathbf{y}_a = \mathbf{y}_{select}$ — Drag Surrogate $- f_a(\mathbf{x}) \approx q_a(\mathbf{y}_a)$ - $f_b(\mathbf{x}) \approx g_b(\mathbf{y}_b)$ - Lift Surrogate - $\mathbf{y}_a = \boldsymbol{U}_a^T \mathbf{x}, \ \boldsymbol{U}_a \in \mathcal{R}_{m \times k_a}$ - Drag Subspace - $\mathbf{y}_b = \mathbf{U}_b^T \mathbf{x}, \ \mathbf{U}_b \in \mathcal{R}_{m \times k_b}$ ----- Lift Subspace minimize 0, (a dummy function) subject to $lb_i < \mathbf{x}_i < ub_i, i \in \{0, ..., m\}$ $\mathbf{y}_a = \boldsymbol{U}_a^T \mathbf{x}$ $- g_b(\boldsymbol{U}_b \mathbf{x}) \leq c$ ------Lift Constraint yield **x**

Construct one subspace for each objective

aerospace**design**lab

DESIGN PROBLEM

ONERA M6 Geometry

A Standard Test Case for Transonic Fixed Wings

Schmitt, V. and F. Charpin, "Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers," *Experimental Data Base for Computer Program Assessment.* Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979.

ONERA M6 Problem

ONERA M6 Problem

Gaussian Process Regression

for Surrogate Based Optimization

Trent Lukaczyk, T., Palacios, F., and Alonso, J. J., "Managing Gradient Inaccuracies while Enhancing Response Surface Models," 51st AIAA Aerospace Sciences Meeting and Exhibit, Grapevine, TX, January 2013.

DESIGN EXPLORATION

Active Subspace Construction

Active Subspace Construction

Design of Experiments

ONERA-M6 Wing Test Case

- **50 FFD control points** with motion in z-direction
- Latin Hypercube Sampling 300 Samples in bounding box $x_i \in [-0.05, 0.05], i = \{1, ..., 50\}$

- **CFD evaluations** for Direct Flow, Drag Adjoint, Lift Adjoint
 - High performance computing can exploit parallel sampling

Eigenvalue Decay

Selecting Subspace Dimension

Active Subspace Construction

Project into Active Subspace

Lift Coefficient in 1-D

Lift collapses into 1-D with a linear trend

Project into Active Subspace

Drag Coefficient in 2-D

Dim.	Training Error
1	8.3%
2	5.1%
	•••
5	2.9%
6	2.5%

Model in 5-D, Explore in 2-D

Active Subspace Construction

Resampling for Surrogates

Active Subspace Construction

Final Surrogate Model

- Sample 1: used to find the active subspace
- Sample 2: used to produce a surrogate model
- Each point on the surrogate should have a feasible lift, and a minimum drag for that location

Constrained Design Exploration

- Two active-space variables for drag, GPR surrogate
- Identifies feasible region in drag space, given lift constraint
 - Surrogate can be used to estimate optimal designs

OPTIMIZATION RESULTS

Constrained Optimization

New samples near estimated optimum

Surrogate model predicts optimum in 2-D
 Locations are injected into 50-D

Constrained Optimization

The Predicted Optimum

 $C_D = 0.0101, C_L = 0.2786$

Constrained Optimization

14.4% Drag Reduction, 2.7% Lift Reduction

Compared to GBO

A Gradient-Based Optimum

 $C_D = 0.0089, C_L = 0.2868$

Compared to GBO

 $C_{\rm D} = 0.0101, \, C_{\rm L} = 0.2786$

 $C_D = 0.0089, C_L = 0.2868$

GBO still out-performs locally

	~+-
\mathbf{O}	5 1

Active Subspace		Gradient Based	
Step	Flow + Adjoint Evaluations	Step	Flow + Adjoint Evaluations
Initial Sample	300 x 3	GBO Start 1	56
Active Subspace	22	GBO Start 2	28
Resample		GBO Start 3	41
Optimum Samples	5	GBO Start 4	34
Total	925	Total	159

- Addresses problems faced while using surrogate models in dimensions greater than order ten
- Enables design exploration in low dimension and visualization in two dimensions
- Novel approach to mapping between coupled subspaces of a design problem

Surrogate Modeling Tools

VyPy github.com/aerialhedgehog/VyPy

Objective

- Y,DY = Rosenbrock_Function(X)
- Train = VyPy.Training(XB,X,Y,DY)
- Kernel = VyPy.Kernels.Gaussian(Train)
- Model_Y = VyPy.Modeling(Train,Kernel)

Efficient Global Optimization

```
Sample = VyPy.Sampling(Model_Y,Func_Y)
Sample.Optimize()
```


Ongoing Work

- Complex design problems (sonic boom)
- Poorly behaved objectives
- Mode visualization

Ongoing Work

Active Subspace Mode Visualization

To provide design insight

