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Goal: Improve aircraft performance by 
iteratively changing an aerodynamic shape 

Optimal Shape Design 

Common Approaches: 
• Local Optimizers: 

–  Gradient Based Algorithms 
• Global Optimizers:  

– Genetic Algorithms 
– Particle Swarm Algorithms 

• Surrogate Based Optimizers:  
– Gaussian Process Regression 
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Gaussian Process Regression 

Fit 

Uncertainty 

Strengths 
  + Non-parametric 
  + Uncertainty of Fit 
  + Gradient Information 
Challenges 
  – Hyperparameter Tuning 
  – Numerical Stability 
  – Computational Cost 
  – High Dimensionality 

For Response Surface Modeling 
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Gaussian Process Regression 
A multivariate normal distribution with zero mean … 

… Conditioned with the known data … 

… Yields a system of linear equations  
that estimates an unknown function value 
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Gaussian Process Regression 

5 

Rasmussen, 2006  



Outline 
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Managing Gradient 
Inaccuracies 

Gradient Enhanced 
Response Surfaces 

Managing High 
Dimensional Spaces 



Response Surface Methodologies 
for Low-Boom Supersonic Aircraft 

Design using Equivalent Area 
Distributions 

AIAA MDAO 2012 
 

Trent Lukaczyk 
Francisco Palacios 

Juan Alonso 
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Motivation 

  Reduce Boom Noise, Reduce Drag, Maintain Lift 

N+2 Supersonic Passenger Jet Concept 
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Cruise: 
Ma 1.6 – 1.8 

Sonic Boom: 
65-70 PLdB 

Fuel Efficiency: 
3 pax-mi/lbs fuel 

Range: 
4000 nmi 

Payload: 
35-70 pax 



Sonic Boom Shaping 

  CFD-based equivalent area inverse design 
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Adjoint Solver 

 
• Gradient Projection 
• Python Wrappers 

 

• Under active development by the 
Aerospace Design Lab 

 

http://su2.stanford.edu 

And More 

Computational Tools 

Direct Solver 

Mesh Deformation 
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Mesh 
Deformation 

Signature 
Extraction Ae Calculation 

Adjoint Solver Direct Solver 

flow solution 
adjoint solution 

design parameters 
cost/constraint functions 

Gradient Based Design Procedure 

Gradient Module 

To the 
optimizer 

Baseline 
Mesh 

From the optimizer 

11 



Gaussian Process Regression 
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Rasmussen, 2006  



Kernel Function 
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Gradients 
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Noise Models 
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Our Approach to SBO 
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Our Approach to SBO 

• Optimize one objective with constraints 
• Two Adaptive Refinement Criteria 

1. Modified expected improvement 
2. Estimated optimum 

• Computational Cost 
– Scale data and assume isotropic variation 
– Condense hyperparameter space to four variables 

• Numerical Stability 
– Constrain noise hyperparameters to maintain a 

minimum amount of noise 
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Hyperparameter Selection 
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• Maximize marginal likelihood 

 
• Becomes expensive in higher dimensions 

– requires inversion of (1+d)n x (1+d)n matrix at 
every evaluation 
 

Hyp. Description 
ϴ1 Nominal Variance 
ϴ2 Length Scale 
ϴ3 Noise in Objective Function 
ϴ4 Noise in Gradients 



Hyperparameter Selection 
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• There could potentially be one length scale 
and one gradient noise parameter per 
dimension 

• Scale data and assume isotropy to reduce 
computational expense 

Hyp. Description 
ϴ1 Nominal Variance 
ϴ2 Length Scale 
ϴ3 Noise in Objective Function 
ϴ4 Noise in Gradients 



Hyperparameter Selection 
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To improve numerical stability and robustness: 

Hyp. Description 
ϴ1 Nominal Variance 
ϴ2 Length Scale 
ϴ3 Noise in Objective Function 
ϴ4 Noise in Gradients 

Constraint Motivation 
ϴ3 /ϴ1 < 1e-1 Avoid interpreting data as noise 
ϴ3 /ϴ1 > 1e-8 Maintain well conditioned numerics 
rcond([σ]) > 1e-10 Maintain well conditioned numerics 
ϴ3 < ϴ4 Honor function value before gradient 



Our Approach to SBO 

• Optimize one objective with constraints 
• Two Adaptive Refinement Criteria 

1. Modified expected improvement 
2. Estimated optimum 

• Computational Cost 
– Scale data and assume isotropic variation 
– Condense hyperparameter space to four variables 

• Numerical Stability 
– Constrain noise hyperparameters to maintain a 

minimum amount of noise 
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Modified Expected Improvement 
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Traditional expected improvement …  

Condition by probability of constraint feasibility … 

Avoid boundaries of the design space … 

Combine to yield an infill sampling criteria … 



Modified Expected Improvement 
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Example Refinement 
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Example Refinement 
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N_Samples = 4 
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N_Samples = 5 
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N_Samples = 6 
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N_Samples = 7 
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N_Samples = 8 

30 



N_Samples = 9 
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N_Samples = 10 
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N_Samples = 11 
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N_Samples = 12 
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N_Samples = 13 
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NACA 0012 Example 
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2 Hicks-Hinne bump functions 
Minimize drag 
Maintain CL > 0.328 
Ma 0.3, 1.25° AoA 

 



Parabolic Airfoil Example 
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• 5% Thick parabolic airfoil 
• 10 Hicks-Hinne bump functions 
• Minimize drag 
• Maintain equivalent area 

– Allowed 5% constraint violation  
– Sampled 2 chord-lengths below 

• Ma 1.7, 0° AoA 
 



Parabolic Airfoil Example 
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Parabolic Airfoil Example 
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Parabolic Airfoil Example 
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Baseline Unconstrained Constrained 

Cd = 0.00965 Cd = 0.00029 Cd = 0.00376 



Parabolic Airfoil Example 
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N+2 Geometry 
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N+2 Drag Example 
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• 1.3 million node drag mesh 
• 9 FFD contol points on upper wing 
• Ma 1.7, 2.1° AoA 



N+2 Drag Example 
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Method Improvement Iterations 

SBO 4.59% 27 

GBO 4.55% 47 



N+2 Drag Example 

46 



N+2 Drag Example 
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N+2 Drag Example 
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Our Approach to SBO 

• Optimize one objective with constraints 
• Two Adaptive Refinement Criteria 

1. Modified expected improvement 
2. Estimated optimum 

• Computational Cost 
– Scale data and assume isotropic variation 
– Condense hyperparameter space to four variables 

• Numerical Stability 
– Constrain noise hyperparameters to maintain a 

minimum amount of noise 
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Questions? 
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Managing Gradient Inaccuracies  
while Enhancing Optimal Shape Design Methods 
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Trent Lukaczyk, Francisco Palacios, Juan J. Alonso 
Department of Aeronautics & Astronautics 

Stanford University 

51st AIAA Aerospace Sciences Meeting 
Grapevine, TX 

January 10, 2013 



Motivation 
N+2 Supersonic Passenger Jet Concept 
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Outline 
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Noise-Tolerant 
Response Surfaces 

Gradient Accuracy 
Evaluation 



BACKGROUND 
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Optimization Approaches 
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Gradient-Based 
Optimization (GBO) 

Surrogate-Based 
Optimization (SBO) 

SciPy SLSQP 
Kraft, 1994 

In-house geGPR  
Lukaczyk, 2012 

Lambe and Martins, 2012. 



NACA 0012 Test Problem 
• NACA 0012, Ma=0.8, AoA=1.25⁰ 
• Euler second order 
• Surface based continuous adjoint formulation 
• Converged 10 orders of magnitude 
• Hicks-Henne bump function design variables 
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Contours of Density Contours of Drag Adjoint Density 



NACA 0012 Test Problem 
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CD(x) 

x ϵ Rn 

CL(x) > 0.3282 

CMZ(x) > 0.0341 

Min. 

 

s.t. 

Contours of Density 

Minimize drag while maintaining a 
minimum lift and pitching moment 

 



GBO Convergence Issues 
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• Baseline grid 
• Adjoint and finite 

difference gradients 
• 10 Hicks-Henne Bumps 
• Plotting all CFD 

evaluations, including 
sub-iterations 

• Performance set back 
loosely indicative of 
inaccurate update to 
Hessian 
 



Coarse Baseline 

10.2K Cells 

Mesh Adaptation 
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Isotropically Refined 

200.1K Cells 



Coarse Baseline 

10.2K Cells 

Direct Adapted 

16.4K Cells 

Adjoint Adapted 

25.7K Cells 

Mesh Adaptation 
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GBO Convergence Issues 
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• Adaptation with 
different gradient 
approaches 

• Adjoint suffers from 
poor sub-iterations near 
optimum 

• Clear dependence of 
problem on finite 
difference step 

• Larger step appears 
more robust to changes 
in discretization 
 



Optimization Approaches 
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Gradient-Based 
Optimization (GBO) 

Surrogate-Based 
Optimization (SBO) 

Lambe and Martins, 2012. 



RSM Generation Issues 
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• RSM enhanced with Adjoint Gradients 
• Two Hicks-Henne Bump Functions 
• 10x10 grid of simulations 



RSM Generation Issues 
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• RSM enhanced with Adjoint Gradients 
• Two Hicks-Henne Bump Functions 
• LHC sampled simulations 



Outline 
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Noise-Tolerant 
Response Surfaces 

Gradient Accuracy 
Evaluation 



Reference Gradient 
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• NACA 0012 Test Case 
• One Hicks-Henne Bump 

Function 
• 41 Evaluations in  

X  ϵ  [-0.02 , 0.02] 



Reference Gradient 
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• RSM with only direct data used to estimate reference gradient 

( One Hicks-Henne Bump Function ) 



Baseline Mesh Gradients 
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• Adjoint gradients show bias errors, Finite difference gradients show noise 

( One Hicks-Henne Bump Function ) 



Adapted Mesh Gradients 
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• Finite difference gradients are more robust to changes in discretization 

( One Hicks-Henne Bump Function ) 



Outline 
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Noise-Tolerant 
Response Surfaces 

Gradient Accuracy 
Evaluation 



RSM Generation Issues 
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Adjoint Gradients 

( Two Hicks-Henne Bump Functions ) 



geGPR Formulation 
The GPR derivation yields a system of linear equations that 

estimates an unknown function value … 
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This assumes an exact correlation between  
function and gradient! 

To include gradient information, we use the derivatives of the 
correlation model… 

Rasmussen, 2006 



geGPR with Noise Models 
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Including a model of independent Gaussian noise … 

… requires us to update our correlation model … 

… which adds two parameters that control the amount of 
deviation from functions and gradients. 

Rasmussen, 2006 



RSM Generation Issues 
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Adjoint Gradients, θ3,4=1e-3  

Adjoint Gradients, No Noise 

Finite-Difference Gradients (Step:1e-3) 



Outline 
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Noise-Tolerant 
Response Surfaces 

Gradient Accuracy 
Evaluation 



Motivation 
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Active Subspaces for  
Shape Optimization 

77 
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52st AIAA Aerospace Sciences Meeting 
National Harbor, MD 

January 16, 2014 



Goal: Improve aircraft performance by 
iteratively changing an aerodynamic shape 

Optimal Shape Design 

Common Approaches: 
• Local Optimizers: 

–  Gradient Based Algorithms 
• Global Optimizers:  

– Genetic Algorithms 
– Particle Swarm Algorithms 

• Surrogate Based Optimizers:  
– Gaussian Process Regression 
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Problem: Realistic shape design problems 
require order-100+ design variables 

Curse of Dimensionality 

Common Challenges: 
• Local Optimizers:  

– Locked in local minima 
• Global Optimizers:  

– Tens of thousands of design  
evaluations 

• Surrogate Based Optimizers:  
– Not predictive above ~10 design variables 

79 



Dimensionality Reduction 

Example: 
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Solution: Exploit redundant variables and 
global trends to estimate objectives in a 

smaller subspace 



Fundamental Assumption 
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ACTIVE SUBSPACE 
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“A low-dimensional subspace of the inputs 
that captures global trends of the objective” 

Active Subspace 
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Constantine, P. G., Dow, E., and Wang, Q., “Active subspace methods in theory and practice: 
applications to kriging surfaces," 2013. 

• Works by finding eigenvectors of 
objective gradients 

• Comparable to Principal 
Components Analysis 
– PCA: reduce output space dimension 
– Active Subspace: reduce input space 

dimension 



Active Subspace Based Design 
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Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 

Apply Surrogate Model 



Active Subspace Construction 
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With a set of design samples, estimate the covariance matrix of 
the objective’s gradients: 

Decompose the matrix into eigenvalues and eigenvectors: 

Sort these by decreasing eigenvalue, and partition them into an 
active space U and inactive space V: 

The columns of U define the active subspace, and designs can be 
projected using the forward map: 
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MAPPING 



Mapping 
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Inverse map 
??? 

Many x for each y 

Full space 
high dimension 

 

Active subspace  
low dimension 

 

Forward map  
 

One y for each x 



Inverse Mapping 
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Inverse map 

 

Full space 
high dimension 

 

Active subspace  
low dimension 

 
  May not be bounded  

in the full space 

Pseudo inverse 
(orthogonal basis) 

• A simple injection 



Inverse Mapping 

• Bounded injection 
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Inverse map 

 

Full space 
high dimension 

 

Active subspace  
low dimension 

 
  Solvable by linear program 



Inverse Mapping 

• Advanced Mappings 
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  Construct one subspace for each objective 

Example: 

Drag Subspace 
Lift Subspace 

Drag Surrogate 
Lift Surrogate 

Lift Constraint 
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DESIGN PROBLEM 



ONERA M6 Geometry 
A Standard Test Case for Transonic Fixed Wings 

ONERA 

Schmitt, V. and F. Charpin, "Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers," Experimental Data 
Base for Computer Program Assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979. 



ONERA M6 Problem 
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Direct Solution 

Adjoint Solution Mesh Deformation 

 
 Optimization Problem 

Simulation Conditions 



http://su2.stanford.edu 
 

Open Source and Actively Developed  
by the Aerospace Design Lab 

 

ONERA M6 Problem 
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Mesh Deformation 

Direct Solution 

Adjoint Solution 



Gaussian Process Regression 

Important Attributes 
  + Non-parametric 
  + Uncertainty of Fit Available 
  + Can Model Noisy Data 
  + Gradient Information 
  -  Struggles with D>10 

for Surrogate Based Optimization 
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Fit 

Uncertainty 

Trent Lukaczyk, T. , Palacios, F., and Alonso, J. J., “Managing Gradient Inaccuracies while Enhancing Response Surface Models,“ 51st AIAA 
Aerospace Sciences Meeting and Exhibit, Grapevine, TX, January 2013. 
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DESIGN EXPLORATION 



Active Subspace Construction 
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Apply Surrogate Model 

Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 



Active Subspace Construction 
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Apply Surrogate Model 

Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 



Design of Experiments 

ONERA-M6 Wing Test Case 
• 50 FFD control points with 

motion in z-direction 
• Latin Hypercube Sampling 

300 Samples in bounding box 
xi ϵ [-0.05, 0.05], i = {1,…,50} 

• CFD evaluations for Direct Flow, 
Drag Adjoint, Lift Adjoint 
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  High performance computing can exploit 
parallel sampling 



Eigenvalue Decay 
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Selecting Subspace Dimension 
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User’s Choice 

  Choose 1-D Lift, and 5-D Drag 



Active Subspace Construction 
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Apply Surrogate Model 

Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 



Project into Active Subspace 
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 Lift collapses into 1-D with a linear trend 

Lift Coefficient in 1-D 

Dim. Training 
Error 

1 2.6% 
2 2.3% 
3 2.2% 
4 2.1% 



Project into Active Subspace 
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 Model in 5-D, Explore in 2-D 

Drag Coefficient in 2-D 

Dim. Training 
Error 

1 8.3% 
2 5.1% 
… … 
5 2.9% 
6 2.5% 



Active Subspace Construction 

105 

Apply Surrogate Model 

Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 



Resampling for Surrogates 
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Construct a Feasibility Hull 
An n-dimensional polygon 
which bounds the feasible 
space for this design problem. 

 
For each grid sample, at least one 

point in the full space: 
1. Projects to the given point in 

the drag active subspace. 
2. Is contained in the full-space 

bounding hyper-cube. 
3. Has a lift, estimated in the lift 

active subspace, that is 
feasible. 

Drag Feasible Space 



Resampling for Surrogates 
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Drag Feasible Space 
Coarsen the sample grid 

with a mesh 
 
Inject these points into the 

full space 
 
Evaluate with CFD  

(only the direct solution) 



Active Subspace Construction 
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Apply Surrogate Model 

Design Space Sampling 

Project into Active Subspace 

Eigenvalue Decomposition 

Resample in Active Subspace 



Final Surrogate Model 
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• Sample 1: used to find the 
active subspace 
 

• Sample 2: used to produce a 
surrogate model 
 

• Each point on the surrogate 
should have a feasible lift, 
and a minimum drag for that 
location 



Constrained Design Exploration 
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• Two active-space variables for drag, GPR surrogate 
• Identifies feasible region in drag space, given lift constraint 
 Surrogate can be used to estimate optimal designs 
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OPTIMIZATION RESULTS 



Constrained Optimization 
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New samples near estimated optimum 

 Surrogate model predicts optimum in 2-D 
 Locations are injected into 50-D 



Constrained Optimization 
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The Predicted Optimum 

CD = 0.0101, CL = 0.2786 



Constrained Optimization 
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CD = 0.0118, CL = 0.2864 CD = 0.0101, CL = 0.2786 

Baseline Design Active Subspace Optimum 

  14.4% Drag Reduction, 2.7% Lift Reduction 



Compared to GBO 
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A Gradient-Based Optimum 

CD = 0.0089, CL = 0.2868 



Compared to GBO 
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CD = 0.0089, CL = 0.2868 CD = 0.0101, CL = 0.2786 

Active Subspace Optimum Gradient Based Optimum 

  GBO still out-performs locally 



Cost 
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Step Flow + 
Adjoint 

Evaluations 
Initial Sample 300 x 3 

Active Subspace 
Resample 

22 

Optimum 
Samples 

5 

Total 925 

Step Flow + 
Adjoint 

Evaluations 
GBO Start 1 56 

GBO Start 2 28 

GBO Start 3 41 

GBO Start 4 34 

Total 159 

Active Subspace Gradient Based 



Summary 
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Active Subspaces 

Mapping 

` Design Problem 

Design Exploration 

Optimization Results 



Conclusions 

• Addresses problems faced while using 
surrogate models in dimensions greater than 
order ten 

• Enables design exploration in low dimension 
and visualization in two dimensions 

• Novel approach to mapping between coupled 
subspaces of a design problem 
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Surrogate Modeling Tools 
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VyPy 
github.com/aerialhedgehog/VyPy 

# Objective 
Y,DY = Rosenbrock_Function(X) 
Train  = VyPy.Training(XB,X,Y,DY) 
Kernel = VyPy.Kernels.Gaussian(Train) 
Model_Y = VyPy.Modeling(Train,Kernel) 
 
# Efficient Global Optimization 
Sample = VyPy.Sampling(Model_Y,Func_Y) 
Sample.Optimize()  



Ongoing Work 

• Complex design problems (sonic boom) 
• Poorly behaved objectives 
• Mode visualization 
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Ongoing Work 
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Active Subspace Mode Visualization 

 To provide design insight 



Questions? 
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Thank You! 



Thank You! 
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